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Abstract

hybridization (FISH).

Background: Segmental duplicons (SDs) predispose to an increased frequency of chromosomal rearrangements.
These rearrangements can cause a diverse range of phenotypes due to haploinsufficiency, in cis positional effects
or gene interruption. Genomic microarray analysis has revealed gene dosage changes adjacent to duplicons, but
the high degree of similarity between duplicon sequences has confounded unequivocal assignment of
chromosome breakpoints within these intervals. In this study, we localize rearrangements within duplicon-enriched
regions of Angelman/Prader-Willi (AS/PWS) syndrome chromosomal deletions with fluorescence in situ

Results: Breakage intervals in AS deletions were localized recursively with short, coordinate-defined, single copy
(SO) and low copy (LC) genomic FISH probes. These probes were initially coincident with duplicons and regions of
previously reported breakage in AS/PWS. Subsequently, probes developed from adjacent genomic intervals more
precisely delineated deletion breakage intervals involving genes, pseudogenes and duplicons in 15g11.2q13. The
observed variability in the deletion boundaries within previously described Class | and Class Il deletion AS samples
is related to the local genomic architecture in this chromosomal region.

Conclusions: Chromosome 15 abnormalities associated with SDs were precisely delineated at a resolution
equivalent to genomic Southern analysis. This context-dependent approach can define the boundaries of
chromosome rearrangements for other genomic disorders associated with SDs.

Introduction

The human genome contains numerous regions that
exhibit rare structural chromosome rearrangements due
to segmental duplicons (SDs) that predispose to recur-
rent genomic disorders [1,2]. SDs are composed of large
(10 kb-400 kb) near identical (> 95%) paralogs of DNA,
that are found at physically distinct genomic locations
and can include genes and pseudogenes [3]. There are
at least 20 distinct genomic sites in the human genome
flanked by duplicons implicated in recurrent pathogenic
rearrangements [3]. Among these are deletions of chro-
mosome 15q11.2q13 in Angelman (AS [MIM 105830])
and Prader-Willi syndromes (PWS [MIM 176270]). AS
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and PWS share two common size classes of de novo
deletions that differ in proximal extent of the deletion
[4]. Class I (~7 Mb) and Class II (~5 Mb) deletions have
variable genomic lengths and span from proximal to dis-
tal breakpoints 1 (BP1) to 3 (BP3) and breakpoints 2
(BP2) to 3 (BP3), respectively [5,6]. Large SDs contain-
ing sequences in the HERC2 gene family (Hect Domain
and RLD2 [MIM 605837]), arising by transposition to
the proximal and distal ends of chromosome
15q11.2q13, have been localized to the BP1, BP2 and
BP3 hotspots [7,8]. Additional genomic architectures
containing GOLGAS8E-associated SDs (golgin subfamily
a, 8E) can catalyze rearrangements between 15q11 and
1524926 [9].

Deletions in chromosome 15q11.2q13 have been char-
acterized with custom-designed DNA microarrays and
confirmed by fluorescence in situ hybridization (FISH)
using BAC clones [10-13]. Breakage activity within

© 2011 Khan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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highly homologous duplicons, however, is challenging to
ascertain with techniques such as array CGH alone,
because interpretation of context-independent hybridiza-
tion data is confounded by the presence of multiple clo-
sely related, non-contiguous SDs [14].

The aim of this study was to delineate SDs at the
boundaries of 15q11.2q13 deletions by FISH using indi-
vidual sequence-defined, short-target single copy (SC)
and low copy (LC) DNA probes [15,16]. LC probes
occur in 2 to 10 copies in the haploid genome. Genomic
coordinate-defined SC-FISH has been used for diagnosis
of congenital and acquired disorders [15,16], including,
for example, definition of an atypical microdeletion in
Smith-Magenis Syndrome (SMS [MIM 182290]) [16].
Similarly designed SC probes, composed of tiled sets of
oligonucleotides, spanning larger targets have also been
used to detect chromosomal abnormalities [17]. In the
present study, SC and LC probes are embedded within
and adjacent to SD sequences. A set of 15q11.2q13 LC
probes and adjacent SC probes were developed to inter-
rogate Class I and Class II AS deletions on metaphase
chromosomes. Using sequential hybridizations of LC
and SC FISH probes, it is possible to determine which
duplicon intervals have been retained or have been dis-
rupted in AS deletions.

