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Abstract

Background: The purpose of this research was to develop a novel information theoretic method
and an efficient algorithm for analyzing the gene-gene (GGI) and gene-environmental interactions
(GEI) associated with quantitative traits (QT). The method is built on two information-theoretic
metrics, the k-way interaction information (KWII) and phenotype-associated information (PAI).
The PAl is a novel information theoretic metric that is obtained from the total information
correlation (TCI) information theoretic metric by removing the contributions for inter-variable
dependencies (resulting from factors such as linkage disequilibrium and common sources of
environmental pollutants).

Results: The KWII and the PAI were critically evaluated and incorporated within an algorithm
called CHORUS for analyzing QT. The combinations with the highest values of KWII and PAI
identified each known GEIl associated with the QT in the simulated data sets. The CHORUS
algorithm was tested using the simulated GAWI5 data set and two real GGI data sets from QTL
mapping studies of high-density lipoprotein levels/atherosclerotic lesion size and ultra-violet light-
induced immunosuppression. The KWII and PAI were found to have excellent sensitivity for
identifying the key GEl simulated to affect the two quantitative trait variables in the GAW |5 data
set. In addition, both metrics showed strong concordance with the results of the two different QTL
mapping data sets.

Conclusion: The KWII and PAI are promising metrics for analyzing the GEI of QT.

Background

The clinical presentation of many common complex dis-
eases causing morbidity and mortality are associated with
deviations from the population distributions of impor-
tant quantitative traits (QT). For example, in hypertension
and non-insulin dependent diabetes, the disease proc-

esses increase the QT, blood pressure and blood glucose,
respectively. For many diseases, threshold values of QT
are the basis for the diagnostic criteria for the diseases.
However, obtaining an in-depth understanding of genetic
and environmental determinants of QT such as weight,
height and lifespan in healthy populations can also be
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important scientific questions. The regulation of many QT
is typically complex and involves interactions among
many genes as well as endogenous and exogenous factors
[1,2]. For example, genes in pathways regulating appetite,
metabolism, hormones and adipokines may interact with
environmental factors such as diet and exercise to deter-
mine body weight. Nonetheless, the successful identifica-
tion of the critical gene-environment interactions (GEI)
involved in QT such as body weight can provide the scien-
tific basis for preventative public health measures to
reduce the exposure of individuals to the modifiable envi-
ronmental variable/s associated with increased risk.

Information theoretic methods have considerable prom-
ise for enhancing single nucleotide (SNP), gene-gene
interaction (GGI) and GEI analysis [3-6]. The Kullback-
Leibler divergence (KLD), an information theoretic meas-
ure of the 'distance’ between two distributions, has been
proposed for 2-group comparisons such as those used to
evaluate ancestry informative markers [7-9], as a multi-
locus linkage disequilibrium (LD) measure to enable
identification of TagSNPs [6] and for analytical visualiza-
tion [4,5]. Entropy-based statistics to test for allelic associ-
ation with a phenotype [10-12] and for two-locus
interactions have also been proposed [13]. Information
theoretic extensions of the KLD allow measurement of
complex multivariate dependencies among genetic varia-
tions and environmental factors without complex mode-
ling and could enable powerful and intuitive
methodology for GGI and GEI analyses to be developed
[14,15].

While there is now considerable evidence demonstrating
the usefulness of information theoretic methods for iden-
tifying the interactions associated with discrete and binary
phenotypes, to our knowledge, information theoretic
approaches have not been reported for analyzing the GGI
and GEI associated with QT. This report proposes an
information-theoretic approach for identifying associa-
tions of GEI and GGI with a QT.

Methods

Terminology and Representation

Definition of Interaction

In our information theoretic framework, we use the K-way
interaction information (KWII) [16,17], which is defined
and described in detail below, as the measure of interac-
tion information. We operationally define "for each varia-
ble combination containing the QT phenotype, a positive KWII
value indicates the presence of an interaction, negative values
of KWII indicates the presence of redundancy and a KWII
value of zero denotes the absence of K-way interactions".

The methods in this paper are applicable to both GEI and
GGI analyses and henceforth, we will simply use the term
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GEI to refer to both. The underlying terminology and rep-
resentation for this paper was developed in our earlier
publications [14,15] but is concisely recapitulated here.

The operational definition can yield results that are diffi-
cult to interpret in the presence of variables that are com-
pletely redundant with each other because an even
number of completely redundant variables will result in a
positive KWII. We address these issues in detail in Discus-
sion.

Entropy

The entropy, H(X), of a discrete random variable X can be
computed from its probability mass function, p(x), using
the Shannon entropy formula:

H(X) == p(x)log p(x)

The entropy, H(X), of a continuous random variable X can
be computed from its probability density function, f(x),
using the formula:

H(X) =~ f(x)log f(x)ds
X

K-way interaction information

For the 3-variable case involving two genetic or environ-
mental variables denoted by A and B, and the QT pheno-
type denoted by P, the KWII is defined in terms of
entropies of the individual variables, H(A), H(B) and
H(P) and the entropies, H(AB), H(AP), H(BP) and
H(ABP), of the combinations of the variables:

KWII(A; B; P) = —=H(ABP) + H(AB) + H(AP) + H(BP) — H(A) - H(B) - H(P)
For the K-variable case on the setv = {X,, X,, ..., Xj, P}, the
KWII can be written succinctly as an alternating sum over
all possible subsets T of v using the difference operator
notation of Han [18]:

KWII(v) = _Z(—n‘v“‘”H(T)

Tcv

The number of genetic and environmental variables K in
a combination is called the order of the combination. The
KWII quantifies interactions by representing the informa-
tion that cannot be obtained without observing all K var-
iables and the QT phenotype P at the same time
[16,17,19,20]. The KWII of a given combination of varia-
bles is a parsimonious interaction metric in that it does
not contain contributions arising from the KWII of other
lower order combinations (i.e., the subsets of the K-way
variable combination).
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Total Correlation Information (TCl)

For the 3-variable case, the TCI [21] is defined in terms of
entropies of the individual variables H(A), H(B) and H(P)
and the entropy of the joint distribution H(ABP):

TCI(A, B, P) = H(A) + H(B) + H(P) — H(ABP)

For the case containing K genetic or environmental varia-
bles and the QT on the setv = {X;, X,, ..., Xy, P}, the TCI,
can be expressed as the difference between the entropies
of the individual variables H(X;) and the entropy of the
joint distribution H(X,X,... X;P).

K
TCI(X,,X,,..., X, P) = H(P) + ZH(Xi) —H(X,X,...XP)
i=1
Similarly for K genetic or environmental variables combi-
nations not including the QT:

K
TCI(X,, X5, ..., X) = ZH(Xi) “H(X,X, ... Xg)
i=1

The TCI is the amount of information shared among the
variables in the set; equivalently, it can be viewed a gen-
eral measure of dependency. A TCI value that is zero indi-
cates that knowing the value of one variable tells you
nothing about the others, i.e., that the variables are inde-
pendent. The maximal value of TCI occurs when one var-
iable is completely redundant with the others.

Phenotype-Associated Information

The phenotype-associated information (PAI) is obtained from
the TCI for the overall dependency among the genetic and
environmental variables and the phenotype variable by
removing the TCI contributions representing the interde-
pendencies among the genetic and environmental varia-
bles only. The interdependencies among these variables
can be caused for example, by LD or by correlated source
patterns of pollutant exposures. Accordingly, PAI is
defined by:

PAI(X,,X,,...,Xx,P) = TCI(X,,X,,..., X, P) = TCI(X|, X ,,..., X¢)

In the above equation, the genetic and environmental var-
iables are denoted by the X, X,,..., Xi, and the quantita-
tive trait is denoted by P.

