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Abstract

Predicting the rate of adaptation to environmental change in wild populations is important for
understanding evolutionary change. However, predictions may be unreliable if the two key
variables affecting the rate of evolutionary change, heritability and selection, are both affected by
the same environmental variable. To determine how general such an environmentally induced
coupling of heritability and selection is, and how this may influence the rate of adaptation, we
made use of freely accessible, open data on pedigreed wild populations to answer this question at
the broadest possible scale. Using 16 populations from 10 vertebrate species, which provided data
on 50 traits (body mass, morphology, physiology, behaviour and life history), we found evidence
for an environmentally induced relationship between heritability and selection in only 6 cases,
with weak evidence that this resulted in an increase or decrease in expected selection response. We
conclude that such a coupling of heritability and selection is unlikely to strongly affect
evolutionary change even though both heritability and selection are commonly postulated to be
environment dependent.

Introduction

In the face of global environmental change, it is imperative to understand whether and how
fast populations can adapt to novel conditions to be ‘rescued’ by evolutionl. Despite
evidence of genetic variance and selection in many wild populations, genetic response to
selection (adaptive micro-evolution or rate of adaptation) in natural populations is rarely
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observed2, 3. An apparent lack of a response to selection may have a variety of biological
and/or methodological causes4, 5. One potential reason is an environmentally induced
coupling between selection and additive genetic variation, which can mask the true
evolutionary potential of a population if not recognised. By its definition, selection is
mediated by the environment6, 7 and has been shown to vary from season to season and
between geographical regions, depending on resource availability (including mating
opportunity) and predation pressure, for example8, 9, 10, 11, 12 (but see ref. 13). Genetic
variation is, however, also known to vary with the environment (known as genotype-by-
environment interaction), being sometimes increased and sometimes reduced under benign
conditions (e.g. when mean fitness in the population is high)14, 15, 16, although the
ecological drivers of changes in the genetic variance—covariance matrix remain largely
unknown17.

Although the environmental dependency of both selection and genetic variation has been
thoroughly documented, our knowledge on how they may interact to result in evolutionary
change in natural populations is very limited. In their recent review, Wood and Brodie16
identified 23 studies that measured environmental effects on selection and 28 studies that
measured environmental effects on additive genetic variation. Overall, reviewing a great
variety of taxa, environments and traits, they found that environmental effects on selection
and genetic variance were broad and inconsistent. Importantly, most studies on environment-
dependent genetic variation were done in laboratory settings (and those on selection mostly
in wild populations) and extrapolating laboratory findings to natural conditions is not
necessarily straightforward. To date, only two studies of natural populations have measured
how both genetic variation and selection within the same trait covaried across environments.
A study on Soay sheep (Ovis aries) demonstrated increased selection for a higher birth
weight in harsh environments, whereas total genetic variance was highest in benign
environments18. The opposite was found in the great tit (Parus major), where warmer
springs, which are associated with increased mismatch between offspring energetic demands
and food availability, were associated with stronger selection for early egg-laying as well as
high additive genetic variance for that trait19. Thus, in the former example, selection and
genetic variance covaried with the environment in opposite directions, whereas in the latter
example they did so in the same direction. The negative covariance between selection and
genetic variation in Soay sheep led to an 21% decrease in expected response to selection as
opposed to a situation where genetic variance was assumed to not vary with the
environment18. In the great tit, the positive association between additive genetic variance
and selection gradients resulted in a 20% increase in predicted response to selection as
compared to a situation where heterogeneity in both selection and genetic variance was
ignored19. A more recent study investigated the environmental dependency of genetic
variance and selection in several morphological traits in the Soay sheep population, but did
not explicitly address the relationship between them, presumably since environment-
dependent genetic variance was found to be absent20. The environmental coupling of
selection and genetic variance (or heritability) may therefore provide an important
explanation for the discrepancy between observed and expected responses to selection in
some natural populations, but the prevalence of this mechanism—and how it may alter the
expected response to selection—in wild populations remains largely unknown.
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We investigated the prevalence and strength of an environmentally induced correlation
between heritability and selection—and its expected evolutionary consequence—in a variety
of wild populations. We searched for multiannual, pedigreed datasets on wild populations
freely accessible from online data repositories and used these data to quantify environment-
dependent additive genetic variation (using random regression animal models) and
standardised selection gradients for a suite of life-history, morphological, behavioural,
physiological and body mass traits. We then regressed heritability against selection for 50
traits from 16 populations and compared expected selection responses with and without
considering environmental heterogeneity in heritability. We had no specific expectation as to
the prevalence of a correlation between heritability and selection but, if anything, expected it
to be more common in life-history and morphological traits, since selection in these traits
tends to be strong and variable21. Our approach using open data22 speaks to recent
recommendations to use available data to address novel, outstanding questions in ecology
and evolution that transcend a single study system?23, 24.

Data acquisition and author response

We performed a search in online data repositories (see Methods) for multiannual (= 6 years)
datasets containing pedigrees of wild populations accompanied by phenotypic measures on
individually marked animals. From 106 acquired pedigreed datasets (Supplementary Table
1), we used 14 that were suitable for our analysis (see Methods). We added one unpublished
dataset from our own database (pied flycatcher, Ficedula hypoleuca). These 15 datasets
comprised 16 different populations, spanning ten species, eight of which were avian species,
one a lizard, and one a mammal (Table 1).