Methods

Categorization of breakage of documented AS/PWS
deletions

Deletion boundaries in AS/PWS, determined previously
by BAC [10-12] and oligonucleotide arrays [13], were
reviewed and annotated using the UCSC genome brow-
ser [http://genome.ucsc.edu/, hgl8 or NCBI 36 assem-
bly]. These boundaries were approximated from both
recombinant BAC sequences [18] and oligonucleotide
probe genome coordinates [14] that showed reduced
copy number. These data were used to locate the BP1,
BP2 and BP3 breakage regions in Class I and Class II
deletions [5,7,8]. Five breakage sub-intervals denoted in
Figure 1 (Regions A through E) are centromeric to BP1
(CEN-BP1), within BP1, BP2, and BP3, respectively.
Their corresponding genome coordinates are
chr15:18,683,000-18,980,000 for region A (CEN-BP1);
18,980,000-20,385,000 for region B (BP1); 20,385,000-
20,700,000 for region C (BP1-BP2); 20,700,000-
21,356,000 for region D (BP2); and 25,941,000-
27,286,000 for region E (BP3). Breakage intervals have
also been annotated for 15q13.2q13.3 deletions within
BP4 and BP5 (19) [not shown in Figure 1].

Defining genomic SC and LC intervals

Genomic SC and LC sequences, ranging from 1500 to
5000 bp in length (per chromosome target), were batch-
processed using the Galaxy metaserver http://main.g2.
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bx.psu.edu/[20]. The coordinates of these sequences in
custom browser tracks derived from 15q11.2q13 were
intersected with the approximate locations of documen-
ted breakpoints inferred from BAC and oligonucleotide
array CGH [10-13]. SC and LC intervals overlapping
and adjacent to these breakage intervals were prioritized
for FISH probe design. These tracks were also used to
determine the locations of SC and LC intervals relative
to known SDs in 15q11.2q13 (Regions A-E). LC inter-
vals lacking repetitive sequences (red) within blocks of
SDs were identified and sorted from SC intervals (green)
that mapped adjacent to duplicon structures (Figure
1C). The presence of these SC and LC intervals was
confirmed in the Reference and alternate (HuRef, Cel-
era) genome assemblies. BLAST analysis showed 100%
sequence identity of SC intervals and 90-99% identity of
paralogous LC intervals among the different assemblies.
As copy number variants (CNVs) bracketed by dupli-
con structures can confound interpretation of FISH
data, we selected only those probes with the highest
sequence identity for their genomic locus and observed
in the expected copy number (Figure 2A). The majority
of CNVs in this region (typically > 1 Mb in BP1, BP2
and BP3) completely overlapped both SC and LC probe
sequences. The presence of a polymorphic duplication
separated by large genomic distances (> 5-6 Mb), coinci-
dent with SC or LC probes, in an AS deletion is
expected to result in a non-contiguous hybridization
pattern. There was no evidence of this pattern in our
results, which is not surprising in light of the low fre-
quency of these CNVs in the population [21]. Neverthe-
less, the presence of CNVs in the 15q11.2q13 region
associated with SDs should be considered in genomic
coordinate-defined SC and LC probe designs.

Probe development and fluorescence in situ hybridization
(FISH)

