Supplementary Material for:

Risk assessment of *Escherichia coli* O157:H7 along the farm-to-fork fresh-cut romaine lettuce supply chain

Names and e-mail addresses for all authors

Ece Bulut^{1*} eb643@cornell.edu Sarah I. Murphy¹ sim39@cornell.edu Laura K. Strawn² laurakstrawn@vt.edu Michelle D. Danyluk³ mddanyluk@ufl.edu

Martin Wiedmann⁴ martin.wiedmann@cornell.edu

Renata Ivanek¹ ri25@cornell.edu

Author affiliations

¹Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA

²Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA ³Food Science and Human Nutrition Department, University of Florida, Lake Alfred, FL 33850, USA

Contact information for corresponding author

eb643@cornell.edu 602 Tower Rd, Ithaca, NY 14853

⁴Department of Food Science, Cornell University, Ithaca, NY 14853, USA

Supplementary Table S1. Parameters in the preharvest *Escherichia coli* O157:H7 (ECO157) model

Parameter	Description (units)	Distribution/Value	Mean (5 th ; 95 th percentile)	Source
t	Day of the countdown period in the difference equation model (1)-(6) (day)	$0 \le t < Modeldays$	-	Calculated ^c
A_{field}	Area of the field (approximately 1- acre field) (cm ²)	6245 × 6245 = 39000025	-	[36]
A_{batch}	Area of a field that grows a romaine batch ("batch area", 1/12 of the field area) (cm²)	6245 × 6245/12 = 3247400	-	[36]
N_{plant}	Number of plants harvested from the field (romaine plants)	26,000	-	[36]
Plant _{width}	The area that a single mature romaine plant occupied on the field, length x width of one plant (cm²)	$25 \times 25 = 625$	-	[51]
$Plant_{space}$	The area allocated for one romaine plant in the field (cm²)	$30 \times 50 = 1500$	-	[36]
$Plant_{barea}$	Number of plants grown in a batch area (romaine plants)	17 × 125 = 2167	-	[36]
Plant _{wght}	Weight of one mature romaine plant (g)	300	-	Assumption
f _{loc}	Select geographic location where the romaine batches were grown (unitless). Notations: CC: Coastal Region and Central Valley, CA DR: Desert (Imperial) Region, CA Y: Yuma Region, AZ	Discrete({CC, DR, Y}, {0.6,0.1,0.3})	-	[52,53,54]
f_{month}	Select the month of harvest for the given geographic location (unitless). Notations: January: 1, February: 2, March: 3, April: 4, May: 5, June: 6, July: 7, August: 8, September: 9, October: 10, November: 11, December: 12		-	[52,53]
f_w	Select the source of irrigation water (unitless). Notations: S: Surface water W: Well water	$f_w(f_{loc} = CC)$ = $Discrete(\{s, w\}, \{0.11, 0.89\})$ $f_w(f_{loc} = DR)$ = $Discrete(\{s, w\}, \{0.30, 0.70\})$ $f_w(f_{loc} = Y)$ = $Discrete(\{s, w\}, \{0.90, 0.10\})$	-	[70]
f_{irr}	Select the irrigation type for the given geographic location (unitless). Notations: O: Overhead spray irrigation F: Furrow irrigation D: Drip irrigation	$\begin{array}{l} f_{irr}(f_{loc} = CC) \\ = Discrete(\{0, F, D\}, \{0.4, 0, 0.6\}) \\ f_{irr}(f_{loc} = DR) \\ = Discrete(\{0, F, D\}, \{0.2, 0.5, 0.3\}) \\ f_{irr}(f_{loc} = Y) \\ = Discrete(\{0, F, D\}, \{0.08, 0.92, 0\}) \end{array}$	-	Author opinion ^c
Modeldays	Countdown period before harvest, modeled via a set of difference equations (day)	14 -		[39]
edge	Batch area was at the edge of the field and thus could be contaminated by runoff (unitless): no=0 (baseline), yes=1	$Binomial\left(1,\frac{1}{12}\right)$	0.08 (0; 1)	Calculated ^c
C_{man}	ECO157 count per g of BSAAO (CFU/g)	10 ^{Uniform(3.1,8.4)}	$2.0 \times 10^{7} (2.0 \times 10^{3}; 1.3 \times 10^{8})$	[36,60]
Sc_{vac}	Cattle vaccination intervention against ECO157 (unitless): no=0 (baseline), yes=1	0	-	[93]
Rh_{con}	Volume of 1g BSAAO/swine feces/cattle feces (cm³/g)	2.5	-	[64]
Dh_{con}	Depth of tiling on the field (cm)			[65]

M_{man}	Mass of BSAAO applied on the batch area (g)	<u>Uniform(5000000,15000000)</u> 12	$8.3 \times 10^5 (4.6 \times 10^5; 1.2 \times 10^6)$	[63]
DiF_{man}	Dilution of ECO157 cells in BSAAO in the volume of the tilled soil batch layer (unitless)	$\frac{M_{man} \times Rh_{con}}{A_{batch} \times Dh_{con}}$	-	Calculated ^c
Pr_{man}	BSAAO was used (unitless): no=0, yes=1	0.1	-	Author opinion c
P_{man}	BSAAO applied on a field was contaminated with ECO157 (unitless): no=0, yes=1	Binomial(1, Pert(0,0.17,0.21))	0.15 (0; 1)	[60]
C_{man_P}	ECO157 count in any BSAAO applied soil, which returns 0 CFU for a noncontaminated soil and C_{man} for a contaminated soil (CFU/g)	$P_{man} \times Pr_{man} \times C_{man}$	-	Calculated ^c
P_{irr_S}	ECO157 prevalence in surface water (unitless)	Pert(0,0.08,0.21)	0.09 (0.03; 0.16)	[8]
P_{irr_W}	ECO157 prevalence in well water (unitless)	0.001	-	Assumption c
P_{irr}	Irrigation water contaminated with ECO157 applied during the countdown period (unitless): no=0, yes=1	$\begin{array}{l} \textit{Binomial}(1, P_{irr}), \text{ where} \\ P_{irr}(f_w = W) = P_{irr_W} \\ P_{irr}(f_w = S) = P_{irr_S} \end{array}$	0.04 (0; 0)	Calculated ^c
Sc_{wt}	Water treatment intervention applied prior to the overhead spray irrigation (O) using surface water (S) (unitless): None=0 (baseline), Ultra-Violet (UV)=1, Peracetic Acid (PAA)=2, Chlorine=3	0	-	Selected ^c
C_{irr_S}	ECO157 count per ml of contaminated surface water post treatment (CFU/ml)	$\frac{{_{10}}^{Pert(0.1,0.76,1.77)+Normal(-1.9,0.6,Truncate(0))}}{{_{10}}^{CC}} \text{ where } \\ CC(Sc_{wt}=0)=0 \\ CC(Sc_{wt}=1)=CC_{UV} \\ CC(Sc_{wt}=2)=CC_{PPA} \\ CC(Sc_{wt}=3)=CC_{Ch}$	0.08 (0.007; 1.09)	[19,20,71]
C_{irr_W}	ECO157 count per ml of contaminated well water (CFU/ml)	0.1	-	[19,20,34]
C_{irr}	ECO157 count per ml of contaminated irrigation water applied on day t (CFU/ml)	$C_{irr}(f_w = W) = C_{irr_w}$ $C_{irr}(f_w = S) = C_{irr_S}$	-	Calculated ^c
C_{irr_P}	ECO157 count on any irrigation water, which returns 0 CFU for a non-contaminated water and C_{irr} for a contaminated water (CFU/ml)	$P_{irr} \times C_{irr}$	-	Calculated ^c
type _{irr}	Probability the selected irrigation type was occurring on a given day (unitless)	$type_{irr}(f_{irr} = 0) = fO_t$ $= Binomial(1, Pr_O)$ $type_{irr}(f_{irr} = F) = fF_t$ $= Binomial(1, Pr_F)$ $type_{irr}(f_{irr} = D) = fD_t$ $= Binomial(1, Pr_D_t)$	-	Calculated ^c
Pr_{O}	Probability of overhead spray irrigation on day t (unitless)	0.4	-	[48]
Pr_F	Probability of furrow irrigation on day t (unitless)	0.1	-	Author opinion c
Pr_{D_t}	Probability of drip irrigation on day t (unitless)	1	-	Author opinion c
W_{o}	Volume of water applied through overhead spray irrigation to a romaine batch per an irrigation event (ml/day)	gation to a romaine $30 \times Pr_0 \times 12$		[48]
W_F	Volume of water applied through furrow irrigation to a romaine batch per an irrigation event (ml/day) $ \frac{Uniform(2466963675,3083704593) \times 0.51}{30 \times Pr_F \times 12} $		$3.9 \times 10^7 (3.5 \times 10^7; 4.3 \times 10^7)$	[48]
W_D	Volume of water applied through drip irrigation to a romaine batch per an irrigation event (ml/day)	$\frac{Uniform(1233481837,1850222756)\times 0.51}{30\times Pr_{D_t}\times 12}$	$2.2 \times 10^6 (1.8 \times 10^6; 2.6 \times 10^6)$	[48]