In the PAI definition, the TCI(X;, X,,..., Xy, P) term repre-
sents the overall dependency among the genetic and envi-
ronmental variables and the phenotype whereas the
TCI(X;, X,,..., Xk) term represents the interdependencies
among the genetic and environmental variables in the
absence of the phenotype variable.

http://www.biomedcentral.com/1471-2164/10/509

Our approach utilizes the KWII as the principal measure
of the GEI. However, we employ the PAI to facilitate effi-
cient searching of the combinatorial space. Although the
KWII is a parsimonious measure of interaction for the var-
iable combination of interest alone because it does not
contain contributions from lower-order interactions,
KWII computations on the entire combinatorial space are
computationally intractable because they require the
entropies of all subsets. In addition, the KWII cannot be
used for hill climbing algorithms because it takes on both
positive and negative values depending on the nature of
the interaction but the values cannot be used to direct the
search process.

In contrast, the PAI is appropriate for hill climbing algo-
rithms as it is always greater than or equal to zero and
increases monotonically with increased combination size.
PAI calculations require only individual and joint entro-
pies and are computationally far more tractable than KWII
calculations. In addition to these desirable properties, the
PAI contains useful information regarding the KWII
because it represents the cumulative phenotype-associ-
ated synergy present in all subset combinations of the var-
iables X;, X,, ..., Xx and P. In Results, we will demonstrate
that both the KWII and PAI metrics are effective and effi-
cient for GEI analysis.

Extension to Quantitative Traits

The expressions for KWII and PAI are general and can be
used for QT and categorical phenotypes. However, the
specific forms are necessary for the entropy of the QT and
the joint entropy of the QT with discrete variables result-
ing from the genetic variants, environmental variables
and their combinations.

The entropy H(Z) of a normally distributed variable, Z,
with mean x and standard deviation ois [22]:

H(Z) = In(c+/27e)

Note that the entropy, H(Z), of a normally distributed var-
iable is independent of the mean .

For GGI and GEI analysis in this report, we are interested
in H(X, P), the entropy of the joint distribution of the QT,
P, and a discrete variable X, representing, e.g., genetic var-
iants or environment variables of interest or their combi-
nations.

H(X,P) = —ZJ (P, X = x)Inp(P, X = x)dP
x p

Therefore:
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H(X,P)= —ZJp(P|X =x)p(X = x)In(p(P| X = x)p(X = x))dP
x p

We assume that the QT, P, given X = x, is normally distrib-
uted N(y,, o,). By expanding, simplifying and substitu-
tion, we obtain:

H(X,P) = H(X) + Zp(X = x)In(c/27e)

The H(X) term contains only discrete variables and as a
result, this entropy can be computed using the Shannon
entropy formula:

H(X) ==Y p(x)In p(x)

Algorithm: CHORUS(S,P,6,7)

http://www.biomedcentral.com/1471-2164/10/509

These equations for the entropy of the QT, the entropy of
discrete variable combinations and the joint entropy of
the QT and discrete variable enable computation of the
KWII and the PAI for GEI analysis of QT.

The CHORUS Algorithm

The CHORUS Algorithm is a computationally efficient
approach for GEI analysis of QT that is based on our ear-
lier work with discrete phenotypes [15]. The pseudocode
for CHORUS is shown in Figure 1.

The CHORUS Algorithm employs the PAI to iteratively
search for combinations of genetic variations and envi-
ronmental variables related to the QT. The increases in the
PAI are used to guide the search process in a hill-climbing
algorithm that identifies promising subsets of combina-

Input X(Set of Variables),P(Quantitative trait variable),0(Number of combinations to retain at each

iteration of the search), T (Number of iterations)

Output Q(Collection of interacting combinations and their KWII)

1.Z<¢

2.for each variable V € X do
3. pai< PAI(V,P)

4. Z<ZU{V,pai}
5.endfor

6.5, <= Top 6 combinations from Z ranked by PAI

7.fori<1to tdo

8. Z<¢

9. for each variable V € X do

10. for each combination C € S, do
11. C<=CU{V}

12. pai < PAI(C,P)

13. Z<ZU{C,pai}

14. endfor

15. endfor

16. S,,, <= Top 0 combinations from Z ranked by PAI

17. endfor

18.0<¢

19.for i < 1to Tdo

20. for each combination C € S; do

21. for each v C C do

22. Q< QU{v.KWII(v,P)}
23. endfor

24.  endfor

25. endfor

26. return Q

Figure |

Pseudocode for the CHORUS algorithm for detecting GEI associated with quantitative traits.
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tions potentially involved in GEI with the QT. The KWII
values necessary for assessing GEI in our method are then
computed for the promising subsets of combinations
identified.

Let X = {X;, X,, ..., X,,} be the set of all genetic/environ-
mental variables and P be the QT of interest. The algo-
rithm takes as input X, P, and algorithm parameters & and
7, which represent the number of combinations retained
in an iteration of the search and the number of iterations,
respectively.

We start by calculating PAI(X;, P) Vi € 1 ... n. We retain the
6 combinations with the highest values of PAI for use in
the next iteration. Let this set of variables be denoted by
§;. In the next step, we calculate PAI(X;, X;, P) V X;e 1... n,
(j # i) and again retain the @ combinations with the high-
est values of PAI(X;, X; P) in set S,. The above steps are
repeated 7 times. Thus, we greedily search for combina-
tions containing up to z variables that have higher values
of PAL This search process identifies regions in the combi-
natorial space with the strongest KWII-based interactions
among the variable combinations examined. Finally, for
each combination C identified by the above search steps,
we calculate the KWII(v, P) V v < C to identify the inter-
acting combinations, {v, P}.

The simulations and CHORUS implementations were
built in-house and written in the Java 1.5 programming
language. The COLT high-performance computing library
from CERN (acs.lbl.gov/~hoschek/colt) was used for
numerical functions including random variate generators.

Simulated Data

Simulated data sets were used to examine: 1) the relation-
ship between LD, KWII and PAI in the presence of associ-
ation with a quantitative trait, 2) the correlation between
effect size and KWII values and, 3) the power of KWII to
detect association across various effect sizes.

Approaches Common for All Simulated Data Sets

All simulated data sets contained six diallelic SNPs with
the three possible genotypes. The genotypes at each locus
were assumed to be in Hardy-Weinberg equilibrium pro-
portions. The Simulated Data Sets 1, 2 and 3 consisted of
2 interacting SNPs, SNP(1) and SNP(2), that were associ-
ated with the QT. An additional 4 null SNPs, SNP(3)
through SNP(6), were simulated. The alleles of SNP 1
were labeled A, and A,, and those of SNP 2 were labeled
B, and B,. All SNPs had a minor allele frequency (MAF) of
0.5.

The GEI models for Simulated Data Sets 1 and 2 are
shown in Figures 2A and 3A, respectively. Based on geno-
type or genotype-environmental combination, the QT
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value for each subject was a normally distributed random
variate with a mean of either g, = 0 or x4, = 0.5. The corre-
sponding standard deviation values of the QT distribu-
tions, o = ¢, = o, were set equal. The effect size Z was
defined as the ratio (¢ - 1)/ o

Samples composed of 5000 individuals with randomly
varying genotypes and environmental exposures consist-
ent with the underlying GEI models were simulated. The
computations for all three Simulated Data Sets were per-
formed with CHORUS input parameter values of 7= 3 and
O was set to include all possible combinations at each iter-
ation.

To obtain p-values of the KWII, the null distribution of the
KWII of each combination was obtained from 5000 ran-
dom permutations of the QT values for each simulated
data set. The permutations for each combination were
conducted independently. The raw p-value of the KWII of
a combination was ascertained as the fraction of the per-
muted KWII values that were equal to or greater than the
observed KWII value. The p-values were not corrected for
multiple testing.

The 5th and 95t percentiles of the KWII and PAI, repre-
senting the variations due to sampling, were obtained
from 100 independent repetitions of the simulation pro-
cedure. In forming confidence intervals we did not con-
sider multiple testing. The number of potential tests for all
one-way, two-way and three-way combinations was 41
each for Simulated Data Sets 1 and 3 and 175 for Simu-
lated Data Set 2.