Primer3 [http://frodo.wi.mit.edu/primer3/[22] was used
to design oligonucleotide primer pairs for 6 SC and 4
LC intervals of which one SC probe was from the com-
mon deletion region and served as a positive control
(Additional File 1, Table S1). SC and LC genomic inter-
vals were amplified using long PCR [23] with the Plati-
num® Pfx DNA polymerase kit (Invitrogen™ CA, USA).
PCR conditions were optimized by gradient thermal
cycling. Amplicons were purified using the QIAquick
gel extraction kit (Qiagen ON, Canada), labeled by nick
translation with biotin-dUTP or digoxigenin-dUTP
(Roche Diagnostics, ON, Canada) and detected with avi-
din-FITC or Cy3-conjugated digoxin antibody [24].
Probes were validated on metaphase chromosomes from
at least 2 normal lymphocyte cytogenetic preparations
(including one male) following approval by the Office of
Research Ethics at the University of Western Ontario.
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Figure 1 Proximal and Distal AS/PWS Breakpoint Hotspots, Duplicon Structures, Genes, SC and LC Intervals in chromosome
15911.2q13. Panel A shows genomic coordinates (x-axis) and relevant genes. Panel B depicts frequency (y-axis) of previously reported BAC
(blue histograms) and oligonucleotide (green histograms) microarray breakage point hotspots. Five breakage regions (A-E) and Class | and Class Il
deletions are indicated. Panel C shows SC and LC intervals that are coincident with the breakage hotspots. LC and SC intervals developed for
FISH probes are shown in red and green, respectively [for higher resolution, see Figure 2A]. LC and SC intervals, depicted as black bars, display
the density of coverage along 15q11.2q13 and can be used for further refinement of breakage activity within the AS/PWS duplicon clusters.
Intervals for probe development were selected based on their proximity to high breakage densities and the multiplex information obtained from
both proximal and distal breakpoints of Class | and Class Il deletions. Panel D shows clusters of segmental duplicons and their relative position
to genes, breakage hotspots, and LC and SC intervals. Colors refer to degree of similarity among paralogous sequences - orange is > 99%,
yellow is 98-99% and gray hues are 90-98%.

Probes were analysed for chromosome location and
hybridization pattern as deduced from the Human Gen-
ome Reference sequences. At least 20 metaphase cells
were scored for each probe and a hybridization effi-
ciency of > 80% was required to qualify a probe.

AS cell lines

Six AS lymphoblastoid cell lines were characterized in
this study. The cell lines were previously determined to
have either Class I (WJK36, WJK67, WJK70) or Class II

deletions (WJK18, WJK24, WJK35) by DNA analysis [5].
The cell lines were blind coded until FISH analysis was
complete. FISH with SC and LC probes were performed
with either one probe/one color or two probe/two color
detection to delimit the boundaries of the rearrange-
ment within or adjacent tol5ql11.2q13 duplicons.
Twenty to 50 metaphase cells were examined per probe
for each AS cell line. Cells were imaged using an auto-

mated epifluorescence microscopy system (Metasystems
Inc, MA).
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Figure 2 SC and LC Probes Developed for FISH. A) High
resolution map of LC (red) and SC (green) probes. Proximal targets
of probes 1 and 2 (arrowheads) in BP1 share 99% sequence identity
to their distal BP3 targets (arrowheads). Probes 3, 4, 7, 8 and 10 are
adjacent to duplicon regions. LC probes 5 and 6 mimic SC probes
as each have one paralog target in BP2 and their other paralogs are
divergent and distal of 15g11.2q13 or interchromosomal (see text).
Probe 9 serves as a deletion control that targets a sequence ~20 Kb
centromeric of MAGEL2. Probe lengths are reported in base pairs
(bp). B) Metaphase FISH algorithm for delineating Class | and Class I
deletions in 15g11.2q13. Probes 1 through 10 are color-coded. A
schema of hybridization experiments is shown for Class | and I
deletions. Different outcomes indicated by the presence (+) or
absence (-) of an SC (green) or LC probe (red) prescribes the
procedure for delineating boundaries of a breakage interval (unfilled
box). If two paralogous LC targets are retained; this is indicated by a
++' symbol. Further refinement of a deletion interval requires either
sequential application of additional SC probes or dual-color/dual-
probe hybridization.

| Further refine I

Results
Selected SC and LC probes and their relationship to
genomic architecture
Our strategy selected LC FISH probes within duplicons
to interrogate rearrangements at both ends of chromo-
some 15q11.2q13. SC probes, adjacent to either the
proximal or distal duplicons targeted by an LC probe,
were then hybridized to establish whether the proximal
or distal LC target was deleted. LC intervals selected for
probe development were based on: 1) their location in
or adjacent to a region of frequent documented break-
age; 2) up to 3 chromosome 15q11.2q13 targets detected
by the LC probe; and 3) genomic separation of > 5 Mb
for at least 2 of 3 LC probe targets with chromosome
15q11.2q13. LC probe targets separated by less than 5
Mb could not be unequivocally discriminated by FISH
as distinct loci on metaphase chromosomes. Hybridiza-
tion patterns of LC probes with one target within
15q11.2q13 and diverse sequence targets elsewhere in
the genome were scored in a similar manner to an SC
probe.