Daytogrow	Days from seeding to harvest (day)		72 (65; 79) - -	[48]
D_{man}	Number of days before BSAAO application (day)	Daytogrow	-	[19,20]
g_{irr}	Volume of water applied per an irrigation event in a batch area (ml/day)	$g_{irr}(f_{irr} = 0) = W_0$ $g_{irr}(f_{irr} = F) = W_F$ $g_{irr}(f_{irr} = D) = W_D$	-	Calculated ^c
V_O	Volume of irrigation water captured per g of romaine per an overhead spray irrigation event (ml/g/day)	Uniform(1.8,21.6)	11.7 (2.8; 20.6)	[27]
V_F	Volume of irrigation water captured per romaine batch per a furrow irrigation event (ml/day)	100	-	Assumption
V_D	Volume of irrigation water captured per romaine batch per a drip irrigation event (ml/day)	10	-	Assumption
v_{irr}	Volume of irrigation water captured by romaine batch per an irrigation event (ml/day)	$egin{aligned} v_{irr}(f_{irr}=0) &= V_O imes Plant_{barea} \ & imes Plant_{wght} \ v_{irr}(f_{irr}=F) &= V_F \ v_{irr}(f_{irr}=D) &= V_D \end{aligned}$	-	Calculated ^c
Tr_{man_O}	Fraction of the top 1cm layer of soil batch transferred to a romaine batch via splash caused by overhead spray irrigation per irrigation event (unitless)	$ \begin{array}{c} BetaGeneral(0.4,0.8,0.05,16.4) \\ \times Plant_{barea} \\ \times \frac{Plant_{wght}}{5} \times \frac{Rh_{con}}{A_{batch} \times 1} \\ \end{array}$	0.05 (0.0005; 0.13)	[73]
Tr_{man_F}	Fraction of the top 1cm layer of soil batch transferred to a romaine batch via splash caused by furrow irrigation per irrigation event (unitless)	0.0005	-	Assumption c
Tr_{man_D}	Fraction of the top 1cm layer of soil batch transferred to a romaine batch via splash caused by drip irrigation per irrigation event (unitless)	0.0001	-	Assumption
M_{irr}	Mass of soil transferred to a romaine batch via splash per irrigation event (g/day)	$\begin{aligned} M_{irr}(f_{irr} = 0) &= Tr_{man_0} \\ M_{irr}(f_{irr} = F) &= Tr_{man_F} \\ M_{irr}(f_{irr} = D) &= Tr_{man_D} \end{aligned}$	-	Calculated ^c
Tr_{ecirr}	Fraction of ECO157 cells transferred from irrigation water to romaine (unitless)	0.1	-	Assumption
DiF_{irr}	Dilution factor for ECO157 cells in irrigation water in the top 1cm layer of soil batch (unitless)	$\frac{g_{irr} \times \left(1 - \frac{v_{irr}}{g_{irr}}\right)}{(A_{batch} \times 1)}$	-	Calculated ^c
LN_0	ECO157 count in a romaine batch at the start of the 14-day countdown period (t=0) (CFU)	$LN_0(f_{irr} = 0) = 0$ $LN_0(f_{irr} = F) = 0$ $LN_0(f_{irr} = D) = 0$	-	Assumption
CC_{UV}	Log ₁₀ ECO157 count reduction of surface water contamination by UV treatment before overhead spray irrigation (Log ₁₀ CFU)	Uniform(1.30,2.91)	2.10 (1.38; 2.83)	[94,96]
CC_{PAA}	Log ₁₀ ECO157 count reduction of surface water contamination by PAA treatment before overhead spray irrigation (Log ₁₀ CFU)	Uniform(2.48,3.09)	2.78 (2.51; 3.06)	[94,96]
CC_{Ch}	Log ₁₀ ECO157 count reduction of surface water contamination by Chlorine treatment before overhead spray irrigation (Log ₁₀ CFU)	Uniform(1.00,2.78)	1.89 (1.09; 2.69)	[94]
$C_{cowprep}$	Log ₁₀ ECO157 count on fresh cattle feces (Log ₁₀ CFU/g)	Pert(0.89,3.08,8.4)	3.60 (1.58; 6.04)	[36]

C	Log ₁₀ ECO157 count on fresh cattle	C -		Calculated c
$C_{cow_{tot}}$	feces, accounting for the effect of	$C_{cow_{tot}} = Sc_{vac} \times Max(C_{cow} - 1,0)$		Calculated
	ECO157 vaccine intervention, if	$+ (1 - Sc_{vac}) \times C_{cow}$		
C_{cow}	implemented (Log ₁₀ CFU/g) ECO157 count on fresh cattle feces	$10^{c_{cow_{tot}}}$	_	Calculated ^c
C _{cow}	(CFU/g)	10 30#101		Calculated
C_{cow_P}	ECO157 count on any cattle feces, which returns 0 CFU for non-	$C_{cow} \times P_{cow_m}$	-	Calculated ^c
	contaminated feces and C_{cow} for contaminated feces (CFU/g)			
C_{pig}	Log ₁₀ ECO157 count on fresh swine feces (Log ₁₀ CFU/g)	Pert(0.89,3.59,7.00)	3.71 (1.86; 5.65)	[36]
C_{pig_P}	ECO157 count on any swine feces, which returns 0 CFU for noncontaminated feces and C_{pig} for	$10^{c_{pig}} \times P_{pig_m}$	-	Calculated ^c
Pr_{pig}	contaminated feces (CFU/g) Probability of feral swine entering the	0.00405	-	[6]
$Pr_{pig_{Countt}}$	field on day t (unitless) Wildlife intrusion occurred on day t (unitless): no=0, yes=1	Binomial $(1, Pr_{pig})$	0 (0; 1)	Calculated ^c
$Pr_{pig_{CountSum}}$	Total number of days during the 14- day countdown when wildlife intrusion occurred (day)	$\sum_t Pr_{pig_{countt}}$	-	Calculated ^c
$Mdef_{pig}$	Mass of feces excreted by a feral swine per day (g swine feces/day)	4,265	-	[36]
$Tdef_{pig}$	Number of times a feral swine defecated per day (times/day)	4	-	[68]
$Ndef_{pig}$	Number of times feral swine (between 1-5 swine) defecated on the field (times/day)	Poisson(1,Truncate(1,20))	1.58 (1;3)	Assumption
M_{pig}	Mass of feces excreted by feral swine intruding the batch area (g)	$\frac{Mdef_{pig}}{Tdef_{pig}} \times Ndef_{pig}$	-	Calculated ^c
DiF_{pig}	Dilution factor for ECO157 cells in feral swine feces in soil batch associated with plants near which the	$\frac{M_{pig} \times Rh_{con}}{A_{batch} \times 1}$	-	Calculated ^c
M_{cow}	swine defecated (unitless) Mass of cattle runoff (carrying fresh cattle feces only) introduced into the edge batch area soil per runoff event (g/day)	Triang(5000,10000,15000)	10000 (6581; 13418)	[36]
DiF _{cow}	Dilution factor for ECO157 cells in cattle runoff introduced into in the top 1cm layer of soil batch (unitless)	$\frac{M_{cow} \times Rh_{con}}{A_{batch} \times 1}$	-	Calculated ^c
Pr_{LtoS}	Proportion of fecal matter (swine and runoff) landing on romaine rather than in soil (unitless)	$\frac{Plant_{width}}{Plant_{space} - Plant_{width}}$	-	[36]
Tr_{ecsoil}	Proportion of ECO157 cells in soil transferring to romaine during a rain or irrigation event (unitless)	Uniform(0.00004,0.63)	0.315 (0.032; 0.600)	[75]
R_{dman}	ECO157 decay rate for non-persisters in BSAAO amended soil (Log ₁₀ CFU/day) ³	0.038	-	[61]
R_{dL}	ECO157 decay rate for non-persisters on romaine in field (1/day) a,b	$1 - 10^{h_{sun_m} \times \frac{R_{sun_m}}{24}}$	-	[27,34]
R_{ds}	ECO157 decay rate for non-persisters in soil (1/day) ^a	$1 - 10^{-0.1744}$	-	[36]
R_{dman_P}	ECO157 decay rate for persisters in BSAAO amended soil (Log ₁₀ CFU/day) ^a	$\frac{R_{dman}}{10}$	-	[61,62]
R_{dL_P}	ECO157 decay rate for persisters on romaine in field (1/day) ^a	$\frac{1-10^{h_{sun_m}} \times \frac{R_{sun_m}}{24}}{10}$	-	[47]
R_{ds_P}	ECO157 decay rate in soil for persisters (1/day) ^a	$\frac{R_{ds}}{10}$	-	[62]

$NtoP_{man}$	Switch rate from normal to persister	0.001	-	[76,77]
	in BSAAO amended soil (1/day) ^a			
$NtoP_L$	Switch rate from normal to persister	0.0004	-	[47]
	on romaine (1/day) ^a			
$NtoP_S$	Switch rate from normal to persister	0.0001	-	[76,77]
	in soil (1/day) ^a			
$Pmax_{man}$	Maximum fraction of persisters in	$NtoP_{man}$	-	[47]
	BSAAO amended soil (unitless)	$10^{R_{dman}}$		
$Pmax_S$	Maximum fraction of persisters in soil	$NtoP_S$	-	Calculated
	(unitless)	R_{ds}		
$Pmax_L$	Maximum fraction of persisters on	$NtoP_L$	-	Calculated
-	romaine (unitless)	R_{dL}		
BwaitP	Waiting time: The period before	Triang(2,4,8)	4 (2; 6)	[74]
D Watti	harvest during which overhead spray	17 tang (2, 1,0)	1 (2,0)	[, ,]
	and furrow irrigation was stopped			
	(day)			
Tr_{blade}	Average amount of soil attached to a	10.22	-	[15]
Diane	harvesting blade after contact with			' '
	soil in one cross contamination event			
	(g/blade)			
$Tr_{ecblade}$	Proportion of ECO157 cells transferred	0.0013	-	[15]
costato	from a harvesting blade to a romaine			
	plant in one cross contamination			
	event (unitless)			
	ECO157 count in soil attached on	$LN_{14} \times Tr_{blade} \times Rh_{con}$	-	Calculated
N_{blade}	blades (CFU/soil batch x soil	$1 \times A_{batch}$		
brace	batch/blade=CFU/blade)	butti		
CC_{blade}	ECO157 cells transferred from	$Tr_{ecblade} \times N_{blade} \times Plant_{barea} \times Plant_{waht}$	-	Calculated
Dittito	harvesting blades to a romaine batch	1		
	(CFU/romaine batch)	× 3		
C_{L_h}	Preharvest outcome: ECO157 count	$LN_{14} + CC_{blade}$	-	Calculated
-11	on harvested romaine batch (CFU)			

^a In the difference equation model the rate parameter indicates the proportionate change in ECO157 population per time step.