Authors were generally supportive of the use of their data. We contacted 14 authors (of 18
datasets) about our use of their data and found that 4 datasets were not usable. This was
mainly related to a bias in our approximation of the environment, i.e. the population-mean
trait value (see Methods) and selection in a given year when a non-random portion of the
population was not represented in the dataset. Only in two cases authors were initially
reluctant to cooperate, but all authors eventually informed us about the appropriateness of
our analyses of their data (see Culina et al.25 for a full account on author correspondence
associated with this article).

Estimating environment, heritability and selection

From the included datasets, we extracted a total of 50 morphological, behavioural,
physiological, life-history and body mass traits. We used these traits first to estimate a
standardised measure of the environment, the standardised annual population-mean trait
value26, 27, 28, 29. We estimated the heritability (/7, the relative additive genetic variation)
of the traits and found that the majority showed significant heritable variation within the
population (Table 1). We then fitted random regression animal models (RRAMS) with an
interaction between the additive genetic effect and the standardised measure of the
environment. We extracted environment-dependent heritability estimates resulting from
these RRAMs (as heritability determines the short-term evolutionary change) and regressed
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them against annual standardised selection gradients30, 31, 32 (8'; Supplementary Figure
2), while accounting for uncertainty in both predictor and response. In 6 out of 50 cases (all
in bird species), this led to a statistically significant relationship between selection and
heritability (Figure 1; Supplementary Table 2). None of the 14 life-history traits exhibited
such a relationship, despite considerable variation in both selection and heritability. We
found a positive, significant relationship in nestling body mass in Passerculus
sanawichensis, based on viability selection on nestlings (slope [95% bootstrapped
confidence interval] = 0.102 [0.045, 0.191], /2 = 0.369 [0.089, 0.596]). As the only
morphological example, nestling tarsus length in 2 sandwichensis showed a significantly
negative correlation based on viability selection (slope = —0.057 [-0.118, —-0.023], /2 = 0.148
[0.038, 0.340]). Finally, four avian physiological and behavioural traits exhibited a
significant association between heritability and selection, all based on viability selection: P,
major plumage reflectance at 349 nm (slope = 0.018 [0.009, 0.037], /2 = 0.284 [0.052,
0.507]), 549 nm (slope = —0.190 [-0.440, —0.040], 2 = 0.467 [0.054, 0.949]) and spectral
sensitivity (double cone; slope = -0.055 [-0.173, -0.010], 2 = 0.248 [0.027, 0.751]), and
Cyanistes caeruleus adult handling aggression (slope = 0.001 [0.0004, 0.003], 2 = 0.009
[0.002, 0.021]).

A formal meta-analysis on the correlation coefficient 7 from each heritability—selection
regression, correcting for independence of traits within studies (weighted linear mixed-
effects model with random effect ‘study’), reaffirmed that the overall correlation was weak
and not dependent on the class of trait (Figure 2). We found similar results when we
disregarded non-avian traits.

Comparing expected responses to selection

Environmental coupling of (additive) genetic variance and selection can affect the predicted
response to selection18, 19. We therefore predicted for the six datasets identified above the
standardised selection response for each environment j (R, assuming either constant or

environment-dependent heritability (k) = hzﬁ}. or h?ﬁ}.) . When we calculated the mean

difference in response across environments between the two approaches (accounting for
uncertainty in estimates), we found that environmental variation in heritability significantly
affected the mean expected response in all six cases, but this effect was not in a consistent
direction (i.e. either reduced in case of a negative association or increased in case of a
positive association; Table 2). Finally, we modelled the directional difference in expected
response as a function of the correlation coefficient between /2 and g’ for all datasets (cf.
ref. 16), and found that the difference in expected response was not affected by this
correlation coefficient (slope = 0.002 [-0.001, 0.004]; Figure 3).

Discussion

Little evidence for environmental coupling of heritability and selection

We investigated the prevalence of an environmentally induced relationship between
heritability and selection across traits and study systems by using open data available in data
repositories. Our study extends the limited evidence for this phenomenon18, 19 to 50 traits
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from 10 species in 16 populations. Relying on robust statistical methods to (i) quantify the
relationship between heritability and selection, (ii) synthesise results of different studies
using meta-analysis, and (iii) infer expected evolutionary response, we conclude that, despite
being a current topic in ecology and evolution14, 15, 16, 33, 34, its evolutionary importance
in natural populations is small—at least for the range of species for which we have data.

So far, only two studies have investigated this relationship within the same trait and
population18, 19. Reanalysis of egg-laying date in the Hoge Veluwe great tit population19
yielded different results, potentially linked to the different approximation of the environment
(see below), although the environment in that population, i.e. mean spring temperature,
explains much of the variation in the trait (/2 = 0.66)35. The correlations between selection
and heritability or additive genetic variance found by Husby et al.19, however, were
marginally or non-significant, respectively, and were not subjected to rigorous correction for
uncertainty like our bootstrapping methods. Thus, even in a population with (i) a strong link
between the environment (temperature) and a life-history trait (laying date) and (ii)
demonstrated increases in selection and additive genetic variance under increased
temperatures, evidence for an environmental link between heritability and selection was
modest at best. Heritability of life-history traits is generally found to be low26, 36, 37,
potentially due to high environmental variance38 or genetic canalisation39, but life-history
traits are inherently likely to exhibit gene-by-environment interactions whenever selection
pressures vary with the environment, because of their close association with fitness38. It is,
then, remarkable that heritability was not related to selection in any of the life-history traits
investigated here (Figure 1), even though substantial variation existed in the strength of
selection (Supplementary Figure 2).