After bioinformatic analysis, 40 SC and LC intervals
were marked for potential development of FISH probe
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reagents (Figure 1C). Nine of these intervals were
selected based on the algorithm described below. They
comprised 4 LC and 5 SC regions (see Figure 2A for
probe map and designation). Probe details (centromere
to telomere) are described below. LC probes 1 and 2 are
embedded within duplicons common to BP1 and BP3.
Both LC probe intervals in BP1 (probe 1, 1970 bp; and
probe 2, 2869 bp) are coincident with breakage sites
inferred from oligonucleotide arrays [13] and proximal
to breakage sites inferred from BAC microarrays
[10-12]. The LC probe intervals in BP3 (probe 1, 1940
bp; and probe 2, 2837 bp) are centrally located in the
distal region of highest documented breakage activity
(Figure 1B, C). SC probes were developed from within
BP1 (probe 3, 1861 bp; probe 4, 1655 bp) and within
BP3 (probe 7, 1812 bp; probe 8, 2481 bp). Probes 3 and
4 are adjacent to the duplicons in BP1 that are detected
by LC probes 1 and 2. SC probes 7 and 8 are adjacent
to duplicons in BP3 that contain probe 1 and 2 paralogs.
These SC probes respectively mark the breakage bound-
aries within BP1 and BP3. The LC intervals in BP2
(probe 5, 1637 bp; and probe 6, 2577 bp) have homol-
ogy to duplicons in 15q14 and 13q31.3, with approxi-
mately 90% sequence identity over intervals less than
1500 bp in length. The degree of sequence divergence
and sizes of these paralogous targets limit the detection
of hybridization of probes 5 and 6 to the 15q14 and
13q31.3 loci. Therefore, LC probes 5 and 6 mimic the
hybridization patterns of SC probes in the BP2 region.
SC probe 10 (2055 bp) hybridizes to a target from
within APBA2 [MIM 602712]) which is distal of BP3,
and detects larger deletions [19]. SC probe 9 (4095 bp)
is a positive control for AS/PWS deletions and maps
~20 Kb centromeric of MAGEL2 [MIM 605283]).

FISH algorithm

FISH studies with SC and LC probes validated the
bioinformatic analysis. These probes can delineate
boundaries of a chromosomal rearrangement in a single
hybridization for certain breakpoints, however improved
chromosome resolution was achieved through recursive
hybridization using a series of probes. LC probes that
detect fewer duplicon targets than anticipated from the
genomic architecture; represent a deletion of one or
more paralogs. Subsequent FISH analysis with adjacent
SC probes from BP1 or BP3 can then determine which
of the LC probe targets has been deleted. The process
can be expedited by co-hybridizing the initial LC probe
with a differentially-labeled SC probe adjacent to one of
the duplicons. Figure 2B illustrates the strategy in which
individual SC and LC probes are selected for FISH-
based assays. The initial probe selected for hybridization
varies depending upon whether the deletion has been
previously classified. The order of probes used for
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subsequent hybridizations depends on the results of the
previous FISH experiment. Both Class I and II deletions
were analyzed with LC probe 2, since it targets a larger
genomic interval than LC probe 1, and provides infor-
mation about sequences found at both ends of the
15q11.2q13 deletion. Figure 3A shows that probe 2
hybridizes to separate duplicons in BP1 (chr15:20,241,
611-20,244,479) and BP3 (chr15:26,321,705-26,324,542
and 26,550,044-26,552,881) in normal chromosomes. In
AS, duplicon targets within BP1 or BP3 may be deleted.
Class I breakage intervals are localized with probes 3
(proximal), 7, 8 and 10 (distal; Figure 3E and 3F). In
Class II deletions, probes 5 and 10 are used for the ana-
lysis. If necessary, the Class I breakpoint can be further
refined with probes 3 and 4, and Class II cases with
probes 5 (Figure 3B) and 6.

Definition of breakage intervals in AS cell lines

Prior to undertaking this study, breakage intervals at the
ends of the deletions in these AS cell lines were not pre-
cisely known, and the rearranged genes and SD features
coincident with deletion boundaries had not been
characterized.