For the simulations summarized in Figures 2B-2C, 3B-3C,
the effect size was set to 0.5. For the simulations in Figure
2D and 3D, the effect size was varied from 0.5 to 2.5 in
increments of 0.5 by varying the standard deviation of QT
distribution. Linkage disequilibrium (LD) was assumed to
be absent in the simulations in Figures 2B-D and 3B-D. In
Figure 2F and 3E, we incorporated LD between the SNP 1-
SNP 3 and the SNP 2-SNP 4 pairs; the R2 values for both
pairs was set to be equal and eleven R? values ranging
from 0 to 0.95 were studied.

Simulated Data Set |, Two-SNP Interactions

The mean QT values for each genotype were based on the
GGI model in Figure 2A. The standard deviation o, was set
to o, and g, = 1.

Simulated Data Set 2, Multi-SNP and SNP-Environment Interactions
The mean QT values for each genotype were based on the
GEI model in Figure 3A. There were four environmental
variables, E(1) through E(4), in addition to the six SNPs.
The interacting environmental variables, E(1) and E(2),
were associated with the QT; E(3) and E(4) were null
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Figure 2

Figure 2A shows the interaction model for Simulated Data Set |. The SNP variables, SNP | and SNP 2 sequentially
interact (the comma in 2, 3 indicates the Boolean OR operation) to determine the QT level. Figure 2B and 2C are the corre-
sponding KWII and PAI spectra for an effect size of 0.5. Figure 2D shows the dependence of KWII on effect size for the {/, P}
(open circles), {2, P} (filled circles) and {I, 2, P} (open triangles). Figure 2E shows the PAI for the {/, 3, P} (open circles) and {2,
4, P} (filled circles) combinations when pairwise LD between SNPs | and 3 and SNPs 2 and 4 were varied. The error bars in
Figures 2B-E represent the 95t percentile and 5t percentile values. Figure 2F shows the power of the KWII as a function of
effect size for the {/, P} (open circles), {2, P} (filled circles) and {/, 2, P} (open triangles) combinations.

environmental variables. The percentage of subjects in  Simulated Data Set 3, Two Locus Model with Pure Epistasis

low (L) and high (H) exposure categories of E(1) and E(3)  Interactions

were each 50%; the percentage of subjects in low (L),  The Simulated Data Set was selected to contain pure
medium (M) and high exposure (H) categories of E(2)  epistasis interactions without main effects present, i.e., it
and E(4) were 25%, 50% and 25%, respectively. does not contain QT variation that is attributable to any
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Figure 3A shows the interaction model for Simulated Data Set 2. The asterisk in a genotype represents a "wild card"
indicating that either allele is allowable. Figure 3B and 3C are the KWII and PAI spectra for an effect size of 0.5. All the one-var-
iable containing combinations and the 10 two-variable and 5 three-variable combinations with the highest KWII values are
shown. Figure 3D shows the dependence of KWII on effect size for the {E2, P} (open circles), {EI, E2, P} (open triangles) and
{E2, I, 2, P} (open squares). Figure 3E shows the PAI for the {/, 3, P} (open squares) and {2, 4, P} (filled circles) combinations
when pairwise LD between SNPs | and 3 and SNPs 2 and 4 were varied. The error bars in Figures 3B-E represent the 95% per-
centile and 5t percentile values. The symbols and the error bars in Figure 3E are difficult to distinguish because the values for
both combinations were nearly equal. Figure 3F shows the power of the KWII as a function of effect size for the {E2, P} (open
circles), {El, E2, P} (open triangles) and {E2, I, 2, P} (open squares) combinations.
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individual locus and requires the combined presence of
two loci for explaining the QT variation.

In contrast to Simulated Data Sets 1 and 2, which were
based on biological models of causation, the simulations
for Simulated Data Sets 3 were based on models of pure
epistasis that were evaluated by Culverhouse [23]. The QT
values for each genotype were random variates drawn
from N(g,, 0,) with frequency corresponding to the prob-
ability in the following table and from N(x, o,) other-
wise:

BlBl BIBZ BZBZ
AA, 023 009 0.79
AA, 0.09 051 0.09
A,A, 0.79 0.09 023

Power Calculations

For the power calculations in Figures 2F, 3F and 4B, 1000
independent simulations were conducted for each of the
following effect sizes: 0.1, 0.25, 0.5, 1, 1.5, 2, and 2.5 by
changing the standard deviation. The sample sizes were
assumed to be 5000. The distribution of the KWII for an
effect size of zero was obtained and its 95t percentile
value was computed. Positive values of KWII indicate the
presence of interactions and accordingly, power at the
non-zero effect size values was defined as the fraction of
the simulations whose KWII value exceeded the 95t per-
centile value of the KWII distribution for the zero effect
size.

Analysis of Public Domain Data Sets

The computations for all three public domain data sets
were performed with CHORUS input parameters values of
¢=50and 7= 2.

We did not correct for multiple testing; instead, we present
the number of tests for all one and two-way combinations
for each dataset and the top 25 unadjusted p-values and
corresponding KWII values for one and two-way combi-
nations. Given only one dataset is based on simulated
data and the other two are real datasets in which the
authors adjusted for multiple testing using different meth-
ods we felt adjusting further confounded the comparisons
and thus simply present the rank unadjusted values for
scrutiny.

GEl Analysis of Genetic Analysis Workshop 15 Data

The data for Problem 3 of Genetic Analysis Workshop 15
(GAW15) were obtained from the GAW site http://
www.gaworkshop.org/gaw15data.htm and used with per-
mission. These data consist of 100 replicates of simulated
data that are modeled after the rheumatoid arthritis (RA)
data [24]. The interactions between the diallelic SNP loci
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and variables modeled in the data set are summarized in
Table 1. The biomarkers, anti-cyclic citrullinated peptide
antibody (Anti-CCP), immunoglobulin M (IgM) are
defined for the cases only.

For our analysis, which aimed to evaluate the effectiveness
of CHORUS, we have used the set of 9187 SNPs along
with sex, age and smoking status as covariates. We refer to
this data set as the "10K GAW15 Dataset." We conducted
separate analyses with Anti-CCP and IgM as QT of inter-
est. The Anti-CCP and IgM variables were logarithm (base
10) transformed prior to analysis. The Age variable was
binned into five intervals of equal width. Although haplo-
type-phase information was provided, we chose to not
include it and treated the data as unphased genotype data.

Analysis of High Density Lipoprotein and Atherosclerosis Data

Female B6 mice have low levels of plasma high-density
lipoprotein (HDL) and are susceptible to atherosclerosis
whereas female 129 mice have high plasma HDL levels
and are relatively resistant. This data set contains geno-
types, HDL concentrations and size of aortic fatty streak
measurements for 294 female F2 intercross progeny
(derived from the C57BL/6 (B6) and 129 strains of inbred
mice) that were fed a high-fat diet for 14 weeks [25]. The
mice were genotyped with 88 simple sequence length pol-
ymorphic (SSLP) markers and subsequently 23 additional
SSLP markers in the QTL regions were added. The data
were obtained from the Center for Genome Dynamics at

the Jackson Laboratory http://cgd.jax.org/nav/
atlarchivel.htm.

We analyzed the HDL and atherosclerotic aortic fatty
streak lesion size as QT of interest. The atherosclerotic aor-
tic fatty streak lesion size variable was logarithmically
transformed (base 10) prior to analysis.