Finding a significant relationship between heritability and selection requires sufficient
statistical power. Although the number of years and individuals varied considerably between
study systems (Table 1), significant relationships were not exclusively found in the largest
datasets (Figure 1). A visual inspection of the components that make up this relationship, as
well as the relationship between selection and the environment, suggested that statistical
significance was neither influenced by the variance in the predictor and response variables
nor by the number of years or the total number of observations available (Supplementary
Figure 3). Given the larger statistical power associated with larger datasets, the lack of the
sought correlation in our largest datasets suggests that the effect size is likely too small to be
biologically meaningful.

Using an analytical model informed by data from a literature review, Wood and Brodiel6
predicted that the strength of the relationship between selection and genetic variance would
impact the mean and, to a greater degree, variance in responses to selection across
hypothetical populations. Yet even in the few cases in which we demonstrated a reasonably
strong relationship between heritability and selection (Figure 1; cf. ref. 18), this was not
sufficient to fuel a change in the rate of expected response to selection (Table 2). This is
partly because both components of the relationship came with prediction error that needed to
be accommaodated in the estimation of the response. From the studies investigated here, we
therefore conclude that even when we find environmental coupling between heritability and
selection, its net effect on the predicted evolutionary change is small and is hence an
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unlikely explanation for potential discrepancies between observed and expected responses to
selection in natural populations4.

Methodological considerations

An important aspect in analysis of genotype-by-environment interactions, i.e. testing
whether genetic variance and heritability differ among environments, is the choice of the
environmental variable. However, in most of the analysed datasets no such environmental
variable was included. Instead of obtaining such data from other sources and testing whether
the chosen variable was predictive for the trait in question, we used environment-specific,
population-mean trait values as the environmental variable (covariate) in our analyses, an
accepted practice in animal and plant breeding26, 28. This approach has three major
advantages. First, the daunting task of searching environmental data relevant to each trait
becomes unnecessary. Second, it enables the inclusion of traits for which it is difficult to
conceive and collect environmental data (compare, for example, breeding time in great tits,
which is strongly temperature dependent40, with a physiological trait like handling
aggression in blue tits C. caeruleus, for which no clear environmental component has been
identified, despite substantial year-to-year and residual variation41). Third, because the
population-mean phenotype encompasses all unmeasured or unobserved components of the
environment, it will generally be an accurate representation of the environment for the trait
of interest26, circumventing the problem of misidentifying the relevant environmental
component and, consequently, erroneously inferring the presence or absence of variation in
reaction norm slopes. For example, in a population of collared flycatchers (Ficedula
albicollis), Brommer et al.42 found significant between-individual variation in breeding-time
reaction norms in response to average temperatures in spring, but not to rainfall or North
Atlantic Oscillation, even though these variables correlated well with breeding time.
Similarly, Husby et al.43 could show between-individual variation in reaction norms for
breeding time in great tits while Charmantier et al.44 did not find this in the same population
when using a different environmental variable. Indeed, simulations have shown that random
regression models with ‘mean trait’ as the environment yielded similar variation in reaction
norm slopes to models with a ‘real” environmental driver of the trait45. In contrast, using
other environmental measures that did not drive the trait but correlated with the ‘real’
environment to a decreasing degree (r=0.9 to 0.1) yielded increasingly downwardly biased
estimates of both the slope and the variance in the reaction norm. This is an important
finding because it shows that environment-specific mean phenotypes can serve as a
‘yardstick’ when testing for gene-by-environment interactions45.

Ideally, heritability should be estimated at the same level as where selection operates,
because the correlation at this level is what ultimately matters. Since selection is generally
estimated at an annual level (where each year captures all components of the environment),
heritability should be estimated at this level too. This would, however, require an enormous
number of individuals in each year to estimate the annual genetic variances reliably—and
hence generally not be feasible. Using (continuous) environmental covariates instead to
estimate genetic variance along an environmental gradient46, 47 is the next best option, and
the best way to do this is to choose a metric that captures most features of the environment
in a given year (which annual mean phenotypes do). This alleviates the need to establish a
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link between an environmental covariate and selection, which will not necessarily be
informative when investigating the correlation between heritability and selection—in
particular when statistical power is limited.

A concern when estimating selection in natural populations is to identify the real target of
selection30, 32, 48. The use of the Breeders’ Equation to predict evolutionary change in
natural populations has therefore been advised against, and the Robertson-Price identity has
been suggested as an appropriate alternative48, 49. However, estimating the genetic
covariance between a trait and fitness at an annual basis to estimate variation in selection is
rarely, if ever, possible, due to the large datasets required to reliably estimate genetic
covariances. Furthermore, Reed et al.50 showed that in a wild population of great tits,
environmental bias in phenotypic selection estimates for egg-laying date and clutch size is
small at best. A similar conclusion was reached by Morrissey and Ferguson51, who showed
for brook charr (Salvelinus fontinalis) that estimates of phenotypic selection on body size
are highly congruent with estimates of genetic selection.