Supplementary Table S2. Parameters in the postharvest *Escherichia coli* O157:H7 (ECO157) model

Parameter	Description (units)	Distribution/Value	Mean (5 th -95 th percentile)	Source
C_{Lh_f}	E. coli O157:H7 (ECO157) count in a contaminated harvested romaine batch (Log ₁₀ CFU/romaine batch)	Triang(-0.66,3.81,6.36)	3.17 (0.59; 5.41)	Output from preharvest model fitted in @RISK
P_{Lh_f}	ECO157 prevalence in a harvested romaine batch (unitless)	Triang(0.005,0.01,0.02)	0.01 (0.007; 0.02)	Output from preharvest model fitted in @RISK
t_{coldst}	Cold storage time (h)	Triang(1,24,72)	32 (10; 59)	Author opinion ^a
$T_{endcoldst}$	Temperature after cold storage (°C)	$Triang(0,4.44,T_{harvest_m})$	5 (4.3; 5.7)	[33]
T_{coldst}	Temperature during cold storage (°C)	$\frac{1}{2} \times \left(T_{endcoldst} + T_{harvest_m} \right)$	-	[38]
G_{coldst}	Cold storage growth rate (Log ₁₀ CFU/h)	$\frac{\left(0.023 \times (T_{coldst} - 1.2)\right)^2}{2.303}$	-	[38]

^b See Supplementary Table S3 for more details.

^c Assumption: Parameter value accepted as true with little to no information; Author opinion: Parameter value accepted as true based on authors' experience; Calculated: Parameter value calculated based on other parameters; Selected: Used in scenario analysis (See Supplementary Table S9 for details for their use.)

D_{coldst}	Cold storage die-off rate (Log ₁₀ CFU/h)	$\frac{Lognorm(0.013,0.001,Shift(0.001))}{2.303}$	0.006 (0.005; 0.007)	[38]
$GorD_{coldst}$	Growth (G) or die off (D) based on cold storage temperature (Log ₁₀ CFU/h)	$G, if T_{coldst} > 5,$ $D, if T_{coldst} \leq 5$	-	[38]
CC_{coldst}	Change in ECO157 count during cold storage (Log ₁₀ CFU)	$ \begin{array}{l} \mathcal{CC}_{coldst}(GorD_{coldst} = G) = G_{coldst} \times t_{coldst} \\ \mathcal{CC}_{coldst}(GorD_{coldst} = D) \end{array} $	-	Calculated ^a
$C_{endcoldst}$	ECO157 count on a contaminated romaine batch after cold storage, going to processing (CFU/romaine batch)	$ = -D_{coldst} \times t_{coldst}) $ $ \log_{10}(ROUNDDOWN \left(10^{Max\left\{C_{Lh_f} + CC_{coldst}, 0\right\}}, 0\right) $	-	Calculated ^a
В	Romaine batch size (g)	$Plant_{barea} \times Plant_{wght}$	-	Calculated ^a
Sc_{wash}	1 or 2 based on the scenarios below, (baseline=1)	1	-	Selected ^a
CC_{ch20}	Log ₁₀ CFU ECO157 reduction with chlorine washing (Log ₁₀ CFU/g romaine)	Pert(0.01,0.52,1.03)	0.52 (0.20; 0.84)	[84]
CC_{ch1}	Chlorine wash alternative 1	Pert(0.5,1.0,1.5)	1.00 (0.69; 1.31)	Assumption ^a
CC_{ch2}	Chlorine wash alternative 2	Pert(1.0,1.5,2.0)	1.50 (1.19; 1.81)	Assumption ^a
CC_{ch3}	Chlorine wash alternative 3	Pert(1.5,2.0,2.5)	2.00 (1.69; 2.31)	Assumption ^a
CC_{ch4}	Chlorine wash alternative 4	Pert(2.0,2.5,3.0)	2.50 (0.69; 1.31)	Assumption ^a
CC_{ch5}	Chlorine wash alternative 5	Uniform(3.0,5.0)	4.00 (3.10; 4.90)	[97]
$\mathit{CC}_{w_{agent}}$	ECO157 reduction associated with the scenario selected for the washing step (Log ₁₀ CFU)	$CC_{wagent}(Sc_{wash} = 1) = CC_{ch20}$ $CC_{wagent}(Sc_{wash} = 2) = CC_{ch1}$ $CC_{wagent}(Sc_{wash} = 3) = CC_{ch2}$ $CC_{wagent}(Sc_{wash} = 4) = CC_{ch3}$ $CC_{wagent}(Sc_{wash} = 5) = CC_{ch4}$ $CC_{wagent}(Sc_{wash} = 6) = CC_{ch5}$	-	Selected ^a
C_{wash}	ECO157 count on a contaminated romaine batch after washing (CFU/romaine batch)	$\log_{10}(ROUNDDOWN(Max\{10^{Cendcoldst-CC_{Wagent}},0\},0))$	-	Calculated ^a
$P0_{pack}$	Probability a non-contaminated package is partitioned from a contaminated romaine batch (unitless)	$EXP \left(\frac{\Gamma(Clstr_{par} \times A_{pack}) \times \Gamma(Clstr_{par} \times (A_{pack} - 1) + C_{wash})}{\Gamma\left(Clstr_{par} \times (A_{pack} - 1)\right) \times \Gamma(Clstr_{par} \times A_{pack} + C_{wash})} \right)$	-	[46]
P_{pack}	ECO157 prevalence on a romaine package (unitless)	$(1 - P0_{pack}) \times P_{Lh_f}$	0.003 (2.5 × 10 ⁻⁵ ; 0.016)	Calculated ^a
Sc_{clstrb}	Clustering in romaine batch: no=0 (baseline), yes=1	0	-	Selected ^a
$Clstr_{parb}$	Clustering parameter	1	-	[46]
$W_{romainepack}$	Weight of shredded romaine per package (8 oz) (g)	225	-	
A_{pack}	Number of packages in a romaine batch (packages)	$\frac{B}{W_{lettucepack}}$	-	Calculated ^a
$P_{contpack_{dist}}$	Distribute ECO157 cells to a package when clustering	$Beta\left(Clstr_{parb},Clstr_{parb} imes\left(A_{pack}-1 ight) ight)$	$\begin{array}{c} 3.5 \times 10^{-4} (1.8 \\ \times 10^{-5}; 0.001) \end{array}$	
$P_{contpack}$	Proportion of ECO157 cells from a contaminated romaine batch in a package (unitless)	ed romaine batch in a $(1-Sc_{clstrb}) imes (\overline{A_{pack}}) + Sc_{clstrb}$ itless)		[46]
C_{pack}	ECO157 count in a contaminated package (Log ₁₀ CFU/pack romaine)	$ \times P_{contpack} = $	-	Calculated ^a
t_{retail}	Retail storage time (h)	Triang(0.5,4,7) × 24 92.0 (37.6; 144.3) [4		[42]
T_{retail}	Retail storage temperature (°C)	Normal(4.4441,2.9642, Truncate(0,20.56))	uncate(0,20.56)) 4.9 (0.9; 9.4) [82,99]	
G_{retail}	Retail growth rate (Log ₁₀ CFU/g romaine/h)	$\frac{\left(0.023 \times (T_{trnspt} - 1.2)\right)^2}{2.303}$	-	[38]