Comparative Genomics Analysis

We also conducted mouse-human comparative genomics
analysis to evaluate the biological significance of the
markers identified by our method. The list of human HDL
and atherosclerosis QTL were obtained from [26] and
[25,27], respectively. The coordinates of the QTL were
converted to latest release (hg18, NCBI Build 36.1) of the
human genome assembly based on the UCSC genome
browser [28]. The mouse marker regions with peak posi-
tion + 16 Mbp (the average HDL [26] and Atherosclerosis
[29] QTL is 32 Mbp) were retrieved from the latest mouse
genome assembly (mm9, NCBI Build 37). The human
homologous regions of mouse markers were obtained by
parsing the chain alignment of mouse (mm9)-to-human
(hg18) genome [30,31].
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Figure 4A shows the KWII spectrum for the two-locus models with pure epistasis interactions, respectively.
Figure 4B shows the power of the KWII value of the {/, 2, P} combination in the two-locus model for different effect sizes. Fig-

ure 4C shows the dependence of the KWII values in the two-

locus model for the {/, P} (open circles), {2, P} (filled circles) and

{I, 2, P} (open triangles) combinations on the allele frequency at SNP 2.

Analysis of Ultra-violet (UV) Light-Induced Immunosuppression Data
This data set contains results from a genome-wide scan
using MIT microsatellite markers and was obtained from
F1 backcross mice derived from the low susceptibility
BALB/c and high susceptibility C57BL/6 strains of mice
that were tested for systemic UV light-induced immuno-
suppression of a contact hypersensitivity response [32].

The data were downloaded from the Center for Genome
Dynamics at the Jackson Laboratory http://cgd.jax.org/
nav/qtlarchivel.htm. The data contain 64 markers and sex
was included as a factor. The percent immunosuppression
of the contact hypersensitivity responses in backcross ani-
mals was used as the QT of interest. The percent immuno-
suppression (expressed as a fraction) was arcsine square
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Table I: Effects of major trait loci and covariates in the GAW |5 data set.

Locus Chr SNP # Phenotype Effects

DR 6 152-155 RA Affects risk of RA
A 16 30-31 RA Controls effect of DR on RA risk
B 8 442 RA Controls effect of smoking on RA risk
C 6 152-155 RA Increases RA risk only in women
D 6 161-162 RA Rare allele increases RA risk 5-fold
E 18 268-269 RA, Anti-CCP Affects DR on anti-CCP and increases RA risk
F ] 387-389 IgM QTL for IgM
G 9 185-186 Severity 25% QTL for severity
H 9 192-193 Severity 25% QTL for severity

Age - RA Affects RA risk through smoking and sex ratio

Sex - RA Affects RA risk with Locus C

Smoking - RA, IgM Affects RA risk with Locus B and IgM.

The loci associated with IgM and Anti-CCP QT are shown in bold.

root transformed. The between-experiment variation was
corrected by expressing the results as Z-score based on the
mean and standard deviation of each experiment.

Statistical Significance Assessments

For the GAW15 Data set, we used all 100 replicates to
obtain KWII and PAI values and the corresponding 95%
confidence intervals for each combination of variables.
The number of potential tests for all one-way and two-way
combinations was 42,232,645 (consisting of 9,190 one-
way and 42,223,455 two-way) each for the IgM and Anti-
CCP QT in the GAW15 data set.

For the high density lipoprotein and atherosclerosis and
ultra-violet light induced immunosuppression datasets
and the first replicate of the GAW15 Data set, the null dis-
tribution of the KWII of each combination was obtained
from 5000 random permutations of the QT values. The
permutations for each combination were conducted inde-
pendently. The raw p-value of the KWII of a combination
was ascertained as the fraction of the permuted KWII val-
ues that were equal to or greater than the observed KWII
value. The same permutation approach was employed for
the HDL and atherosclerosis data sets and for the first data
replicate in the GAW15 data set to determine the time
required for permutations; the top 25 one-way and top 25
two-way combinations were analyzed.

The number of potential tests for all one-way and two-way
combinations was 6,216 (111 one-way plus 6,105 two-
way) each for the HDL and atherosclerosis data sets and
2,145 (65 one-way plus 2,080 two-way) for UV light-
induced immunosuppression data set.

Similarity and Differences with the Restricted Partitioning
Method

The Restricted Partitioning method [33] (RPM) code was
provided by Dr. Culverhouse. It was used to analyze the

HDL data set [25] previously described. The o-value was
set to 0.01.

Results

Performance of K-Way Interaction Information (KWII) and
Phenotype-Associated Information (PAI) on Simulated
Data

In these experiments, our goal was to compare the effec-
tiveness of K-way interaction information (KWII) and
phenotype-associated information (PAI) on simulated
data with known patterns of interactions. These Simulated
Data Sets were intentionally kept simple so that the heu-
ristics for interpreting the KWII and PAI could be identi-
fied.

Simulated Data Set |, Simple Epistasis

Figures 2B and 2C show the KWII and PAI, respectively,
for each combination of interactions between the pheno-
type and all possible SNP combinations. We refer to these
graphs as KWII and PAI spectra.

The combinations are shown on the y-axis; e.g.,, 1, 2, P
indicates that variables SNP 1, SNP 2 and the QT variable,
P, are used in calculating k-way (k = 3) interaction. The
KWII spectrum contains two dominant peaks correspond-
ing to the {1, P} and {2, P} combinations indicating that
SNPs 1 and 2 contribute significantly to the quantitative
trait variable P. The permutation-based p-values of the
KWII for both combinations was p < 0.0002. Qualita-
tively, the stepwise structure of the PAI spectra contrasts
with the peak-like structure of the KWII spectra. The pres-
ence of a higher peak for the {1, 2, P} combination com-
pared to the {1, P} and {2, P} combinations indicates a
dependence of SNP 1 on SNP 2. Thus, the PAI detects the
dependence between SNPs 1 and 2 and provides informa-
tion that complemented the KWII. The variables not
involved in interactions (SNPs 4, 5 and 6) can be more
easily identified from the PAI spectra because the PAI val-
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ues for combinations containing these independent vari-
ables are the lowest compared to combinations
containing interacting variables. None of p-values of the
KWII for variables not involved in interactions were sig-
nificant (all p-values > 0.05).

Figure 2D shows the dependence of KWII on the effect
size. In Figure 2D, the KWII of three representative combi-
nations: the 1-variable containing {1, P} and {2, P} com-
binations and the 2-variable containing {1, 2, P}
combination are shown. The KWII values of all three com-
binations increased with increasing effect size. We also
computed the 95t and 5t percentiles of the KWII each
peak to assess variability due to sampling; in some of the
cases, the standard deviation was quite low and obscured
by the symbols used for graphing. These results demon-
strate that the KWII spectra convey information on the
types of interaction present and also their effect size.

We incorporated pairwise LD between the SNP 1 and SNP
3 pair and between the SNP 2 and SNP 4 pair. The R?val-
ues for the LD for both SNP pairs were set equal and the
value was increased from 0 to 0.95. The effects of LD on
the PAI for two combinations, {1, 3, P} and {2, 4, P} are
summarized in Figure 2E. The results demonstrate that the
PAI is independent of LD and the interaction information
related to the QT is retained.

Figure 2F shows the power of KWII at a sample size of
5000 per group for various effect sizes for {1, P}, {2, P}
and {1, 2, P} combinations. The power of the KWII was
greater than 0.99 for all three combinations at an effect
size of 0.5 or greater.

Simulated Data Set 2

This Simulated Data Set is relatively complex and contains
a combination of interactions among and between the
environmental and genetic variables. In addition, 1-varia-
ble, 2-variable and 3-variable containing GGI and GEI
interactions with the QT variable, C, are incorporated in
the model.

The one-variable containing peaks in the KWII spectrum
correctly identified the critical roles of E1, E2, SNP(1) and
SNP(2) variables (all p-values < 0.0002) in the underlying
model and the two-variable containing {E1, E2, P} and
{1, 2, P} interactions (p < 0.0002 and p = 0.015, respec-
tively) were also identified. Furthermore, the three varia-
ble containing {E2, 1, 2, P} combination (p < 0.0002) was
the three-variable combination with highest the KWII val-
ues.