Benefits and limitations of open data

One important development in ecology and evolution in recent years has been the
requirement to make the data used to produce the results of studies (usually published
studies) publicly available23, 52, leading to a surge in data output onto online data
repositories. The potential advantages of open data archiving in revolutionising the natural
sciences are now increasingly recognised22, 24. Yet Evans53 showed that data from long-
term population studies archived in Dryad Digital Repository are never used by third parties.
Our multi-study approach makes extensive use of such long-term data to address an
outstanding question in evolutionary ecology. Indeed, the use of open data comes with
important logistical and ethical issues52, 54, 55 that need to be addressed before biological
conclusions can be safely drawn. Our study, however, shows that it can be done successfully
(see also ref. 25).

From the 106 initially considered datasets in our example, we could eventually use only 14
(plus the previously unpublished pied flycatcher dataset), due to various reasons such as
small and/or biased sample sizes, a lack of appropriate fitness data, unusable pedigrees (e.g.
relatedness matrices, which we were unable to use after data manipulation because they
required a specific ordering of the individuals in the phenotype file), and a low number of
years. Moreover, the data were heavily biased towards birds and mammals (50 and 31
datasets, respectively). We therefore need to make the cautionary note that we cannot
necessarily extrapolate the evolutionary importance of an environmental correlation between
selection and genetic variance across a wider range of taxa. The general taxon bias in
quantitative genetic studies of wild populations toward birds and mammals can be explained
by the fact that linking individual offspring to their parents, necessary to construct a
pedigree, is comparably straightforward56. Relatedness matrices based on genomic markers
may make pairwise relatedness estimates a less stringent requirement in evolutionary studies
in the future and in that way greatly augment the taxonomic scale at which important
evolutionary questions can be addressed57. Time will resolve issues like samples sizes and
number of years, but whether or not a dataset is suitable will ultimately depend on the type
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of analysis and the type of data required. In the era of Open Science that encourages
publication of datasets while increasing their quality, it is but a matter of time before taxon
biases in multi-annual meta-studies similar to ours may dissipate. Such long-term datasets of
individually marked animals are invaluable tools in ecology and evolution and will
inevitably serve to elucidate the ecological and evolutionary consequences of environmental
change56, 58.

Data acquisition

In May and July 2016 we conducted a search for datasets that contained pedigree
information on a wild species through twelve different aggregators of research data
repositories (Europe PMC, DataCite, BASE, OpenAlRE, Science Research, DataOne
Mercury search, Web of Science Data Citation Index, Scielo, Research Data Australia, DLI
Service, Dryad Digital Repository, DataMED). These aggregators collect information on
datasets (e.g. title, keywords, abstract and description) that have been deposited in different
data repositories, and allow for search through multiple data sources in one search interface.
Datasets were tracked using fixed search terms (see Supplementary Methods 1); search
results were screened based on title, abstract, dataset description, and/or keywords, if
available. Remaining datasets were further checked for relevance by opening the data files
and/or reading the related publication if necessary, leaving only datasets containing pedigree
information for a wild or captive animal population. Recording of datasets was done
according to PRISMA guidelines25, 59.

Next, we screened and filtered this data subset (103 datasets) to keep those where: (i) the
pedigree file could potentially be used (i.e. when the file was not embargoed, corrupted or
otherwise unsuitable for our particular analysis, e.g. relatedness matrices lacking the specific
links between parents and offspring); (ii) the pedigree contained a sufficient number of
individuals (final datasets had, on average, >40 observations/individuals per year); (iii)
individuals in the pedigree also had information on a phenotype on which selection could
act; (iv) there was natural environmental variation in the phenotype (this excluded all
laboratory populations); (v) the associated phenotype file contained at least six years of data;
and (vi) there were no additional issues (e.g. non-matching I1Ds of animals in pedigree and
phenotype file). In addition to these 103 datasets, we did an additional search in Web of
Science (on 9 September 2017; see Supplementary Methods 1) and from the resulting 396
studies, we discovered three additional suitable datasets overlooked by the initial search,
using the inclusion criteria above. Lastly, we added our own, previously unpublished data
from the long-term study of pied flycatchers (Ficedula hypoleuca, ref. 60; see ref. 61 for
more information on that population), totalling 107 retrieved datasets (Supplementary Table
1).