D_{retail}	Retail die-off rate (Log ₁₀ CFU/g romaine/h)	$\frac{Lognorm(0.013,0.001,Shift(0.001))}{2.303}$	0.006 (0.005; 0.007)	[82]
$GorD_{retail}$	Growth (G) or die off (D) based on retail temperature (Log10CFU/h)	$G, if T_{retail} > 5,$ $D, if T_{retail} \leq 5$	-	[38]
CC _{retail}	Change in ECO157 count during retail storage (Log ₁₀ CFU)	$CC_{retail}(GorD_{retail} = G) = G_{retail} \times t_{retail}$ $CC_{retail}(GorD_{retail} = D) = -D_{retail} \times t_{retail}$	-	[38]
C_{retail}	ECO157 count in a contaminated package after retail storage (Log ₁₀ CFU/package romaine)	$\log_{10}(ROUNDDOWN\begin{pmatrix}10^{Max\{c_{pack}+cc_{retail},0\}}\\0\end{pmatrix})$	-	Calculated ^a
$t_{transport}$	Transportation time (h)	Normal(1.421,0.46478, Truncate(0.1833,3.8667) ,Shift(-0.24609))	1.18 (0.43; 1.94)	[99]
T_{trhom}	Package temperature before putting into home refrigerator (°C)	Normal(8.386,3.831,Truncate(0,20))	8.51 (2.54; 14.67)	[99]
T_{trnspt}	Temperature during transportation (°C)	$\frac{1}{2} \times (T_{retail} + T_{home})$	-	[135]
G_{trnspt}	Transportation growth rate (Log₁₀CFU/)	$\frac{1}{2} \times (T_{retail} + T_{home})$ $\frac{\left(0.023 \times (T_{trnspt} - 1.2)\right)^2}{2.303}$	-	[38]
D_{trnspt}	Transportation die-off rate (Log ₁₀ CFU/h)	$\frac{\textit{Lognorm}(0.013,0.001,\textit{Shift}(0.001))}{2.303}$	0.006 (0.005; 0.007)	[82]
$GorD_{trnspt}$	Growth (G) or die off (D) based on transport temperature	$G, if T_{trnspt} > 5,$ $D, if T_{trnspt} \leq 5$	-	[38]
CC_{trspt}	Change in ECO157 count during transportation (Log ₁₀ CFU)	$CC_{trnspt}(GorD_{trnspt} = G)$ $= G_{trnspt} \times t_{trnspt}$ $CC_{trnspt}(GorD_{trnspt} = D)$	-	[38]
C_{trnspt}	ECO157 count in a contaminated package after transportation (Log ₁₀ CFU/romaine package)	$= -D_{trnspt} \times t_{trnspt}$ $\log_{10}(ROUNDDOWN(10^{\text{Max}[C_{retail} + CC_{trnspt}, 0]}, 0))$	-	Calculated ^a
t_{fcons}	Time to first consumption (h)	Weibull(1.13,2.84) × 24	65.21 (4.92; 179.97)	[136]
t_{lcons}	Time to last consumption (h)	Weibull(1.7,7.96) × 24	170.5 (33.3; 364.3)	[136]
t_{home}	Home storage time (h)	$\frac{1}{2} \times (t_{fcons} + t_{lcons})$	-	Calculated ^a
T_{home}	Home storage temperature (°C)	Normal $\binom{3.4517,2.4442,}{RiskTruncate(-5,17.22)}$	3.45 (-0.56; 7.47)	[38]
G_{home}	Home growth rate (Log ₁₀ CFU/h)	$\frac{\left(0.023 \times (T_{home} - 1.2)\right)^2}{2.303}$	-	[38]
D_{home}	Home die-off rate (Log ₁₀ CFU/h)	Lognorm(0.013,0.001,Shift(0.001)) 2.303	0.006 (0.005; 0.007)	[82]
$GorD_{home}$	Growth (G) or die off (D) based on home storage temperature	$G, if T_{home} > 5,$ $D, if T_{home} \leq 5$	-	[38]
CC_{home}	Change in ECO157 count during home storage (Log ₁₀ CFU)	$\begin{array}{l} CC_{home}(GorD_{home} = G) = G_{home} \times t_{home} \\ CC_{home}(GorD_{home} = D) = -D_{home} \times t_{home} \end{array}$	-	[38]
C_{home}	EC0157 count in a contaminated package after home storage (Log ₁₀ CFU/romaine package)	Log ₁₀ (ROUNDDOWN(10 ^{Max{Ctrnspt+ CChome,0}} ,	-	Calculated ^a
$P0_{ser}$	Probability a non-contaminated serving was partitioned from a contaminated romaine package	$EXP \left(\frac{\Gamma(Clstr_{par} \times Ser_{pack}) \times \Gamma(Clstr_{par} \times (Ser_{pack} - 1) + C_{home})}{\Gamma\left(Clstr_{par} \times (Ser_{pack} - 1)\right) \times \Gamma(Clstr_{par} \times Ser_{pack} + C_{home})} \right)$	-	Calculated ^a
P_{ser}	ECO157 prevalence on a romaine serving	$(1 - P0_{ser}) \times P_{pack} \times P_{Lh_f}$	0.002 (1.8 × 10 ⁻⁶ ; 0.009)	Calculated ^a
Sc_{clstrp}	Clustering in package: no=0 (baseline), yes=1	0	-	Selected ^a
$Clstr_{parp}$	Clustering parameter	1	-	[46]

Ser	Serving size (g romaine/ romaine serving)	85	-	[86]
Ser _{pack}	Number of servings in a package (romaine servings)	W _{lettucepack} Ser	-	Calculated ^a
$P_{contser_{prep}}$	Distribute ECO157 cells to a serving when clustering (unitless)	$Beta\left(Clstr_{parp}, Clstr_{parp} \times (Ser_{pack} - 1)\right)$	0.38 (0.031; 0.838)	Calculated ^a
$P_{contser}$	Proportion of ECO157 cells from contaminated package in a serving (unitless)	$(1 - Sc_{clstrp}) \times \left(\frac{1}{Ser_{pack}}\right) + Sc_{clstrp} \times P_{contser_{prep}}$	-	[46]
C_{serH}	ECO157 count in a contaminated serving after home storage (Log ₁₀ CFU/serving romaine)	$ \times P_{contser_{prep}} $ $Log_{10}(Binomial(10^{C_{home}}, P_{contser}) + 1) $	-	Calculated ^a
Sc_{conw}	Consumer wash romaine before consumption: no=0 (baseline), yes=1	0	-	Selected ^a
P_{conw}	Probability a USA consumer washes the prepacked romaine (unitless)	0.62	-	[100]
CC_{conw}_{prep}	ECO157 reduction by consumer wash with water prep cell (Log ₁₀ CFU)	$Triang(0.65,0.99,0.99) \times P_{conw}$	0.54 (0.45; 0.61)	[39]
CC_{conw}	Log ₁₀ CFU ECO157 reduction by consumer wash with water (Log ₁₀ CFU)	$Sc_{conw} \times CC_{conw_{prep}}$	-	Calculated ^a
C_{serW}	ECO157 count in a contaminated serving after consumer wash (CFU/romaine serving)	$10^{Max\{C_{serH}-CC_{conw},0\}}$	-	Calculated ^a
alpha	Dose-response parameter alpha (unitless)	0.267	-	[87]
beta	Dose-response parameter beta (unitless)	229.2928	-	[87]
Pill	Probability of illness as a result of consumption of a contaminated romaine serving (unitless)	$1 - \left(1 + \frac{C_{serW}}{beta}\right)^{-alpha}$	-	[36]
USpop	USA population (person)	311,556,874	-	[88]
Α	Annual romaine consumption in the USA (g/consumer/year)	3,946	-	[18]
Np	Number of romaine servings consumed per person per year (romaine serving/consumer/year)	$\frac{A}{Ser}$	-	Calculated ^a
Nsc_{US}	Total number of romaine servings consumed per year in the USA (romaine serving/year)	$USpop \times Np$	-	Calculated 6
$Ncsc_{US}$	Number of contaminated romaine servings consumed per year in the USA (romaine serving/year)	$Nsc_{US} \times P_{ser}$	-	Calculated ^a
Ncase _{US}	Number of illness cases per year in the USA (person)	$Ncsc_{US} \times Pill$	-	Calculated ⁶

^a Assumption: Parameter value accepted as true with little to no information; Author opinion: Parameter value accepted as true based on authors' experience; Calculated: Parameter value calculated based on other parameters; Selected: Used in scenario analysis (See Supplementary Table S9 for details for their use.)

Supplementary Table S3. Parameters varying by the harvest month of romaine production

Parameter	P_{sun_m}	P_{cow_m}	P_{pig_m}	h_{sun_m}	R_{sun_m}	$Prec_{norm_m}$	$Prec_{actual_m}$	$T_{harvest_m}$
Description (unit)	Probab ility of a sunny day (unitles s)	ECO157 prevalence in fresh cattle feces (unitless)	ECO157 prevalence in fresh feral swine feces (unitless)	Average sunny hours per day (h) ^e	Solar decay rate (1/day)	Precipitatio n level normalized (unitless)	Actual (average) level of precipitation during the year (mm)	Temperature at harvest (°C) ^d
Source	[137]	[8]	[8]	[27,34]	[27,34]	[137]	[137]	[137]
Harvest month ^a	Value/Di	stribution						
January	0.97	Binomial(1,0.01)	0 c	DR = 10.30 $Y = 9.00$	-0.48	0.21	11	DR = 7.20 Y = 8.90
February	0.93	Binomial(1,0.02)	0 с	DR = 11.00 $Y = 9.70$	-0.48	0.31	15	DR = 7.20 $Y = 9.90$
March	0.97	Binomial(1,0.06) ^c	0 c	DR $= 12.00$ $Y = 10.70$	-0.48	0.12	7	DR = 12.70 Y = 12.90
April	0.87	Binomial(1,0.09)	0 с	<i>CC</i> = 8.90	-0.48	0.81	36	CC = 8.20
May	0.90	Binomial(1,0.04)	0 с	<i>CC</i> = 9.10	-0.48	0.41	19	CC = 9.70
June	0.97	$Binomial(1,0.13)^b$	0 с	<i>CC</i> = 9.80	-0.52	0.07	5	CC = 11.40
July	1.00	Binomial(1,0.21)	Binomial(1,0.16)	<i>CC</i> = 9.60	-0.52	0.00	2	CC = 13.00
August	1.00	Binomial(1,0.10)	Binomial(1,0.13)	<i>CC</i> = 9.10	-0.52	0.02	3	CC = 13.30
September	0.97	Binomial(1,0.08)	Binomial(1,0.11)	<i>CC</i> = 9.10	-0.52	0.02	3	CC = 13.10
October	0.93	Binomial(1,0.17)	Binomial(1,0.08)	<i>CC</i> = 8.50	-0.52	0.41	19	CC = 11.20
November	0.87	Binomial(1,0.03)	Binomial(1,0.10)	<i>CC</i> = 7.60	-0.52	1.00	44	CC = 8.00
December	0.97	Binomial(1,0.02)	Binomial(1,0.12)	DR = 10.00 $Y = 8.80$	-0.48	0.21	11	DR = 7.20 Y = 8.30

^a Selected month is based on the location of the romaine production.

^b Empirical data was 0. However, the value considered here was the average of estimates from the prior and the following months.

 $^{^{\}mbox{\tiny c}}$ Empirical data was 0.

^d CC: Coastal Region and Central Valley, CA; DR: Desert Region (Imperial), CA; Y:Yuma Region, AZ.

Supplementary Table S4. Terms in in the difference equation model in the preharvest model.