Class | deletion characterization

Variability in both the proximal and distal breakage
intervals were observed in the three Class I AS cell lines
(Figure 4A) such that each deletion differed in size.
Deletion of BP3 targets in WJK36 and WJK70 resulted
in single locus hybridization to the BP1 target (Figure
3C), whereas WJK67 was not deleted for either of these
targets. The proximal breakage interval was localized
within a 161 Kb interval in WJK67 and WJK70 (Figure
3D; between probes 2 and 3; chr15:20,244,480-
20,405,122). The distal breakpoint in BP3 of WJK67 was
delimited by a 136 Kb region bounded by probe 7 and
one of the probe 2 duplicon targets (chr15:26,184,974-
26,321,705, Figure 4A). In WJK36, the proximal break-
age interval in BP1 was defined within a 57.6 Kb interval
(spanning chr15:20,419,289-20,476,942), based on results
showing probes 3 and 4 to be intact (Figure 4A) and a
previously demonstrated deletion of D15S18 [5]. The
lengths of the Class I deletions were approximately 5.78
Mb (WJK67), 6.07 Mb (WJK36), and 6.14 Mb (WJK70).
Class Il deletion characterization

The deletion breakage interval in BP3 was found to vary
among different AS cell lines, with an overall distribu-
tion similar to those observed for Class I deletions (Fig-
ure 4A). At the centromeric end, chromosomal breaks
in Class II AS deletions coincide with a cluster of dupli-
cons in BP2. Based on hybridization results using probes
4 and 5, all cell lines (WJK18, WJK24, and WJK35)
exhibited a common proximal deletion breakage interval
(Figure 4A). This is consistent with previous microarray
analyses indicating that the probe 5 sequence maps to a
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highly active region of rearrangement (Figure 1B, C).
The proximal breakage interval is localized to a ~697.3
Kb region within BP2, since D15S18 is intact [5] in
these cell lines (chr15:20,477,088-21,174,481). The distal
BP3 breakage interval in WJK35 (Class II) is the same
as the one defined in WJK67 (Class I) localized by a
deletion of SC probe 7 (Figure 3E). WJK18 and WJK24
shared the same breakage interval in BP3 that was pre-
sent in WJK70 and WJK36. Probe 10 was intact in cell
lines WJK18, WJK24, WJK70, and WJK36 (Figure 3F),
thereby refining the breakage interval to a 569 Kb region
(chr15:26,552,881-27,122,231;Figure 4A). The Class II
deletions ranged in size from 5.01(WJK35) to 5.38 Mb
(WJK18 and WJK24).

Discussion

We demonstrate that chromosome 15q11.2q13 deletions
can be delineated using combinations of single and low-
copy, sequence-defined FISH probes. The LC probes
detect SDs, which are prone to rearrangement. Our ana-
lysis of these rearrangements distinguishes genes and
pseudogenes at the boundaries of deletions that are
either deleted or disrupted in AS.

Duplicon architecture of Class | and Il AS deletions

In this study, Class I and Class II breakage intervals
coincide with HERC2-containing SDs [7,11,25]. The
proximal (103.6 Kb; coordinates: 20.2-20.3 Mb, BP1)
and distal SDs (106 Kb; coordinates: 26.5-26.72 Mb,
BP3) coincident with breakage intervals in WJK70 (Class
I) are distinct and inversely oriented to the paralogous
SDs that define breakage intervals in Class I WJK67
(Figure 4B-1, 4B-1I). By contrast, in WJK36 (Class I), a
more complex pattern was found. The proximal break-
age interval was adjacent to the BP1 duplicons, rather
than within them (Figure 4B-I). Atypical breakage inter-
vals that fall outside of the duplicon blocks have been
reported both in SMS and 16p11.2p12.2 deletions [26].
The breakage intervals in BP3 for WJK36 and WJK70
overlap the same duplicon (Figure 4B-1I). Distinct blocks
of SDs in BP2 mediate Class II deletion rearrangements
(Figure 4B-III), which are respectively paralogous to dif-
ferent sets of duplicon blocks within BP3 (Figure 4B-
IV). In each cell line, the proximal and distal duplicons
at each end of the deletion shared 98% - 99% sequence
identity.