The total number of datasets included in the analysis amounted to 15, covering 10 species
from 16 populations and a variety of life-history, morphological, physiological, behavioural
and body mass traits (Table 1). This excludes datasets that initially appeared suitable to us
but whose suitability for our analysis was refuted by the original authors (see ‘Enquiring
with original authors’; Supplementary Table 1).
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Quantifying the environment

None but two of the final datasets provided information about the environment. Therefore,

we used a standardised protocol to quantify the environment. For each year, we calculated

the population-mean trait value (x) as a measure of the general environment and mean- and
variance-standardized it across seasons/sites:

where j denotes the /" season, and #and o the grand mean and standard deviation,
respectively. Note that this measure does not identify any specific environmental parameter
but captures the environment as a whole in a specific season. The method is commonly used
in animal and plant breeding studies in a process called ‘joint-regression analysis’, where
genotype-specific interactions are partitioned into a component explained by mean
population performance and a residual component (ref. 26, pp. 672—-678). It was first
proposed by Yates and Cochran29 and later brought into prominence in a barley yield
experiment by Finlay and Wilkinson27, and has now become widely accepted in the plant-
and animal-breeding literature26, 28. It has the advantage that all of the complex (and
potentially unobserved) features of the environment are integrated into a single measure,
allowing for the ranking of seasons in terms of overall environmental quality. Note that this
method disqualifies traits that do not vary at the annual level (i.e. fixed adult traits were not
used in our analyses).

One complication with our measure of the environment is that such a measure is potentially
biased when a non-random portion of the population in a given season is removed from the
dataset (e.g. because certain individuals are never sampled), or when changes in the
demographic structure of the population strongly affect the mean trait value. When this was
the case (see ‘Enquiring with original authors’; Supplementary Table 1), the dataset was
dropped from further analysis.

Standard trait heritability

For each of the traits in our full data (Table 1), we tested for evidence of additive genetic
variance following a standardized protocol. First, we constructed ‘minimum adequate’
mixed-effects models (MAMSs) with the trait of interest as response variable (all with
Gaussian errors) using restricted maximum likelihood (REML) estimation in ASRem|-R62,
63. This method provides a fast and efficient away of estimating variance components and
allows for the inclusion of additive genetic effects. Note, however, that we used a Bayesian
approach to estimate environment-dependent heritability estimates, as this allows for
estimation of posterior confidence regions, which we needed to reliably account for
uncertainty in our environment-dependent heritability estimates in subsequent analysis (see
‘Genotype-by-environment analysis’). Fixed effects were the environment (£'), as
continuous variable, and additional effects provided in the dataset, based on mixed-effects
models in the associated original paper. Significance of these effects, as well as that of
interactions between effects, was tested with conditional Wald Ftests, removing non-
significant (p > 0.05) terms in a backward stepwise manner (but always keeping £°).
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Random effects were those identified in the original papers (always containing a ‘permanent
environment’ effect, i.e. individual ID, when there were multiple observations of the same
individual), but sometimes we constructed our own additional effects when deemed
biologically appropriate (e.g. in nestling traits, ‘nest-box ID” and ‘year’ were combined to
identify common-environment effects within a single brood). Significance of random effects
was tested using likelihood-ratio tests (D = 2[log(L 1) — 109(L )], where Dis
asymptotically ;(2 distributed with one degree of freedom). The MAM was extended to an
‘animal model’64, 65 (AM) by adding a random additive genetic effect based on the
pedigree with maternal and paternal links (see references in Table 1 for how pedigrees were
constructed). Thus, the AMs took the form

Yy=u+Xpp+-+X prZipetZa+--+Z ute,

where y is a vector of phenotypes, X1 and Z;_ , are the design matrices relating the fixed
(B) and random effects (pe, permanent environment; a, additive genetic; v, other) toy, yis

the mean and e is the error term. The narrow-sense heritability was calculated as W= gﬁ/af,,

2 . . .. .
where o7, represents the total phenotypic variance comprising all variance components,

conditioned on the fixed effects (Table 1).

Genotype-by-environment analysis

To model the interaction between additive genetic variance and the environment (GxE), we
extended the AM to a random regression animal model (RRAM) using the ‘MCMCglmm’
package66, 67 (ignoring years with <8 observations). In the RRAMs, we allowed the
environment to interact with both the permanent environment (if present) and the additive
genetic effect:

Yy=u+X B+ + X B+Zy(pe.En )+ Zya . E'n )+ -+ Zu+e,

where 1 is the first-order polynomial of the regression function. Fixed and random terms
were those identified from the (M)AMs; note that because £ explains most of the variation
related to seasonal effects, it replaced the random effect of year in most analyses. We
constructed two 2x2 unstructured variance—covariance matrices for the intercept and the
slope of the permanent environment and the additive genetic effect:

62e %pe e 6121 %, .a
Peip Peipnp Peg int int’ " sl
P= and G =
2 2
®pe ., pe. %pe %a .a. %a
pegp Py, peg s “int sl

In cases where there was no permanent-environment effect but only a maternal or common-
environment effect (in juvenile-only traits), only the G matrix was fitted. To avoid artificial
inflation of slope variance estimates in the P and G matrices due to heterogeneity in residual
variance across the environmental gradient, we partitioned the residual component e into
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‘environmental blocks’68, following categorisation of environments into 77 equal-interval
groups. Thus, we fitted the residual matrix as an /7% identity matrix,

where nwas the number of environments divided by 5, but was always =3 (e.g. in a dataset
with 20 environments 77 = 4, but with 10 environments n= 3).