Description (units)	Distribution/Value
Soil batch contamination on day t=0 (day 0, a day	$P_{man} \times Pr_{man}$
before the start of the 14-day countdown): no=0, yes=1	
ECO157 count in soil batch on day t=0 (CFU)	$\frac{\left(Sc_{vac} \times \frac{C_{man}}{10} + (1 - Sc_{vac}) \times C_{man}\right) \times DiF_{man}}{10^{D_{man} \times R_{dman}}}$
Non-persister ECO157 count in soil batch on day t=0 (CFU)	$S_0 \times (1 - Pmax_{man})$
Persister ECO157 count in soil batch on day t=0 (CFU)	$S_0 \times Pmax_{man}$
Soil batch contamination with non-persister and persister cells on day t=0 (CFU)	$(SN_0 + SP_0) \times P_{Sinitial}$
Non-persister ECO157 count in romaine batch on day t=0 in an overhead spray/furrow or drip irrigated field (CFU)	0
Persister ECO157 count in romaine batch on day t=0 in an overhead spray/furrow or drip irrigated field (CFU)	0
Romaine batch contamination with non-persister and persister cells on day t=0 (CFU)	$LN_0 + LP_0$
ECO157 count introduced via feral swine to soil batch per intrusion event (CFU)	$(1 - Pr_{LtoS}) \times 10^{C_{pig}} \times DiF_{pig}$
ECO157 count introduced via feral swine to romaine batch per intrusion event (CFU)	$Pr_{LtoS} imes 10^{C_{pig}}$
Fraction of ECO157 transferred from soil batch to romaine batch via splash during rain per rain event (unitless)	$Tr_{man_{O}} \times Tr_{ecsoil} \times Prec_{norm_{m}}$
Fraction of ECO157 transferred from soil batch to romaine batch via splash during irrigation per irrigation event (unitless)	$M_{irr} \times Tr_{ecsoil} \times Median(Prec_{norm_m})$
ECO157 introduced to batch area (soil + romaine) with runoff per runoff event (CFU)	$C_{cow} \times Prec_{norm_m}$
ECO157 count in soil batch introduced with runoff per runoff event (CFU)	$SR \times (1 - Pr_{LtoS}) \times DiF_{cow}$
ECO157 count in romaine batch introduced with runoff per runoff event (CFU)	$SR \times Pr_{LtoS}$
Select weather on day t: sunny=1, rainy=0 (Overhead spray or furrow irrigation may occur on a sunny day only) ^a	$Binomial(1, P_{sun_m})_t$
Overhead spray irrigation scheduled to occur on day t: no=0, yes=1	$Binomial(1, Pr_0)_t$
Furrow irrigation scheduled to occur on day t: no=0, yes=1	$Binomial(1, Pr_F)_t$
ECO157 count in soil batch introduced via irrigation per irrigation event (CFU)	$C_{irr} \times DiF_{irr}$
Fraction of irrigation water caught by romaine (unitless)	$rac{v_{irr}}{g_{irr}}$
ECO157 count in romaine batch via irrigation per irrigation event (CFU)	$C_{irr} \times g_{irr} \times Tr_{ecirr} \times pVL$
Runoff event occurs on day t: no=0, yes=1	$(1 - Bs_t) \times P_{cow_m} \times edge$
Wildlife intrusion occurs on day t: no=0, yes=1	Binomial $(1, Pr_{pig})$
Total number of days during the 14-day countdown when wildlife intrusion occurs	$\sum_{t} Pr_{pig_{countt}}$
Wildlife intrusion occurs by feral swine with contaminated feces on day t: no=0, yes=1	Binomial $(1, P_{pig_m}) \times Pr_{pig_{countt}}$
Overhead spray or furrow irrigation occurs on day t: no=0, yes=1	$IF(t > BwaitP, 1,0)$, where $t = \{0,1,,14\}$
Irrigation splash occurs on day t: no=0, yes=1	$IF(OR(Bs_t \times fOt \times BwaitP_t = 1, Bs_t \times fFt \times BwaitP_t = 1, fDt)$
	Soil batch contamination on day t=0 (day 0, a day before the start of the 14-day countdown): no=0, yes=1 ECO157 count in soil batch on day t=0 (CFU) Non-persister ECO157 count in soil batch on day t=0 (CFU) Persister ECO157 count in soil batch on day t=0 (CFU) Soil batch contamination with non-persister and persister cells on day t=0 (CFU) Non-persister ECO157 count in romaine batch on day t=0 in an overhead spray/furrow or drip irrigated field (CFU) Persister ECO157 count in romaine batch on day t=0 in an overhead spray/furrow or drip irrigated field (CFU) Romaine batch contamination with non-persister and persister cells on day t=0 (CFU) ECO157 count introduced via feral swine to soil batch per intrusion event (CFU) ECO157 count introduced via feral swine to romaine batch per intrusion event (CFU) Fraction of ECO157 transferred from soil batch to romaine batch via splash during rain per rain event (unitless) Fraction of ECO157 transferred from soil batch to romaine batch via splash during irrigation per irrigation event (unitless) ECO157 introduced to batch area (soil + romaine) with runoff per runoff event (CFU) ECO157 count in soil batch introduced with runoff per runoff event (CFU) ECO157 count in romaine batch introduced with runoff per runoff event (CFU) ECO157 count in romaine batch introduced with runoff per runoff event (CFU) ECO157 count in romaine batch introduced with runoff per runoff event (CFU) ECO157 count in romaine batch introduced with runoff per runoff event (CFU) ECO157 count in romaine batch introduced with runoff per runoff event (CFU) Select weather on day t: sunny=1, rainy=0 (Overhead spray or furrow irrigation may occur on a sunny day only) a Overhead spray irrigation scheduled to occur on day t: no=0, yes=1 Furrow irrigation event (CFU) Runoff event occurs on day t: no=0, yes=1 Wildlife intrusion occurs on day t: no=0, yes=1 Vildlife intrusion occurs on day t: no=0, yes=1 Overhead spray or furrow irrigation occurs on day t:

^a See Supplementary Table S3 for more details.

Supplementary Table S5. Difference equation model in the preharvest model.

Compartment	Description (units)	Equation
Irr_{S_t}	ECO157 count in soil batch introduced via irrigation	One of (depending on the irrigation method for the iteration:
·	on day t (CFU)	O=overhead spray, F=furrow, D=drip):
		$Irr_S(f_{irr} = 0)_t = SI_t \times Bs_t \times P_{irr} \times fO_t \times BwaitP_t$
		$Irr_S(f_{irr} = F)_t = SI_t \times Bs_t \times P_{irr} \times fF_t \times BwaitP_t$
		$Irr_S(f_{irr} = D)_t = SI_t \times P_{irr} \times Pr_D$
Pig_{S_t}	ECO157 count in soil batch introduced via feral	$SW \times pPEC_t$
	swine on day t (CFU)	
$Runoff_{S_t}$	ECO157 count in soil batch introduced via runoff on	$SSR \times pRunof f_t$
	day t (CFU)	1 D
R_{splash_t}	Fraction of ECO157 transferred from soil batch to romaine batch via rain splash on day t (unitless)	$LsR \times pSpR_t$
Ι	Fraction of ECO157 transferred from soil batch to	$LsI \times pSpl_t$
I_{splash_t}	romaine batch via irrigation splash on day t (unitless)	
$SNtoSP_t$	Switch of non-persister ECO157 to persister cells on	$(1 - Pr_{man}) \times SN_t \times NtoP_S + Pr_{man} \times SN_t \times NtoP_{man}$
·	day t (CFU)	
$SNdecay_t$	Decay of non-persister ECO157 in soil batch on day t	$(1 - Pr_{man}) \times SN_t \times R_{ds} + Pr_{man} \times \frac{SN_t}{10^R dman}$
, ,	(CFU)	10 ^R dman
$SPdecay_t$	Decay of persister ECO157 in soil batch on day t	SP_t
5 6	(CFU)	$(1 - Pr_{man}) \times SP_t \times R_{ds_P} + Pr_{man} \times \frac{SP_t}{10^{R_{dman_P}}}$
SN_{t+1}	Non-persister ECO157 count in soil batch on day t+1	$SN_t + Irr_{S_t} + Pig_{S_t} + Runoff_{S_t} - (R_{splash_t} + I_{splash_t}) \times SN_t$
t+1	(CFU)	$-SNtoSP_t - SNdecay_t$
SP_{t+1}	Persister ECO157 count in soil batch on day t+1	$SP_t + SNtoSP_t - (R_{splash_t} + I_{splash_t}) \times SP_t - SPdecay_t$
01 t+1	(CFU)	St t + Shoot t (Splash t + Splash t) Not t St decayt
CS_{t+1}	Total ECO157 count (non-persister and persister) in	$SN_{t+1} + SP_{t+1}$
331+1	soil batch on day t+1 (CFU)	5.1111 1 5.111
Irr_{L_t}	ECO157 count introduced to romaine batch via	One of (depending on the irrigation method for the iteration:
Lt	irrigation on day t (CFU)	O=overhead spray, F=furrow, D=drip):
		$Irr_L(f_{irr} = 0)_t = LI_t \times Bs_t \times P_{irr} \times fO_t \times BwaitP_t$
		$Irr_{L}(f_{irr} = F)_{t} = LI_{t} \times Bs_{t} \times P_{irr} \times fF_{t} \times BwaitP_{t}$
		$Irr_L(f_{irr} = D)_t = LI_t \times P_{irr} \times Pr_D$
D.		
Pig_{L_t}	ECO157 count introduced to romaine batch via feral	$LW \times pPEC_t$
	swine on day t (CFU)	100 0 00
$Runoff_{L_t}$	ECO157 count introduced to romaine batch via	$LSR \times pRunoff_t$
	runoff on day t (CFU)	
$LNtoLP_t$	Switch of non-persister ECO157 to persister cells on	$LN_t \times NtoP_L$
	day t (CFU)	
$LNdecay_t$	Decay of non-persister ECO157 in romaine batch on	$LN_t \times R_{dL}$
	day t (CFU)	
$LPdecay_t$	Decay of persister ECO157 in romaine batch on day t	$LP_t \times R_{dL_P}$
	(CFU)	
LN_{t+1}	Non-persister ECO157 count in romaine batch on	$LN_t + Irr_{L_t} + Pig_{L_t} + Runoff_{L_t} - (R_{splash_t} + I_{splash_t}) \times (SN_t + SP_t)$
	day t+1 (CFU)	$-LNtoLP_t - LNdecay_t$
LP_{t+1}	Persister ECO157 count in romaine batch on day t+1	$LP_t + LNtoLP_t - LPdecay_t$
	(CFU)	
$C_{L_{t+1}}$	Total ECO157 count (non-persister and persister) in	$LN_{t+1} + LP_{t+1}$
	romaine batch on day t+1 (CFU)	

Supplementary Table S6. Scenario analysis for the effect of irrigation water.