We and others have found that 15q11.2q13 duplicons
and breakage intervals in AS are in some instances coin-
cident [12]. However, this was not the case for WJK67,
WJK36 and WJK35, where breakage intervals (Figure
4A) were distinct from previously reported SDs [12].
The proximal duplicons that are rearranged in these
individuals are comprised of pericentromeric HERC2
pseudogene sequences and the distal copy contains both
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Figure 3 Representative metaphase cell FISH images of SC and LC probes. A) Hybridization pattern in a normal cell of LC probe 2 with
targets in BP1 (2869 bp) and BP3 (2837 bp) to both chromosome 15s. B) Hybridization of LC probe 5 (1637 bp) on normal chromosomes. The
pattern is similar to that of an SC probe, as the paralogous target of probe 5 exhibits high sequence divergence and is not detected. The next 4
panels show chromosome hybridizations on cells of Class | (C, D) and Class Il (E, F) AS deletions. C) LC probe 2 hybridization pattern in WJK36
cell. Only the BP3 target is deleted in the abnormal chromosome (arrow), as determined by subsequent hybridization with SC probe 4 (not
shown). The normal chromosome shows hybridization to all paralogous targets. Loss of the BP3 target sequence with this probe was also
evident in WJK 70 (Class 1), WJK18 and WJK24 (Class Il). D) Dual-color hybridization with LC Probe 2 (green) and SC probe 3 (1861 bp, red) in
WIJK67 (Class I). Probe 2 is intact on both chromosomes and was confirmed by sequential hybridization. Probe 3 is deleted on the abnormal
homolog (arrow), and a similar outcome for this probe was noted for WJK70. E) Deletion of SC probe 7 (1812 bp) (arrow) in WJK35. Deletions of
probe 7 were also seen in WJK67, WJK70 and WJK36. F) SC probe 10 (2055 bp) is intact in WJK24. Similar hybridization patterns were seen in
WIJK70, WIK36 and WJIK18. All probes were labeled with digoxigenin or biotin- dUTP and detected with Cy-3 digoxin antibody or FITC-avidin,
respectively. Cells are counterstained with DAPI.
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Figure 4 Schematic of Proximal and Distal Breakage Intervals, Segmental Duplicons, and Genes in Class | and Class Il AS Deletions. A)
Breakage intervals exhibit variability at the proximal end in Class | deletions (BP1: WJK67, WJK36, WIK70) and uniformity at the proximal end in
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kilobases (Kb). D15518 is a marker that is deleted in Class | and intact in Class Il AS cases [5]. B) Distinct duplicon blocks at the proximal (B-1) and
distal (B-l) ends of the deletion are arranged in inverted orientation, and are separated by 596 Mb and 6.20 Mb in Class | patient samples WJK67
and WJK70. The proximal breakage interval for WJK36 does not involve a duplicon region. Panels B-lll and B-IV: Class Il patient samples, WJK18
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the HERC2 gene and additional HERC2 pseudogenes
[8,27]. Apparent non-allelic homologous recombination
between these HERC2-related duplicons results in
diverse breakage intervals with variable length deletions.

Based on the results of this study, the present FISH
strategy can be further streamlined. The proximal break-
age interval within Class I deletion samples can be deli-
neated by co-hybridization with LC probe 2 and SC
probe 3. Deletion of the BP3 duplicon interval can be
simultaneously detected with probe 2. To expedite
refinement of Class II deletion breaks, probe 5 in the
BP2 duplicon cluster is co-hybridized with probe 8 in

BP3. The combination of probes 4 (BP1) and 5 (BP2)
can delineate the deletion class when it is unknown. A
Class I deletion is indicated if both of these probes are
hemizygous. A Class II deletion is diagnosed if probe 4
is retained and probe 5 is deleted. The additional SC
intervals (n = 40; Figure 1C) we have designed can be
used to refine the breakage sites within BP1 and BP2.