To illustrate that our environmental metric (£) was valid in this context, Gienapp45 ran
random regression models on simulated data using several different quantifications of the
environment related to a ‘true’ environmental driver of the phenotype, as well as the annual
trait mean. He found no evidence that variance estimates of reaction norm intercepts and
slopes were biased by the annual trait mean (relative to the ‘true’ environmental driver) and
showed that this metric outperformed environmental correlates. Although we concur that
additive genetic variance may not only be affected by current environmental conditions but
also be the outcome of past selection processes, it is evident from many quantitative genetic
studies of wild populations that year-to-year variation in phenotypes is mostly attributable to
phenotypic plasticity and that the share of genetic change from year to year is generally very
small and undetectable2, 3. Consequently, we believe that using environment-specific mean
trait values will lead to more reliable results than an environmental variable that correlates
too weakly with the real driver of plasticity, thereby underestimating variation in (genetic)
reaction norm slopes.

To obtain independent samples in the MCMC sampling process, we used a thinning interval
of 20,000 in all models, with a burn-in period of 200,000 samples and a total effective
sample size of 250 (i.e. 5,200,000 samples). In exploratory stages of the analysis, we found
that a larger effective sample size (1000) did not affect the posterior estimates, but these
models take substantially longer to complete. Effective sample size in all models included
never fell substantially below 250 and autocorrelation between samples was almost always
<0.1 but never exceeded 0.2 for any variance component; models that did not meet these
criteria were discarded (not listed in Table 1). For the residual term, we specified Inverse-
Wishart (IW) priors (V = diag(x) and nu = 1.002, where x is the dimension of the matrix).
For the random terms we explored two alternative priors: the IW prior (specifications as
above) and parameter-expanded (PE) priors (V = diag(x), nu = x, alpha.mu = 0, alpha.V =
diag(x)*500). Although both priors yielded similar results in most cases, the posterior
variances tended to be smaller when real variance was close to zero under the PE compared
to the IW prior. This is in agreement with previously voiced concerns that the IW prior may
behave poorly when true variance is close to zero66, 69, 70. We therefore only present
posterior estimates from the models based on PE priors. We refrained from ‘significance’
testing of the GxE interaction, because—issues concerning model-selection criteria such as
DIC aside66, 71, 72—of potentially limited power in the smaller datasets and our main
interest in testing the covariance between /2 and selection. We instead opted for a pragmatic
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approach and used the highest posterior density intervals (HPDISs) to account for uncertainty
in all subsequent analyses. The rationale behind this was that if we had excluded all ‘non-
significant’ GxE interactions, of which some may have been false negatives, we may have
overlooked a potentially strong covariance between /2 and selection (see below). By
accounting for the uncertainties in environment-specific /72 estimates, the true negatives in
GxE will not lead to a spurious covariance between /7 and selection.

The posterior mean variance for each variance component in environment jwas derived
from the estimated G and P matrix as73

2 2.2
05 =+ 20;, sl‘BE’j + "slﬂE’j'

The 95% HPDIs were likewise derived from the upper and lower HPDI matrices.

Environment-dependent heritability was defined as the mean of posterior variance estimates,

2

22,2 2 . :
hj = O'aj/(aaj + apej + -+ aej), with 95% HPDIs estimated from the lower and upper

HPD limits of each variance component. Standard errors of h? were then calculated as half
the 95% HPDI divided by 1.96.

To quantify selection on the trait in a given environment, we made use of provided
reproductive fitness data (number of offspring or recruits) or survival data (Table 1). When
such data were not provided, we inferred (annual) reproductive success by linking animals to
sires and dams in the pedigree using their birth year (when available). If we could not infer
annual recruits from the pedigree, we determined survival from one year to the next by
identifying reappearance of individuals in the dataset in subsequent years, assuming the last
year of appearance was the last year the individual was alive. As with quantifying the
environment (see above), inferring fitness is problematic if a non-random portion of the
population appears in the dataset (aside from the non-random disappearance due to
selection; see also ref. 48). When this was likely to be problematic (see ‘Enquiring with
original authors’; Supplementary Table 1) the dataset in question forewent inclusion in the
analysis.

To estimate annual, standardised selection gradients (8'), we constructed general(ised)
additive models (GAMs, package ‘mgcv’74), where the fithess component was the response
variable following either a Gaussian, Poisson or negative binomial distribution for fecundity
measures (number of offspring produced or recruits), depending on the distribution of the
data, or a binomial distribution for survival (1/0 response). As fixed effects, we initially
included an interaction between year and the trait of interest and used it as a null model to
identify additional significant fixed effects (using ~or ;{2 tests) that influenced the fitness
measure (e.g. age or sex and additional quantitative traits). Based on these findings, we ran
annual GAMs (without ‘year’) and calculated annual B~ using the ‘gam.gradients’ function
from the ‘gsg’ package75. This procedure estimates 3’s as
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,_ Cov(w,z)
pr=2mE
z

where the numerator is the covariance between the trait and relative fitness, i.e. the partial
regression coefficient after taking into account the effect of traits potentially simultaneously
under selection, and the denominator is the standard deviation of the trait, following Lande
and Arnold30, 31. Standard errors of 8~ were estimated through parametric bootstrapping
(1000 iterations).