Scenario	Definition (Reference)	ID of paramete rs affected (unit)	Parameter value in the scenario	Predicted illness cases resulted from the tested scenario: 5th; 50th; 95th percentile
Baseline	No changes made in the model.	None	All parameters were at their baseline conditions.	42; 19,040; 3.6×10 ⁶
Decrease the ECO157 prevalence in well waters by 10-fold.	The well water prevalence decreased from 0.1% to 0.01%.	P _{irrw} (unitless)	P_{irr_W} =0.0001 instead of P_{irr_W} =0.001	42; 15,091; 1.6×10 ⁶ Median number of cases decreased by 20.7%.
Microbiological testing limit set by the more restrictive 2023 LGMA was used to parameterize surface irrigation water intended for overhead spray irrigation	For Type B agricultural water intended for overhead spray irrigation within 21 days of harvest, the maximum generic <i>Escherichia coli</i> count in any single water sample should not exceed 235 MPN/100ml, or Log ₁₀ (2.35).	C _{irrs} (CFU/ml)	C_{irr_S} from $Pert(0.1, 0.76, 1.77)$ to $Pert(0.1, 0.37, 1.77)$	50; 13,122; 1.7×10 ⁶ Median number of cases reduced by 31.1%.

Supplementary Table S7. Scenario analysis for the effect of assuming no cell presence on romaine before 14-day countdown period.

Scenario	Definition (Reference)	ID of paramete rs affected (unit)	Parameter value in the scenario	Predicted illness cases resulted from the tested scenario: 5 th ; 50 th ; 95th percentile
Baseline	No changes made in the model.	None	All parameters were at their baseline conditions.	42; 19,040; 3.6×10 ⁶
100 CFU ECO157 per romaine batch at the start of the 14-day countdown	Each romaine batch started with 100 CFU of ECO157 at the start of the 14-day countdown, rather than 0 CFU.	LN_0 and LP_0 (CFU)	$LN_0=99$ CFU and $LP_0=1$ CFU instead of both being 0.	39; 18,955; 4.7×10 ⁶ Median number of cases reduced by 0.5%. (The ECO157 prevalence increased from 1% to 1.1%. However, 45.1% of the contamination consisted of < 3 Log ₁₀ CFU per romaine batch, compared to the 41.6% predicted at baseline. This shift resulted in a decrease in the median number of illness cases, as the lower number of cells in the percentiles reduced the overall risk.)
1,000 CFU ECO157 per romaine batch at the start of the 14-day countdown	Each romaine batch started with 1000 CFU of ECO157 at the start of the 14-day countdown, rather than 0 CFU.	LN_0 and LP_0 (CFU)	$LN_0=998$ CFU and $LP_0=2$ CFU instead of both being 0.	692; 1,644; 6.9×10 ⁴ Median number of cases reduced by 91.4%. (The ECO157 prevalence increased from 1% to 38%. However, 77.5% of the contamination consisted of just 1 CFU per romaine batch, which drastically reduced the median number of illness cases due to the impact of single cells on the percentiles.)

Supplementary Table S8. Correlation of parameters with the *Escherichia coli* O157:H7 (ECO157) counts in romaine batch at harvest in the preharvest ECO157 model. Parameters are categorized based on

their inclusion in the Spearman rank-order correlation coefficient (SRCC) analysis.

Parameter	Description (units)	Included in Preharvest SRCC (Yes, No or NA ^a . If Yes, SRCC value) ^b	Comment
A_{field}	Area of the field (approximately 1-acre field) (cm²)	NA	Constant ^c
A_{batch}	Area of a field that grows a romaine batch ("batch area", 1/12 of the field area) (cm²)	NA	Constant ^c
N_{plant}	Number of plants harvested from the field (romaine plants)	NA	Constant ^c
Plant _{width}	The area that a single mature romaine plant occupied on the field, length x width of one plant (cm²)	NA	Constant ^c
$Plant_{space}$	The area allocated for one romaine plant in the field (cm²)	NA	Constant ^c
Plant _{barea}	Number of plants grown in a batch area (romaine plants)	NA	Constant ^c
Plant _{wght}	Weight of one mature romaine plant (g)	NA	Constant ^c
floc	Select geographic location where the romaine batches were grown (unitless). Notations: CC: Coastal Region and Central Valley, CA DR: Desert (Imperial) Region, CA Y: Yuma Region, AZ	NA	Categorical ^c
f_{month}	Select the month of harvest for the given geographic location (unitless). Notations: January: 1, February: 2, March: 3, April: 4, May: 5, June: 6, July: 7, August: 8, September: 9, October: 10, November: 11, December: 12	NA	Categorical ^c
f_w	Select the source of irrigation water (unitless). Notations: S: Surface water W: Well water	NA	Categorical ^c
f_{irr}	Select the irrigation type for the given geographic location (unitless). Notations: O: Overhead spray irrigation F: Furrow irrigation D: Drip irrigation	NA	Categorical ^c
Modeldays	Countdown period before harvest, modeled via a set of difference equations (day)	NA	Constant ^c
edge	Batch area was at the edge of the field and thus could be contaminated by runoff (unitless): no=0 (baseline), yes=1	0.0573	-
C_{man}	ECO157 count per g of BSAAO (CFU/g)	No	Included in C_{man_P}
Sc_{vac}	Cattle vaccination intervention against ECO157 (unitless): no=0 (baseline), yes=1	NA	Assessed only in scenario analysis.
Rh_{con}	Volume of 1g BSAAO/swine feces/cattle feces (cm³/g)	NA	Constant ^c
Dh_{con}	Depth of tiling on the field (cm)	No	Included in DiF_{man}
M_{man}	Mass of BSAAO applied on the batch area (g)	No	Included in DiF_{man}
DiF_{man}	Dilution of ECO157 cells in BSAAO in the volume of the tilled soil batch layer (unitless)	-0.0002	-
Pr_{man}	BSAAO was used (unitless): no=0, yes=1	No	Included in C_{man_P}
P_{man}	BSAAO applied on a field was contaminated with ECO157 (unitless): no=0, yes=1	No	Included in C_{man_P}
C_{man_P}	ECO157 count in any BSAAO applied soil, which returns 0 CFU for a non-contaminated soil and C_{man} for a contaminated soil (CFU/g)	0.0024	-
P_{irr_S}	ECO157 prevalence in surface water (unitless)	No	Included in C_{irr_P}
P_{irr_W}	ECO157 prevalence in well water (unitless)	No	Included C_{irr_P}
P_{irr}	Irrigation water contaminated with ECO157 applied during the countdown period (unitless): no=0, yes=1	No	Included C_{irr_p}
Sc_{wt}	Water treatment intervention applied prior to the overhead spray irrigation (O) using surface water (S) (unitless): None=0 (baseline), Ultra-Violet (UV)=1, Peracetic Acid (PAA)=2, Chlorine=3	NA	Assessed only in scenario analysis.
C_{irr_S}	ECO157 count per ml of contaminated surface water post treatment (CFU/ml)	No	Included in \mathcal{C}_{irr_P}
C_{irr_W}	ECO157 count per ml of contaminated well water (CFU/ml)	No	Included in C_{irr_P}
C_{irr}	ECO157 count per ml of contaminated irrigation water applied on day t (CFU/ml)	No	Included in C_{irr_P}