The PAI spectrum complements the KWII spectrum. For 1-
variable containing interactions the values of KWII and
PAI are identical and equivalent to mutual information.

http://www.biomedcentral.com/1471-2164/10/509

However, the most notable characteristic of the PAI spec-
trum is its discrete step-like visual appearance. Each inter-
acting variable in the data set contributes approximately
one single unit step. The height of the PAI peak increases
whenever an informative variable is added to the variable
list and is unchanged when a non-interacting variable is
added. The lowest values of PAI correspond to the subsets
containing only non-interacting variables such as {3, 4,
P}, {3, 5, P}. By identifying the largest subset with low
PAI values, the spectrum can be used to eliminate non-
interacting variables.

Figure 3D shows the effect size dependence of KWII for
three representative informative 1, 2, or 3-variable con-
taining combinations, {E2, P}, {EI, E2, P} and {E2, 1, 2,
P}, from Figure 3B. As in Simulated Data Set 1, the KWII
for each combination increased by almost an order of
magnitude for the 5-fold increase in effect size. The 95t
and 5% percentiles of KWII were also computed and vari-
ability for Simulated Data Set 2 was qualitatively greater
than for Simulated Data Set 1 possibly because of the
complexity and number of the underlying GEI. The coef-
ficients of variation of the KWII values decreased with
increasing effect size.

The effects of LD (for R2 ranging from 0 to 0.95) on the
PAI for two combinations, {1, 3, P} and {2, 4, P} for effect
size of 0.5 are summarized in Figure 3E. Again, the results
demonstrate that the PAI is robust and independent of
LD.

Figure 3F shows the power of KWII at a sample size of
5000 for various effect sizes for three representative
informative 1, 2, or 3-variable containing combinations:
{E2, P}, {E1, E2, P} and {E2, 1, 2, P}. The KWII had a
power of 0.89 at an effect size of 0.25 for the {E2, P} peak.
At an effect size of 0.5, the power for the {E1, E2, P} and
{E2, 1, 2, P} peaks were each 0.98 or greater.

Simulated Data Set 3

This Simulated Data Set investigated a two-locus model of
pure epistasis. Pure epistasis models lack QT variation
attributable to single-loci and require interactions
between different loci to explain the variation [23].

As would be predicted from the simulation framework,
the KWII spectra for the two-locus (Figure 4A) pure epista-
sis interaction model did not contain any peaks corre-
sponding to single-SNP  combinations or to
uninformative SNP combinations (all p-values > 0.05).
The KWII spectrum for the two-locus model contained a
prominent peak (p < 0.0002) corresponding to the
informative two-SNP combination {1, 2, P}. This suggests
that the interactions identified with the KWII are qualita-
tively concordant with epistatic interactions. Figure 4B
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shows that the power of detecting the epistatic interaction
based on the KWII of {1, 2, P} combination is satisfactory.

Although the KWII correctly detects epistatic interactions,
CHORUS is not capable of identifying these interactions
because it employs a marginal effect search strategy. The
models used in this Simulated Data Set exhibit pure
epistasis only when the allele frequencies of the interact-
ing SNPs are 0.5. We hypothesized that differences in
allele frequencies between the interacting loci would
cause deviations from pure epistasis and result in the
appearance of KWII peaks for lower-order combinations.
Figure 4C shows the dependence of the KWII on the allele
frequency at SNP(2) in the two-locus model of epistasis.
When the allele frequencies of both loci are equal, the
KWII values of the one-variable combinations are nearly
zero as expected. However, the KWII value of the {1, P}
combination increases with deviations from equality of
allele frequency. The KWII value for the {1, 2, P} combi-
nation is maximal when the allele frequencies are equal
and decreases with deviations from equality.

Taken together, these Simulated Data Sets demonstrate
that the KWII and PAI spectra are capable of visually sum-
marizing a diverse range of gene-environment interaction
phenomena.

Performance of PAI-Based CHORUS Algorithm on Public
Domain Sets

10K GAW 5 Dataset

The underlying GGI and GEI in the simulations for this
data set models the interaction of nine loci: C, DR and D
on chromosome 6, A on chromosome 16, B on chromo-
some 8, E on chromosome 18, F on chromosome 11, G
and H on chromosome 9 (see Table 1 for a summary)
[24]. The associations between the individual loci and RA
affection status and the Anti-CCP and IgM that were built
into the data set by Miller et al. [24] are summarized in
Table 1. The Anti-CCP and IgM were QT and the focus for
this report; the associations corresponding both QT are
highlighted in bold in Table 1. Note that the Anti-CCP
and IgM measures are defined for the cases only. Although
phase information was provided, we treated the data as
genotype data for the CHORUS analysis.

The GAW15 data set contained 100 replicates from repeti-
tions of the simulation procedure [24] and the availability
of these replicates enabled us to compute the 95% confi-
dence interval for the KWII of each combination.

Figure 5A presents the KWII values for various combina-
tions with Anti-CCP as the QT of interest. The peaks with
the highest KWII values (Figure 5A) enabled the identifi-
cation of the following loci and covariates associated with
Anti-CCP: loci C, DR (chromosome 6), locus E (chromo-
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some 18), Age and IgM. The strongest contributions to the
Anti-CCP in simulations were from Locus E and DR;
Locus E affects Anti-CCP by controlling which DR geno-
types place a subject in the Anti-CCP group with high
mean values [24]. Figure 5A demonstrates that the three
highest KWII correspond to the interaction between the
DR locus (SNPs C6_152-C6_155) and Anti-CCP (all p-
values < 0.0002); the next two peaks, {C18_269, Anti-
CCP} and {C6_153, C18_269, Anti-CCP}, correspond to
the interactions of Locus E alone and the Locus E, DR
combination with Anti-CCP (both p < 0.0002).

Figure 5B presents the KWII values for various combina-
tions with IgM as the QT of interest. The peaks with the
highest KWII values enabled the identification of the fol-
lowing loci and covariates associated with IgM: loci C and
DR (chromosome 6), locus E (chromosome 18), Smok-
ing: the highest KWII peaks corresponded to {C11_389,
IgM}, {C11_389, Smoking, IgM} and {Smoking, IgM} in
Figure 5B (all p-values < 0.0002). It is important to note
that the KWII for each of these combinations does not
contain redundant information. Thus, the significant
peaks for the {C11_389, Smoking IgM} and {Smoking,
IgM} indicate that Smoking alone is IgM-associated but
also contributes to IgM synergistically in association C
11_389. Furthermore, the changes in the peak height
should not be interpreted to imply any protective role for
Smoking.

The KWII spectrum derived from CHORUS identified all
key covariates associated with the IgM and Anti-CCP with-
out the use of haplotype-phase information or the parent-
child transmission information contained in the pedigree
structures.

HDL and Atherosclerosis Dataset

For HDL susceptibility, Ishimori et al. [25] identified five
significant single locus effects on plasma HDL concentra-
tions: DIMit159, D1Mit406, D2Mit285,,, DOMit129 and
D12Mit172; one locus, D8Mit248, was suggestive of link-
age. Using pair-wise scans, they also found two gene inter-
actions involving D1Mit406: {D1Mit159, DIMit406} and
{D1Mit406, D2Mit285} [25]. From the CHORUS analysis
(Figure 6A), three loci: DIMit406, D12Mit172 and
D1Mit159 were significant even after a conservative Bon-
ferroni correction for multiple testing and all six loci were
among the top 25 single SNP combinations.