Covariance between selection and heritability: a meta-analysis

As we were interested in studying the effect of environmental variation in selection and
genetic variance on selection response, we examined the (linear) relationship between
heritability and selection. We refrained from making this analysis conditional on the
presence of an underlying correlation between 8 and £, because in cases where statistical
power may be an issue, such a two-step approach would decrease the likelihood of detecting
a real relationship between /2 and g’ if datasets were omitted based on this criterion. A
similar reasoning applied to testing for an underlying relationship between /2 and £ (see
above). For each dataset, we regressed /7 against 8~ in linear weighted least-squares (WLS)
regressions, weighting data points by 1/[(standard error of /2)2]. To account for uncertainty
in the predictor, 8', we substituted each of its values (j) with a randomly drawn value from a
random normal distribution (7= 1000, x = ﬂ;. and o = standard error of ﬂ}) and iterated the

entire process 1000 times. We obtained the mean and the 0.025 and 0.975 quantiles (i.e. the
95% bootstrapped confidence interval Cl) of the model estimates (intercepts and slopes)
resulting from these iterations; estimates were considered statistically significant if the 95%
Cl did not include 0. Note that in reality, estimates of 8~ are not entirely independent
because some individuals are included in multiple estimates, potentially affecting the
estimates from (W)LS regression models. We believe, however, that this issue was
sufficiently accounted for by our pragmatic bootstrapping approach.

When estimating the covariance between selection and heritability we took the sign of the
estimated selection gradients into account, i.e. we did not correlate heritability with the
absolute strength of selection (cf. ref. 16). The rationale was that (1) it is biologically
relevant whether there is selection for larger or smaller trait values and (2) using absolute or
signed selection gradients has different implications for evolutionary change. If a correlation
between absolute strength of selection and heritability exists, the overall selection response
will not be altered because episodes of strong selection in either direction are always
coupled with either high or low heritability. This is, however, not the case when signed
selection estimates are used, because in this case strong selection in one direction is coupled
with low heritability, whereas strong selection in the other direction is coupled with high
heritability.

To examine the overall correlation coefficient across studies and trait types, we performed a
meta-analysis using the mean correlation coefficients (/) and their standard errors (SE i.e.
half the 95% CI divided by 1.96) resulting from each bootstrapped regression model.
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Following Nakagawa and Cuthill76, we transformed coefficients prior to meta-analysis to
Fisher’s Z,

z =o.5x1n(1+’).
r 1-r

Variance in Z-was calculated as77

2 2 1 2
2, =% (el

We estimated the (weighted) mean correlation coefficient (r7=50) in a linear mixed-effects
model (REML, package ‘Ime4’78) with trait type (life history, body mass, morphology, or

other) as a fixed effect, study area (i.e. by species; 7= 16) as a random effect, and 1 /o% as
r

weights. We initially included a random effect of species, which explained 0 variance and
was therefore removed from the model (note that the bias toward passerine birds in the
acquired datasets precluded phylogenetic analysis). Mean Z,and 95% ClI, predictions
unconditioned on the random term, were calculated for each trait type and from a null model
excluding the fixed term (i.e. intercept only) through bootstrapping with 1000 iterations. The
procedure was repeated on a subset of the data that excluded non-avian traits (7= 43
coefficients, 14 studies). To quantify the consistency among studies, we estimated for both
sets of analysis (all data or avian-only) the heterogeneity (/2, the proportion of variance that
cannot be explained by chance) in the random-effects components for the random-only
models (see ref. 79 for details). Residual variance in .Z,was estimated at 1.55 and 1.76,

respectively, whereas ‘study’ variance was 0.002 in both cases. Error variance ((;31 in ref. 79)

was small (0.016 and 0.014, respectively) and 2 was estimated at 0.99 in both cases.

Expected response to selection

To quantify the consequence of a covariance between /2 and 8" on the response to selection,

we predicted the absolute response to selection under the assumption of constant vsvarying
-1

heritability following the Breeder’s Equation30, 80, i.e. R = RJUZ = hzﬁ}. vs. h?ﬂj Note

that the expected response is in units standard deviation30, 32 (hence o), indicated by the

apostrophe. The standard error for R’ was derived by adding up the relative standard errors

of /2 (or h?) and B We then calculated the mean absolute (1) and directional (2) difference

in response between the two approximations (AR’), with the assumption that non-constant
heritability does affect the response from any one year to the next (1) and that this difference
is directional (2), i.e. positive when the correlation between /# and g’ is positive and vice
versal8, 19. We estimated mean AR’ across seasons in a linear model without an intercept
and with a fixed effect of ‘study’. As a response variable, AR’ in each environment (j) was
determined as the difference between two randomly drawn (absolute) values for R; from two

random normal distributions (7= 1000, u = R} and o = standard error of R}.). Mean AR’ was
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derived as the mean, study-specific intercept from 1000 iterations, along with the 0.025 and
0.975 quantiles (i.e. 95% CI).

Loosely based on Wood and Brodie 11116, we estimated whether the strength of the
relationship between heritability and selection affected expected (difference in) selection
response. We repeated the procedure above for all the datasets (except those for which /2 =
0) and calculated the expected, mean directional difference (+ standard error) in expected
response to selection assuming varying vs. constant heritability (AR). We also extracted the
correlation coefficients, , along with their 95% Cls, from each WLS regression model
described in the previous section and calculated standard errors of ras half the 95% CI
divided by 1.96. We ran a WLS regression model with AR" as a response variable and 1/
[(standard error of AR")?] as weights. The correlation coefficient rwas the predictor,
randomly drawn from a random normal distribution (7= 1000, = rand o = standard error
of r); the procedure was iterated 1000 times and mean estimates and the 0.025 and 0.975
quantiles (95% CI) were extracted. We also tested this relationship with ‘study area’ as a
random effect in a linear mixed-effects model, but found that this factor explained 0
variance.