C_{irr_P}	ECO157 count on any irrigation water, which returns 0 CFU for a non-	0.2906	-
•	contaminated water and C_{irr} for a contaminated water (CFU/ml)		
$type_{irr}$	Probability the selected irrigation type was occurring on a given day (unitless)	NA	Categorical ^c
Pr_{O}	Probability of overhead spray irrigation on day t (unitless)	-0.0033	Included as $fO_{t_{Sum}}^{e}$
Pr_F	Probability of furrow irrigation on day t (unitless)	0.0044	Included as $fF_{t_{Sum}}^{f}$
Pr_D	Probability of drip irrigation on day t (unitless)	NA	Constant c
W_o	Volume of water applied through overhead spray irrigation to a	No	Included in g_{irr}
0	romaine batch per an irrigation event (ml/day)		311
W_F	Volume of water applied through furrow irrigation to a romaine batch	No	Included in g_{irr}
	per an irrigation event (ml/day)		311
W_D	Volume of water applied through drip irrigation to a romaine batch	No	Included in g_{irr}
· · · <i>D</i>	per an irrigation event (ml/day)		341
Daytogrow	Days from seeding to harvest (day)	-0.0116	-
D_{man}	Number of days before BSAAO application (day)	NA	Constant ^c
g_{irr}	Volume of water applied per an irrigation event in a batch area	-0.0064	-
	(ml/day)		
V_O	Volume of irrigation water captured per g of romaine per an overhead	No	Included in v_{irr}
***	spray irrigation event (ml/g/day)		
V_F	Volume of irrigation water captured per romaine batch per a furrow	No	Included in v_{irr}
	irrigation event (ml/day)		
V_D	Volume of irrigation water captured per romaine batch per a drip	No	Included in v_{irr}
	irrigation event (ml/day)		
v_{irr}	Volume of irrigation water captured by romaine batch per an irrigation	0.0581	-
	event (ml/day)		
Tr_{man_O}	Fraction of the top 1cm layer of soil batch transferred to a romaine	No	Included in M_{irr}
	batch via splash caused by overhead spray irrigation per irrigation		
	event (unitless)		
Tr_{man_F}	Fraction of the top 1cm layer of soil batch transferred to a romaine	No	Included in M_{irr}
	batch via splash caused by furrow irrigation per irrigation event		
	(unitless)		
Tr_{man_D}	Fraction of the top 1cm layer of soil batch transferred to a romaine	No	Included in M_{irr}
	batch via splash caused by drip irrigation per irrigation event (unitless)		
M_{irr}	Mass of soil transferred to a romaine batch via splash per irrigation	0.0553	-
	event (g/day)		
Tr_{ecirr}	Fraction of ECO157 cells transferred from irrigation water to romaine (unitless)	NA	Constant ^c
DiF_{irr}	Dilution factor for ECO157 cells in irrigation water in the top 1cm layer	NA	Calculated by parameters
111	of soil batch (unitless)		included directly in the SRCC
	(analysis.
LN_0	ECO157 count in a romaine batch at the start of the 14-day	NA	Constant c
0	countdown period (t=0) (CFU)		
CC_{UV}	Log ₁₀ ECO157 count reduction of surface water contamination by UV	NA	Assessed only in scenario
3307	treatment before overhead spray irrigation (Log ₁₀ CFU)	1	analysis.
CC_{PAA}	Log ₁₀ ECO157 count reduction of surface water contamination by PAA	NA	Assessed only in scenario
PAA	treatment before overhead spray irrigation (Log ₁₀ CFU)		analysis.
CC_{Ch}	Log ₁₀ ECO157 count reduction of surface water contamination by	NA	Assessed only in scenario
oocn	Chlorine treatment before overhead spray irrigation (Log ₁₀ CFU)	1.0.	analysis.
Coon	Log ₁₀ ECO157 count on fresh cattle feces (Log ₁₀ CFU/g)	No	Included in C_{cowp}
$C_{cow_{prep}}$	Log ₁₀ ECO157 count on fresh cattle feces, accounting for the effect of	No	Included in C_{cow_P}
$C_{cow_{tot}}$	ECO157 count on restrict the feet, accounting for the effect of ECO157 vaccine intervention, if implemented (Log ₁₀ CFU/g)	140	included in G _{cowp}
C_{cow}	ECO157 Vaccine intervention, in implemented (togiocro/g) ECO157 count on fresh cattle feces (CFU/g)	No	Included in $C_{cow_{P}}$
		140	moduce in G _{cowp}
C_{cow_P}	ECO157 count on any cattle feces, which returns 0 CFU for non-	0.0686	-
	contaminated feces and C_{cow} for contaminated feces (CFU/g)	<u> </u>	
C_{pig}	Log ₁₀ ECO157 count on fresh swine feces (Log ₁₀ CFU/g)	No	Included in C_{pig_P}
C_{pig_P}	ECO157 count on any swine feces, which returns 0 CFU for non-	0.1149	-
7487	contaminated feces and C_{pig} for contaminated feces (CFU/g)		
Pr_{pig}	Probability of feral swine entering the field on day t (unitless)	No	Included as $Pr_{pigCountSum}^{g}$
Pr	Wildlife intrusion occurred on day t (unitless): no=0, yes=1	No	Included as $Pr_{pigCountSum}^{g}$
Pr _{pigcountt}	Total number of days during the 14-day countdown when wildlife	0.1180	- Included as 1 i pigCountSum
$r_{pigCountSum}$	intrusion occurred (day)	0.1100	
$Mdef_{pig}$	Mass of feces excreted by a feral swine per day (g swine feces/day)	NA	Constant ^c
uc j pig	I mass of reces excreted by a refails wille her day (8 swille reces/day)		

$Tdef_{pig}$	Number of times a feral swine defecated per day (times/day)	NA	Constant c
	Number of times feral swine (between 1-5 swine) defecated on the	-0.0008	-
$Ndef_{pig}$	field (times/day)		
M_{pig}	Mass of feces excreted by feral swine intruding the batch area (g)	NA	Calculated by parameters included directly in the SRCC analysis.
DiF_{pig}	Dilution factor for ECO157 cells in feral swine feces in soil batch associated with plants near which the swine defecated (unitless)	NA	Calculated by parameters included directly in the SRCC
M_{cow}	Mass of cattle runoff (carrying fresh cattle feces only) introduced into the edge batch area soil per runoff event (g/day)	0.0037	analysis.
DiF_{cow}	Dilution factor for ECO157 cells in cattle runoff introduced into in the	NA	Calculated by parameters
	top 1cm layer of soil batch (unitless)		included directly in the SRCC analysis.
Pr_{LtoS}	Proportion of fecal matter (swine and runoff) landing on romaine rather than in soil (unitless)	NA	Constant ^c
Tr_{ecsoil}	Proportion of ECO157 cells in soil transferring to romaine during a rain or irrigation event (unitless)	0.0045	-
R_{dman}	ECO157 decay rate for non-persisters in BSAAO amended soil (Log ₁₀ CFU/day) ^a	NA	Constant ^c
R_{dL}	ECO157 decay rate for non-persisters on romaine in field (1/day) a,b	NA	Calculated by parameters included directly in the SRCC analysis.
R_{ds}	ECO157 decay rate for non-persisters in soil (1/day) ^a	NA	Constant ^c
R_{dman_P}	ECO157 decay rate for persisters in BSAAO amended soil (Log ₁₀ CFU/day) ^a	NA	Constant ^c
R_{dL_P}	ECO157 decay rate for persisters on romaine in field (1/day) ^a	NA	Calculated by parameters included directly in the SRCC analysis.
R_{ds_P}	ECO157 decay rate in soil for persisters (1/day) ^a	NA	Constant ^c
$NtoP_{man}$	Switch rate from normal to persister in BSAAO amended soil (1/day) ^a	NA	Constant ^c
$NtoP_L$	Switch rate from normal to persister on romaine (1/day) ^a	NA	Constant ^c
$NtoP_S$	Switch rate from normal to persister in soil (1/day) ^a	NA	Constant ^c
$Pmax_{man}$	Maximum fraction of persisters in BSAAO amended soil (unitless)	NA	Constant ^c
$Pmax_S$	Maximum fraction of persisters in soil (unitless)	NA	Constant ^c
$Pmax_L$	Maximum fraction of persisters on romaine (unitless)	NA	Constant ^c
BwaitP	Waiting time: The period before harvest during which overhead spray and furrow irrigation was stopped (day)	0.0020	-
t	Average amount of soil attached to a harvesting blade after contact with soil in one cross contamination event (g/blade)	NA	Constant ^c
Tr_{blade}	Proportion of ECO157 cells transferred from a harvesting blade to a romaine plant in one cross contamination event (unitless)	NA	Constant ^c
$Tr_{ecblade}$	ECO157 count in soil attached on blades (CFU/soil batch x soil batch/blade=CFU/blade)	NA	Constant ^c
N_{blade}	ECO157 cells transferred from harvesting blades to a romaine batch (CFU/romaine batch)	NA	Calculated by parameters included directly in the SRCC analysis.
CC_{blade}	Maximum fraction of persisters in soil (unitless)	NA	Calculated by parameters included directly in the SRCC analysis.
C_{L_h}	Maximum fraction of persisters on romaine (unitless)	NA	Calculated by parameters included directly in the SRCC analysis.
P_{sun_m} ^h	Probability of a sunny day (unitless)	-0.0086	Included as Bs_{tSum}^{i}
P_{cow_m} h	ECO157 prevalence in fresh cattle feces (unitless)	No	Included in C_{cow_P}
$P_{pig_m}^{h}$	ECO157 prevalence in fresh feral swine feces (unitless)	No	Included in C_{piq_P}
$h_{sun_m}^{h}$	Average sunny hours per day (h)	-0.0170	-
R_{sun_m}	Solar decay rate (1/day)	-0.0105	1-
$Prec_{norm_m}$ h	Precipitation level normalized (unitless)	-0.0004	-
Prec _{actual_m} h	Actual (average) level of precipitation during the year (mm)	No	Included in $Prec_{norm_m}$

^a Not applicable.
^b Bonferroni-corrected alpha threshold is α=0.05/21=0.0024.

Supplementary Table S9. Parameterization of the scenarios.

Scenario	Parameterization based on Table 1 and Table 2
Cattle vaccination	When the cell value of parameter Sc_{vac} (Supplementary Table S1) was changed from 0 to
	1, a 1-Log₁₀CFU/g reduction in the ECO157 counts in BSAAO and cattle feces was applied.
Surface water treatment for overhead spray	When the cell value of parameter Sc_{wt} (Supplementary Table S1) was changed from 0 to
irrigation by chlorine	3, ECO157 count in surface water was reduced using chlorine treatment (CC_{ch}).
Surface water treatment for overhead spray	When the cell value of parameter Sc_{wt} (Supplementary Table S1) was changed from 0 to
irrigation by peracetic acid (PAA)	2, ECO157 count in surface water was reduced using PAA treatment (CC_{PAA}).
Surface water treatment for overhead spray	When the cell value of parameter Sc_{wt} (Supplementary Table S1) is changed from 0 to 1,
irrigation by Ultraviolet radiation (UV)	ECO157 count in surface water was reduced using UV treatment (CC_{UV}).
Transition from overhead spray to furrow irrigation	To apply this scenario, we manually modified the values of $f O_t$ and $f F_t$ (Supplementary
(i.e., all irrigation was through either furrow or	Table S1) and transitioned all overhead spray irrigated fields to furrow irrigated fields for
drip)	all locations.
Transition from overhead spray and furrow to drip	To apply this scenario, we manually modified the values of fO_t , fF_t and fD_t
irrigation (all irrigation was through drip)	(Supplementary Table S1) and transitioned of all overhead spray and furrow irrigated
	fields to drip irrigated fields for all locations.
Chlorine wash alternatives with varying Log ₁₀ CFU	When the cell value of parameter Sc_{wash} (Supplementary Table S2) was changed from 1
reduction	to another number (2 to 6), the parameter for chlorine wash alternative
	$(CC_{ch1}, CC_{ch2}, CC_{ch3}, CC_{ch4} or CC_{ch5},$ respectively) was used instead of the baseline
	chlorine wash (CC_{ch20}) in postharvest.
Temperature reduction during retail	To apply this scenario, we manually modified the temperature distribution from Normal to
	Uniform with reduced temperature range.
Consumer wash	When the cell value of parameter Sc_{conw} (Supplementary Table S2) was changed from 0
	to 1, a total of 62% of the consumer washed the product before consumption, instead of
	0%.
Clustering effect	When the cell value of parameter Sc_{clstrb} (Supplementary Table S2) was changed from 0
	to 1, clustering was allowed during partitioning of romaine batch to packages. Similarly,
	clustering from package to servings was allowed when the cell value of parameter Sc_{clstrp}
	(Supplementary Table S2) was changed from 0 to 1. Parameters ${\it Clstr}_{parb}$ (Supplementary
	Table S2) and $Clstr_{parp}$ (Supplementary Table S2) determined the level of clustering in
	packages and servings, respectively.