However, our two SNP results did not agree with those of
Ishimori et al. [25]. The 2-SNP containing combination
{D1Mit159, DIMit406} was found to have negative KWII
indicating redundancy most likely because of the strong
single SNP effect of each SNP (p < 0.0002). Also the com-
bination {D1Mit406, D2Mit285} was not found among
the 2-SNP combinations with the highest KWII values;
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shown. The variable combinations are indicated on the y-axis; the chromosome number and the SNP identifiers are provided
for SNPs. The bars represent mean values and the upper and lower error bars are the 95thand 5th percentiles of KWII values,

respectively.

both DIMit406 (p < 0.0002) and D2Mit285 (p = 0.031)
were individually associated with HDL (Figure 6A). Inter-
estingly we did detect interactions between DIMIT406
locus on Chromosome 2 and markers identified by Ishi-
mori et al. [25] for atherosclerotic aortic fatty streak lesion
size, e.g, {DIMIT406, D10MIT213} and {DIMIT406,
D10MIT31}. The mouse markers associated with both
HDL and Atherosclerosis QTs in our analysis are anno-
tated (with an A in Figure 6A and an H in Figure 6B).

For atherosclerotic aortic fatty streak lesion size, Ishimori
et al. identified five loci that accounted for 35% of the var-
iance in multiple regression analysis [25]. Of these,
D10Mit31 was a significant QTL on chromosome 10
wherein a dominant B6 allele conferred atherosclerosis
resistance. D12Mit243 was suggestive as a single QTL and
was significant in gene interaction with D11Mit333.
Another interaction was found between the loci
D10Mit213 and D12Mit7. In the CHORUS analysis (Fig-
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Figure 6 (see previous page)

The KWII spectra for HDL (Figure 6A) and atherosclerotic lesion length (denoted by the variable Athr on the
y-axis of Figure 6B). The p-values for each combination are shown against the bars. The plus symbol indicates that there is a
human QTL reported for the orthologous region corresponding to the mouse marker and the minus symbol indicates that a
human QTL has not been reported. For the two-variable combinations, the plus and minus symbols are placed in the same
order as the y-axis labels. The A and H indicate if the marker is present in both the HDL and Atherosclerosis spectra. Figure
6C is a haploid human karyotype ideogram. To the right of each chromosome, the human orthologs of the HDL (red bars) and
atherosclerotic streak length (yellow bars) associated mouse markers identified in our study are shown. To the left of each
chromosome the human QTL for HDL (gray bars) and atherosclerotic disease (black bars) are shown. Chromosomes 21, X
and Y contained no overlapping orthologs and their labels are shown in gray.

ure 6B), we were able to identify three of the five suscepti-
bility loci but as single locus interactions. D10Mit32 was
found to have the highest KWII value and was in strong
LD with D10Mit31. D12Mit243 and D10Mit213 were also
found to have significant single locus effect on atheroscle-
rotic aortic fatty streak lesion size.

Figures 6A-C summarize the results from mouse-human
comparative genomics analysis to critically evaluate the
biological significance of the markers identified by our
method. The plus and minus symbols in Figure 6A and 6B
indicate whether or not the orthologs corresponding to a
+ 16 Mbp region of the mouse markers identified by the
CHORUS method overlapped with human QTLs for HDL
and atherosclerotic disease. For HDL (Figure 6A), all 25
(100%) of the single marker combinations with the high-
est KWII values were concordant with the human QTL for
HDL. Among the two-marker combinations, 20 of 25
were concordant on both markers and 5 of 25 were con-
cordant for one of the two markers. For atherosclerotic
disease (Figure 6B), 23 of 25 (92%) of the single marker
combinations with the highest KWII values were concord-
ant with the human QTL for atherosclerotic disease and
among the two-marker combinations, 23 of 25 were con-
cordant on at least one of the two markers. The high
degree of concordance with human QTL demonstrates
usefulness of our approach in humans. In Figure 6C, we
have represented the human QTL against the backdrop of
a human haploid karyotype ideogram.

The underlying genetic etiology of HDL and atheroscle-
rotic diseases appear to be shared. Human atherosclerotic
diseases include myocardial infarction, coronary artery
disease, acute coronary syndrome (acute myocardial inf-
arction and unstable angina), carotid artery intimal-
medial thickness disease, coronary artery calcium, periph-
eral arterial occlusive disease and stroke [27,29]. To date,
atherosclerotic disease linkage studies have been con-
ducted in 19 human populations and 40 atherosclerotic
disease-regulating QTL have been identified. Two meta-
analysis have confirmed regions on 2q and 3q [34] and
(1p, 5p, 12q, 13q) while four new linkage regions (6p, 2
on 8q, 14p) not found in original studies have been

revealed [35]. Previously, 31 of the 40 human QTL were
found to be concordant with mouse QTL [26], suggesting
that identifying the genes underlying the mouse QTL
could potentially facilitate identification of the genes
underlying the human QTLs. To date, only 3 putative dis-
ease genes from these QTLs have been found for athero-
sclerotic disease [36,37]. The comparative genomics
approach was used to determine if orthologs of mouse
markers identified by CHORUS overlapped with the 40
human QTLs. As summarized in the human haploid kary-
otype ideogram in Figure 6C, we successfully identified
orthologous regions of the mouse markers identified by
CHORUS overlapping with the substantive majority of
the human 40 QTL demonstrating: i) high concordance
between human QTL and the mouse markers identified
by CHORUS, and ii) that CHORUS in conjunction with
comparative genomics can enable identification of more
limited, narrower regions of overlap. These narrow
regions may merit fine mapping studies. Furthermore sev-
eral regions had QTLs for both HDL and Atherosclerosis,
a biologically plausible result not previously found.

The 7q22 region (Figure 6C) exhibits a small region of
overlap between HDL and Atherosclerosis phenotypes in
humans. In 2002, a combined analysis of genome scans
for obesity was undertaken using the interim results from
the National Heart, Lung, and Blood Institute Family
Blood Pressure Program. The sample represents the largest
single collection of genome-wide scan data that has been
analyzed for obesity and provide a test of the reproduci-
bility of linkage analysis for a complex phenotype. Body
mass index (BMI) was used as the measure of adiposity
and this analysis confirmed linkage to the 7q22.2 region
[38]. The result from a hypothesis free analysis clearly
indicate that this is a viable region for fine mapping either
heart disease endophenotypes, such as body mass index
or Atherosclerotic phenotypes previously discussed. Fur-
ther interrogation of this region has shown that it contains
the gene visfatin (Gene Symbol PBEF1; also called nicoti-
namide phosphoribosyltransferase or Nampt and pre-B-
cell colony enhancing factor or PBEF1) an adipokine
found in abundance in visceral fat. This gene has been
shown to lower plasma glucose in both humans and mice
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[39]. More specifically, there is evidence that visfatin lev-
els are correlated with HDL-C and apolipoprotein Al in
Asian Indians [40] and recently evidence of allelic associ-
ation with SNPs in visfatin and plasma levels has been
shown in a Chinese population [41]. The results demon-
strate that our method is capable of successfully identify-
ing the same regions at the genome wide level as have
been found and confirmed. Although follow up candidate
gene studies have mapped visfatin, the power of our
approach lies in the ability to map and narrow regions of
GEI when doing the initial genome wide scan if given clin-
ical and demographic variables.

UV-Induced Immunosuppression Data Set

Clemens et al. identified four quantitative trait loci
(QTLs) with significant main effects for UV-induced
immunosuppression on Chromosomes 1, 6, 10 and 17
[32]. The locus on Chromosome 1 had interactions with
two other loci on chromosomes 14 and 19 [32].

The KWII spectrum for the UV-induced immunosuppres-
sion data set is summarized in Figure 7A. CHORUS iden-
tified several of the same single locus and two locus
interactions found by Clemens et al. D10Mit170 on chro-
mosome 10 and D17Mit49 on chromosome 17, the two
most significant single loci found by Clemens et al. [32],
were also the two single loci with the highest KWII values
identified by CHORUS. The two marker interactions
{DIMitd11, D19Mit19}, {DIMitd11, D14Mit185} and
{DiMit411, D14Mit260} reported to be significant by
Clemens et al., were among the top ten highest KWII
scores; {DIMit411, D14Mit260} was the two-variable
interaction with the highest KWII value.