Enquiring with original authors

A potential danger of using open data is that the investigator may not be familiar with the
study system and therefore make false assumptions about the data52, 54, 55. Hence, for
every dataset potentially suitable for analysis, we wrote a letter to the leading author and/or
principal investigator of the associated paper, informing them about the general project aim,
as well as a description with specifics regarding the use of their dataset (see Supplementary
Methods 2). The description contained information about which data files we used, what our
study aim was using their datasets, how we went about preparing the data for analysis (e.g.
combining multiple files, (re)construction of the pedigree, calculation of the environment
based on the population-mean trait value, identification of reproductive performance or
survival), how we analysed the data (including which variables we included in the (M)AMs
and RRAMs) and a brief overview of tentative findings. We were specifically interested in
the authors’ verdict on our quantification of the environment and fitness. All analyses
presented here are based on datasets that were deemed ‘appropriately used’ by the original
authors. A common concern with discarded datasets was that reproductive success or
survival could not be reliably inferred, for example because a non-random portion of recruits
disperse away from the study area, or because surviving individuals were not included in the
dataset because they had no phenotype. Similarly, non-random dropping of individuals was
likely to affect the estimation of the environment (£'), in which case the dataset forewent
inclusion in the analysis. We refer the reader to Supplementary Table 1 for a full list of
considered datasets and the reason for their exclusion. We report on the author
correspondence in more detail in Culina et al.25.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Heritability as a function of the standardized selection gradient.
Standard errors (SEs) are omitted when SEx2> 0.5 and SEg”> 1 for visual aid. Regression

lines result from weighted least-squares regression models (weights: 1/[(SEx2)?]), with
bootstrapping to account for uncertainty in B°, shown only when the 95% CI did not include
zero. Colours denote different trait classes (red: life history; green: body mass; blue:
morphology; orange: miscellaneous), whereas shapes indicate selection based on survival
(circles) or based on number of fledglings or recruits (triangles). Dotted horizontal lines
denote the constant heritability as estimated from a standard animal model. Duplicate traits
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(from same population but different dataset) are not shown. Data sources by panel: (1,2,6,7)
ref. 81; (5,11,26) ref. 82; (3,4,8,9,13,14,16,17,30,31) ref. 83; (10) unpubl. data; (12) ref. 84;
(15,32) ref. 85; (18,19,35,36,38) ref. 86; (20,37) ref. 87; (21) ref. 88; (22-25,33,34) ref. 89;
(27,28,39,40) ref. 90; (29) ref. 91; (41-45) ref. 92; (46) ref. 93; (47-50) ref. 94.

Nat Ecol Evol. Author manuscript; available in PMC 2018 December 18.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Ramakers et al. Page 23

@ All studies Avian only

Body mass ®

Life history o

Morphology o

Other ®

Summary

I I I I I I

-1.5 -1 -05 O 0.5 1
Z,

Figure 2. Meta-analysis on the heritability—selection correlation coefficients.
Coefficients rwere standardised using Fisher’s Z transformation prior to analysis. Estimates

and bootstrapped 95% Cls are shown, predicted from a linear mixed-effects model and
unconditioned on the random term ‘study area’. The summary statistic results from a model
that included only the intercept as a fixed term. Estimates from an analysis excluding non-
avian traits are shown for comparison.
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Figure 3. No effect of a correlation between heritability and selection on differences in selection
response.

Correlation coefficients (r+ standard errors) result from WLS regressions of heritability
against standardised selection gradients; AR’ (+ standard errors) is the mean, directional
difference between expected responses to selection assuming varying vs. constant
heritability. Each data point represents a single trait—species—population combination.
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Predicted selection response assuming constant vs. environment-dependent heritability.

Predicted response (/") differed in absolute terms from year to year under the two approaches for all six cases
where a correlation between heritability and selection was found; in none of these cases the difference was in a

consistent direction.

Species Trait AR spsolute [95% CIT AR girectional [95%6 CI]
Cyanistes caeruleus Adult handling aggression 0.031 [0.015, 0.049] 0.005 [-0.026, 0.031]
Parus major Plumage refl. (at 349 nm) 0.007 [0.003, 0.012] 0.005 [-0.001, 0.011]

Plumage refl. (at 549 nm) 0.012 [0.005, 0.021]
Double cone plumage refl. ~ 0.008 [0.003, 0.014]
Passerculus sandwichensis  Nestling tarsus length 0.059 [0.038, 0.085]
Nestling body mass 0.072 [0.046, 0.101]

0.005 [-0.007, 0.016]
~0.001 [0.010, 0.007]
0.005 [-0.034, 0.046]
~0.019 [0.062, 0.024]

Note. R’ is measured in phenotypic standard deviations. Estimates of differences were calculated using bootstrapping procedures
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