^c Constant value.

^d Categorical data.

 $^{^{\}mathrm{e}}$ The parameter $f\,O_{t_{Sum}}$ represents the total number of days when overhead spray irrigation was applied within a 14-day countdown period. It is calculated by adding together the $f\,O_t$ values from Supplemental Table 1 over a 14-day period.

^f The parameter $fF_{t_{Sum}}$ represents the total number of days when furrow irrigation was applied within a 14-day countdown period. It is calculated by adding together the fF_t values from Supplemental Table 1 over a 14-day period.

 $^{^{\}rm g}$ See Supplementary Table S3 for the relationship between Pr_{pig} and $Pr_{pigCountSum}$.

^h This parameter is used in the preharvest model and taken from Supplementary Table S3.

ⁱThe parameter Bs_{tSum} represents the total number of sunny days within a 14-day countdown period. It is calculated by adding together the as Bs_t values from Supplementary Table S3 over a 14-day period.

Supplementary Table S10. Correlation of variable parameters with the *Escherichia coli* O157:H7 (ECO157) counts in romaine batches at harvest in the preharvest irrigation model (considering only the three irrigation systems with no other preharvest sources), as well as in irrigation models considering each individual irrigation source contamination separately. Parameters were categorized based on their inclusion in the Spearman rank-order correlation coefficient (SRCC) analysis.

Irrigation System Parameter (Definition)	Irrigation contamination only	Contamination via overhead spray irrigation only ^a	Contamination via furrow irrigation only ^a	Contamination via drip irrigation only ^a
C_{irr_P} (ECO157 count on any irrigation water, which returns 0 CFU for a non-contaminated water and C_{irr} for a contaminated water (CFU/ml))	0.41	0.38	0.13	0.08
v_{irr} (Volume of irrigation water caught by romaine batch per an irrigation event)	0.09	0.09	0.03	-0.02
M_{irr} (Mass of soil transferred to a romaine batch via splash per irrigation event)	0.08	0.09	0.01	-0.02

 $^{^{3}}$ The values indicate ρ, the Spearman rank-order correlation coefficient, calculated for a particular irrigation system. Only ρ values of 0.05 or higher, and -0.05 or lower, are shown (ρ values between -0.05 and 0.05 are indicated with "-"). Interpretation of coefficient absolute values: |ρ| 0 to <0.1, none; ρ=0.1 to <0.3, poor; ρ=0.3 to <0.6, fair; ρ=0.6 to <0.8, moderate; ρ=0.8 to 1.0 very strong correlation.

Supplementary Table S11. Predicted hospitalizations, cases of hemolytic uremic syndrome (HUS), and mortality following *E. coli* O157:H7 (ECO157) illness from vegetable row crops [102].

Probability of hospitalization among predicted ECO157 illness cases (%)	Predicted hospitalizations: 5 th ; 50 th ; 95 th percentile	Probability of HUS among predicted ECO157 illness cases (%)	Predicted HUS cases: 5 th ; 50 th ; 95 th percentile	Probability of death among predicted ECO157 illness cases (%)	Predicted death: 5 th ; 50 th ; 95 th percentile
30	13; 5,712; 1.1×10 ⁶	4	2; 762; 1.4×10 ⁵	0.3	0; 57; 1.1×10 ⁴

Supplementary Table S12. Scenario analysis for the effect of persister cells.

Scenario No	Scenario	Definition (Reference)	ID of parameters affected (unit)	Parameter value in the scenario	Predicted illness cases resulted from the tested scenario: 5 th ; 50 th ; 95 th percentile
0	Baseline	No changes made in the model.	None	All parameters were at their baseline conditions.	42; 19,040; 3.6×10 ⁶
1	Switch rate from normal to persister in BSAAO amended soil was increased	Switch rate was increased by 100 times	$NtoP_{man}$	$NtoP_{man} = 0.001 \times 100 = 0.1$	48; 17,711; 3.2×10 ⁶ Median number of cases reduced by 7.0%.
2	Switch rate from normal to persister on romaine was increased	Switch rate was increased by 1,000 times	$NtoP_L$	$NtoP_L = 0.0004 \times 1000 = 0.4$	23; 2,733; 7.1×10 ⁵ Median number of cases reduced by 85.7%.
3	Switch rate from normal to persister in soil was increased	Switch rate was increased by 1,000 times	$NtoP_S$	$NtoP_S = 0.0001 \times 1000 = 0.1$	44; 19,848; 4.7×10 ⁶ Median number of cases increased by 4.2%.
4	No non-persisters were included in both soil and romaine	Only persister cells were included at harvest; only persisters were transferred to postharvest model.	SP_t and LP_t	$C_{St_N}=0$ and $C_{Lt_N}=0$	9; 67; 6,578 Median number of cases reduced by 99.7%.
1, 2, 3 & 4	No non-persisters were included in both soil and romaine, and all switch rates were increased	Only persister cells were included at harvest, and all the switch rates were increased.	$SP_t, LP_t, \ NtoP_{man}, \ NtoP_L \ { m and} \ NtoP_S$	$C_{St_N} = 0$ and $C_{Lt_N} = 0$ $NtoP_{man} = 0.001 \times 100 = 0.1$ $NtoP_L = 0.0004 \times 1000 = 0.4$ $NtoP_S = 0.0001 \times 1000 = 0.1$	17; 992; 3.4×10 ⁵ Median number of cases reduced by 94.8%

Supplementary Table S13. Scenario analysis for the effect of preharvest dilution depth.

Scenario	Definition (Reference)	ID of parameters affected (unit)	Parameter value in the scenario	Predicted illness cases resulted from the tested scenario: 5 th ; 50 th ; 95 th percentile
Baseline	No changes made in the model.	None	All parameters were at their baseline conditions.	42; 19,040; 3.6×10 ⁶
Dilution depth was increased	Dilution depth for the irrigation, swine feces and runoff were increased from 1cm to 5cm.	$DiF_{irr}, DiF_{pig}, \ DiF_{cow}$ (unitless)	The denominator of DiF_{irr} , DiF_{pig} , DiF_{cow} were changed from $A_{batch} \times 1$ to $A_{batch} \times 5$	48; 16,447; 2.7×10 ⁶ Median number of cases reduced by 13.5%.

Supplementary Table S14. Scenario analysis for the removal of exterior leaves under the conservative assumption of uniform distribution of ECO157 across leaves.

Scenario	Definition (Reference)	ID of parameters affected (unit)	Parameter value in the scenario	Predicted illness cases resulted from the tested scenario: 5th; 50th; 95th
				percentile
Baseline	No changes made in the model.	None	All parameters were at their baseline conditions.	42; 19,040; 3.6×10 ⁶
Removal of	A total of 20% reduction in the ECO157	C_{Lh} (CFU/romain	$C_{Lh} \times 0.80$ and	48; 19,205; 3.6×10 ⁶
exterior leaves;	count on romaine under the conservative	e batch) and	$Plant_{wght} \times 0.8$	Median number of cases increased by
20% ^a	assumption of uniform distribution of ECO157 across leaves.	$Plant_{wght}$ (g)		0.09%.
Removal of	A total of 23.8% reduction in the ECO157	C_{Lh} (CFU/romain	$C_{Lh} \times 0.762$ and	47; 18,437; 3.5×10 ⁶
exterior leaves;	count on romaine, under the assumption	e batch) and	$Plant_{wght} \times 0.8$	Median number of cases reduced by
23.8% a,	that ECO157 contamination was 25% more	$Plant_{wght}$ (g)	_	3.2%.
	on an exterior leaf compared to an interior leaf.			
Removal of	A total of 28.2% reduction in the ECO157	C_{Lh} (CFU/romain	$C_{Lh} \times 0.727$ and	46; 17,724; 3.4×10 ⁶
exterior leaves;	count on romaine under the assumption that	e batch) and	$Plant_{wght} \times 0.8$	Median number of cases reduced by
28.2% ^a	ECO157 contamination was 50% more on an exterior leaf compared to an interior leaf.	$Plant_{wght}$ (g)		6.9%.
Removal of	A total of 33.3% reduction in the ECO157	C_{Lh} (CFU/romain	$C_{Lh} \times 0.666$ and	45; 16,468; 3.1×10 ⁶
exterior leaves;	count on romaine under the assumption that	e batch) and	$Plant_{wght} \times 0.8$	Median number of cases reduced by
33.3% ^a	ECO157 contamination was 100% more on an exterior leaf compared to an interior leaf.	$Plant_{wght}$ (g)	Ü	13.5%.

 $^{^{3}}$ A whole romaine weighed 300g before the exterior leaves were removed. If a plant was assumed to have 10 leaves and 2 exterior leaves were removed, the final weight of the romaine would be 240g and calculated as $Plant_{wght} \times 0.8$.