In Table 2, we compare the F-interaction values that were
obtained by the Clemens et al. [32] for 11 different marker
pairs from regression analyses to their corresponding
KWII values. The KWII and F-interaction values (Spear-
man rank correlation p=0.86, p = 0.001) were highly cor-
related. However, our analysis identified a potentially
significant effect of Sex on UV-induced immunosuppres-
sion whereas Clemens et al. [32] reported the absence of
significant associations. Specifically, Sex had the second
highest KWII value and the D6Mit389 marker was found
to interact with Sex. To more thoroughly assess whether
the underlying data shows evidence of the interaction
identified by the KWII, we plotted the UV-induced immu-
nosuppression results for males and females (Figure 7B)
and for each value of D6Mit389 (Figure 7C). In Figure 7C,
for a D6Mit389 genotype value of 1, we observed promi-
nent differences between males and females. In a GLM
analysis (F = 4.2, p = 0.008 for overall model) with terms
for Sex, D6Mit389 and an interaction between Sex and
D6Mit389, we found Sex to be significant (F = 9.1, p =
0.003) and a trend toward significance for the interaction
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term (F = 2.8, p = 0.097). Similar sex differences were
reported in an independent study by Noonan et al. [42]
These authors found a significant sex difference in back-
cross mice derived from BALB/c and C57BL/6 inbred
strains: male mice were more susceptible to UV-induced
immunosuppression [42]. The incidence and mortality of
skin cancer is higher in men compared to women and a
recent human study employing the Mantoux reaction
found that men were immunosuppressed by UV doses
three times lower than those for women [43].

Similarity and Differences with the Restricted Partitioning
Method

We assessed the similarities and the differences between
the results from CHORUS to the Restricted Partitioning
Method (RPM), a competing method for GEI analysis of
QT, using the HDL data set [25].

RPM identified 21 one-variable containing combinations
as significantly associated with HDL. Twenty of these were
among the top 20 one-variable combinations with the
highest KWII values. The concordance on the one-variable
combinations is reassuring given that RPM and CHORUS
use different approaches to detect between-group differ-
ences. RPM identified 1905 two-variable containing com-
binations with p-values of 0.05 or less; of these 599
combinations had p-values < 0.0002. All twenty of the top
20 two-variable combinations with the highest KWII val-
ues were identified as significant by RPM.

To assess the reasons underlying the qualitative concord-
ance and distinctive differences between the RPM and
CHORUS methods, we plotted the KWII and PAI values
for one-variable and two-variable combinations found
significant by RPM against the R2 value in the RPM output.
For the one-variable combinations (Figure 8A), the KWII
and PAI values are equal and were found to be correlated
with the R2 with a Pearson correlation coefficient r = 0.97.
This explains in part the high degree of concordance
between the two methods for one-variable combinations.
However, for the two-variable combinations, the KWII
(Figure 8B) was not linearly correlated with the R?; the
Pearson correlation coefficient was only r = 0.08. Further-
more, numerous combinations identified as significant by
RPM had negative KWII values indicative of redundancy,
that are shown in red in Figure 8B. The PAI however, was
linearly correlated with R?2 with Pearson correlation coeffi-
cient of r = 0.90. These results suggest that the RPM algo-
rithm retains redundancies that are not present in
CHORUS. Thus, the similarities between the RPM and
CHORUS methods can be attributed to the correlations
between the R2 values of RPM and the PAI, whereas the
differences are attributable to the lack of correlation
between the R2values of RPM and the KWII.
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The KWII spectrum for the UV-induced immunosuppression data set is summarized in Figure 7A. The combina-
tions are shown on the y-axis. The UV-induced immunosuppression denoted by the variable Supp on the y-axis. Figure 7B

shows the UV-induced immunosuppression Z-score in males and females whereas Figure 7C shows the UV-induced immuno-
suppression Z-scores for the two genotypes of D6MIT89 in males and females. The error bars represent standard error of the

mean.

Computational Complexity

The CHORUS search algorithm is computationally much
more efficient than the exhaustive search to compute
KWII for all possible SNP combinations, which requires
exponential time.

Let m denote the sample size. In the CHORUS search algo-
rithm, lines 3-5 take O(n x m2), line 6 require O(é x n)

time whereas lines 7-16 takes O(7 x € x n x m2) time and
lines 19-25 takes O(2%+! x @ x m2) time. In GEI analysis of
QT, the range of r values of interest is small because of
sample size constraints, which limits the computational
complexity from becoming exponentially large. When o
permutations are conducted for every combination iden-
tified by CHORUS, the computations require O(271 x 0 x
m2 x @) time.
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Table 2: Summary of the analysis of marker pairs by Clemens et al. [25,32]

Marker Pair F-interaction P-value KWII KWII p-value
DéMit389-D10Mitl 70 2.63 0.11 -0.0017 0.76
D 10Mitl 70-D I 7Mit49 0 0.97 -0.0079 >0.99
DI10Mitl 70-D17Mitl 23 0.01 0.91 0.0047 0.38
D10Mitl 70-D 1 7Mit187 0.04 0.85 0.0005 0.59
D10Mitl 70-D 1 7Mit100 0.01 0.91 -0.0078 >0.99
D 10Mitl 70-D 1 4Mit1 85 5.38 0.02 0.0087 0.22
D10Mitl 70-D14Mitl 65 3.78 0.055 0.0031 0.43
DIMit411-D14Mit260 12.9 0.00053 0.10 <0.0002
DIMit411-D14Mitl 85 12.3 0.00069 0.048 0.004
DIMit411-DI9Mitl 9 12.0 0.00079 0.042 0.006
DIMit411-D17Mit49 0.98 0.32 0.0020 0.48

The GAW15 data set was analyzed on a 3.2 GHz Intel
Xeon computer with Irwindale processors with 4 Gb of
main memory. The maximum running time for single rep-
licate of the GAW15 data set was 3.6 hours with 7= 2 and
0 = 50 excluding permutations. The permutation analysis
of the first replicate of the GAW15 data set, which was
conducted for the 25 one-way and 25 two-way combina-
tions with the highest KWII values with 5000 permuta-
tions per combination, required 5 hours and 25 minutes.
The HDL and atherosclerosis data sets were analyzed
using a Dell Laptop with 2 GHz dual core Intel processor
with 2 Gb of memory. The time required was approxi-
mately 8 seconds for both data sets excluding permuta-
tions. The permutation analysis (5000 permutations per
combination) for the top 25 one-way and top 25 two-way
combinations required 14 minutes for the HDL data set
and 16 minutes for the atherosclerosis data set.

Discussion

In this report, we have presented results on an informa-
tion theoretic approach for GEI analysis of QT that uses
two complementary information-theoretic metrics, the
KWII and the PAI. The dependence of these metrics on
biological and study design variables was systematically
investigated with controlled numerical experiments. We
analyzed the GAW15 data set, which was generated by
Miller et al. [24] from a complex simulation based on
rheumatoid arthritis data and two GGI data sets generated
from QTL mapping studies of HDL levels/atherosclerotic
lesion size [25] and UV-induced immunosuppression
[32].

The current method assumes that the QT of interest is nor-
mally distributed within each strata of the gene-environ-
mental variable combination. The normal distribution is
a common assumption in parametric statistics and derives
its importance from the central limit theorem. From the
information theoretic standpoint, the normal distribution
N(g o) has maximum entropy among all real-valued dis-
tributions with specified mean # and standard deviation

o. Therefore, if only the mean and standard deviation of a
distribution are known, it is often reasonable to assume
that the distribution is normal. As we demonstrated, a
variety of data transformations such as log-transforma-
tion, arcsine transformation and others can sometimes be
used to obtain normal distributions in some cases when
the underlying variable is non-normally distributed.
Although the normality requirements for each genotype-
environment stratum could be considered a strong
assumption, it is possible to deal with mixed distributions
or empirically estimate the distribution of the QT in each
stratum, e.g., with Parzen windows [44], and use the
information theoretic framework and CHORUS in con-
sistent and analogous manner.

In the case of a normal distribution, the entropy expres-
sion contains only the variance. As a result, the approach
conveys the impression of being driven by the variance.
We have not addressed standard deviation estimation
issues in detail here because our primary focus was to
determine whether the underlying method was capable of
identifying GEI. Greenwood and Sandomire demonstrate
that at a sample size of 25, a standard deviation estimate
is within + 10% error half the time [45].

Derivations of information theoretic metrics in terms of
statistical parameters such as variance result in analytical
expressions that are difficult to interpret intuitively. Set
theoretic approaches provide more interpretability
because they can account for addition and subtraction of
entropies. Unlike the variance or second moment, which
measures dispersion around the mean, entropy depends
on parameters other than just the second moment, e.g.,
the shape and scale parameters of the distribution of inter-
est. One advantage of the information-theoretic method is
that it is capable of handling mixtures wherein the strata
have different distributions.

The KWII definition of an interaction has a strong theoret-

ical foundation from information theory and the statisti-
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Associations between the KWII and PAI values with R2 values from the Restricted Partitioning method. Figure
8A shows the KWII and PAI results for the one-variable containing combinations (the PAl and KWII are equal for one-variable
combinations). The KWII and PAI for two-variable combinations are shown in Figure 8B and 8C, respectively. The red and blue
circles in Figure 8B represent combinations with negative and non-negative KWII values, respectively. The linear regression line
and its Pearson correlation coefficient r are shown.

Page 19 of 22

(page number not for citation purposes)



BMC Genomics 2009, 10:509

cal significance of the KWII can be assessed using
permutation-based methods. Because the distribution of
the KWII and PAI of higher order combinations has not
been characterized, we used independent replicates for
the three Simulated Data Sets and GAW15 data set to
directly obtain confidence intervals as well as empirical
information on the distribution of the KWII and PAI val-
ues. In the case of the GAW15 data set our approach ena-
bled use of the entire data set. This approach is not
feasible for real data and permutations are necessary to
assess statistical significance via p-values. Permutations
however, provide information on the null distribution.

As indicated in Methods, the KWII-based definition of
interaction yields results that difficult to interpret for com-
pletely redundant variables because in the presence of an
even number of completely redundant variables, the KWII
is positive. This quandary can be addressed by retaining
only one representative variable from every group of com-
pletely redundant variables in a pre-processing step prior
to analysis. However, the PAI does not change when a
completely redundant variable is added to combinations
containing odd or even number of completely redundant
variables. Because the CHORUS search of combinatorial
space is directed towards combinations that increase PAI,
our approach is less susceptible to identifying combina-
tions comprised of variables that are completely redun-
dant with each other.

The CHORUS algorithm however, is a heuristic method.
CHORUS uses a search strategy rather than a dimension-
ality reduction approach and is capable of conducting effi-
cient search of the large combinatorial space because of
the unique nature of the PAI metric, which allows for
greedy search identification of the most promising combi-
nations by utilizing the marginal effects. As a consequence
however, CHORUS is not capable of detecting pure epista-
sis. It is possible to develop a "two-locus" variation of
CHORUS that utilizes KWII from all one-variable and
two-variable combinations.

For Simulated Data Set 3, we adopted the overall struc-
ture, key assumptions and numerical values from previ-
ous work on pure epistasis in case-control data by
Culverhouse [23]. Our simulations assumed Hardy-Wein-
berg equilibrium and MAF of 0.5 at the interacting SNPs,
SNP(1) and SNP(2). The frequency of each genotype in
our sample was representative of the corresponding pop-
ulation frequencies. The QT value for each subject was a
random variate drawn from one of two normal distribu-
tions N(x,, oy) or N(u,, op). The probability of drawing
the QT random variate from N(g,, o) was specified for
each combination of SNP(1) and SNP(2) genotypes
Equation 1 obtained from [23]. The probability of draw-
ing from N(x,, o,) was defined by the complement of the
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probabilities in Equation 1. These assumptions result in a
form of QT epistasis because the two distributions N(z;,
o;) and N(, o,) can be considered cases and controls
and the model can be viewed as a binary trait to which
normally distributed noise has been added.

CHORUS can be considered complementary to dimen-
sionality reduction methods such as combinatorial parti-
tioning method (CPM), multi-factor dimensionality
reduction (MDR) and restricted partitioning method
(RPM), which are computationally more burdensome but
are sensitive to pure epistasis interactions. The CPM
approach is capable of identifying multilocus genotypes
capable of predicting QT levels [46]. The multi-factor
dimensionality reduction (MDR) method is applicable to
binary phenotypes and uses constructive induction to
reduce the dimensionality of the multi-locus genotype
systematically by pooling into high and low risk groups
[3,47-50]. The CPM is computationally very intensive and
Culverhouse et al. advocated the RPM [33], which is
applicable to both binary phenotypes and QT. Although
RPM and MDR are computationally more efficient than
the CPM, significant computational effort is required for
datasets from genomewide association studies, which can
contain tens of thousands to millions of predictor varia-
bles. The generalized MDR (GMDR) method handles
both discrete phenotypes and continuous traits in popu-
lation-based study designs and employs the generalized
linear model (GLM) framework for scoring in conjunc-
tion with MDR for dimensionality reduction [51].

Unlike exhaustive search algorithms, which can identify
the global minimum, all heuristic approaches are poten-
tially vulnerable to entrapment in local minima. CHO-
RUS can be modified with established methods such as
simulated annealing to reduce this risk. Within the current
CHORUS framework, the input parameter 0, which deter-
mines the number of combinations retained at each stage
of the algorithm, can also be a determinant of power: if
too few combinations are retained at the initial stages of
the search, the risk of missing key higher-order interac-
tions with intermediate levels of marginal effects is
increased. However, increases in 6 increase the computa-
tional cost. In principle, the computational effort depends
exponentially on the input parameter t, which determines
the order of combinations. In practice however, the value
of 1 is constrained by sample size because the genotype
contingency tables for combinations rapidly become
sparse and contain numerous empty cells when the order
of the combinations increases. Although biological path-
ways are complex, sequentially ordered actions of protein-
protein interactions and enzymatic chemical reactions are
frequently involved [52]. Such sequential interactions typ-
ically involve only a small subset of molecules in the path-
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way. The order of resulting statistical interactions may be
limited as a consequence [15].

There are some fundamental differences and unique
advantages to CHORUS compared to the widely used
GMDR approach. The metric used by GMDR is based on
the GLM, a commonly used and versatile statistical analy-
sis method, and is combined with dimensionality reduc-
tion method of MDR. For QTL analysis, GMDR analyzes
the QT and covariates first to obtain the GLM score statis-
tic and in a second stage, the interactions of GLM score
statistics with the genetic and environmental variables are
determined. In contrast, the CHORUS approach analyzes
the underlying interactions between the QT of interest
and all variables including covariates simultaneously.
Another advantage with CHORUS is that it is capable of
handling cases-only study designs that are useful for stud-
ying the genetic and environmental determinants of
important QT such as body weight, height and lifespan.
The statistical GLM framework enables GMDR to handle
covariates whose distribution follows any of the exponen-
tial family distributions (normal, Poisson or Bernoulli
distributions) but a limitation of CHORUS that we are
working to overcome is that it cannot handle continuous
covariates. Continuous covariates can be used after discre-
tization, however. Another notable advantage of CHO-
RUS is that it can be applied to very large data sets. We
were able to analyze the 100 replicates in the 10K GAW15
data set without difficulty.

We have described the conceptual framework of CHORUS
to highlight its strengths and its differences with other
methods. We are exploring a range of enhancements
including parallel computing that could enhance the effi-
ciency and effectiveness of CHORUS further.

Conclusion

Our results indicate that the information theoretic, KWII-
based CHORUS approach has considerable promise as a
method for GEI analysis of QT.
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