Relating breakage intervals to genes

Contextual mapping of 15q11.2q13 genomic rearrange-
ments bracketed by SDs can distinguish genes that are
disrupted from those that are have been demonstrated
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to be deleted using methods that quantify copy number,
i.e. array CGH, qPCR, or MLPA. CYFIP1 [MIM 606322]
was deleted (Figure 4B-I) and a partial deletion of
TUBGCPS was likely (tubulin, gamma complex asso-
ciated protein 5 [MIM 608147]) in WJK67 and WJK70.
In contrast, the 57 Kb breakage interval of WJK36 over-
lapped the 3’ boundary of the TUBGCPS5 and the 5’
region of CYFIPI, effectively disrupting both genes (Fig-
ure 4B-I). TUBGCPS5 maps between BP1 and BP2 and
encodes a protein that is required for microtubule
nucleation at the centrosome [28,29]. CYFIPI is asso-
ciated with FMRP [30], which is implicated in neurite
extension, guidance and branching [31]. NIPA2 [MIM
608146]) and NIPAI1 [MIM 608145]), which do not
overlap any duplicons, were deleted in all Class I cell
lines. Dominant mutations in NIPA1 cause hereditary
spastic paraplegia [32].

The golgin subfamily genes, GOLGA8DP (golgi auto-
antigen, golgin subfamily a, 8D) and GOLGAG6LI (golgi
autoantigen, golgin subfamily a, 6-like 1), are embedded
within SDs. Both of these genes are likely to be dis-
rupted or deleted in WJK67 and WJK70, but are intact
in WJK36 (Figure 4B-1). GOLGAG6LI is expressed and
predicted to encode a functional protein, whereas GOL-
GAS8DP is currently designated as a pseudogene [33]
and has paralogy to duplicons at 15q11.2q13, 15q24 and
15926 [9,25]. In the Class II deletions - WJK18, WJK24
and WJK35, the breakage interval in BP2 coincides with
HERC2P (Hect domain and RLD2 pseudogene 2) and
the GOLGASE gene. Both GOLGASE and HERC2P in
BP2 are likely to be disrupted (Figure 4B-III). GOLGASE
is expressed and encodes cDNAs with an open reading
frame [9].

Breakage intervals delineated in WJK67 and WJK35
overlap HERC?2, whereas these intervals are telomeric in
the other AS cell lines. This results in the deletion of
HERC2, as well as potential deletion or disruption of
GOLGA8G, GOLGASF and WHAMML?2 (Figure 4B-1I,
4D-1V). GOLGA8G and GOLGASF are expressed pseu-
dogenes [33]. Disruption of functional HERC2 in BP3
can juxtapose it with distal HERC2-related sequences,
producing novel fusion transcripts [27]. As expected,
OCA2 ([MIM 611409]) was deleted in all cell lines
[5,34,35] and APBA2, which is distal to the telomeric
HERC?2 cluster in BP3, was intact. Large AS deletions
that include APBA2 in 15q13.1 have been reported [12]
and a small duplication of 15q13.1 has been described
in a family with a history of autism [36].

Sequence-defined FISH in other duplicon-rich genomic
domains

Sequence-defined SC and LC FISH probes will be gener-
ally useful to delineate genomic disorders bracketed by
SDs that juxtapose during chromosome rearrangement.
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In AS/PWS, SMS, and DiGeorge syndromes, the distri-
bution of SDs enables LC probes to be designed that
simultaneously interrogate sequence copy number at
both ends of the chromosomal deletion. However, as
seen in 15q11.2q13, some SDs may contain remote
paralogous targets that do not participate in the rearran-
gement. These intervals can still be useful as LC probes,
with the remote paralogs serving as hybridization con-
trols in metaphase FISH.

Recently, recurrent microdeletions have been
described in chromosomes 16p11.2p12.2 (chrl6: 21.3-
29.5 Mb) [26,37], 1q21.1 (chrl: 144.10-144.60 Mb), and
a reciprocal deletion/duplication in 3q29 [Ref. [3] for
review]. At the centromeric and telomeric breakpoints
within 16p11.2 and 16p12.2 respectively, we identified 3
LC and 5 SC intervals, suitable as FISH probes, co-loca-
lizing with breakage activity in this region [26,37]. By
combining these SC probes with different sets of centro-
meric LC probes, the boundaries of 16p11.2p12.2 rear-
rangements can be defined.

At the chromosome 1q21.1 and 3q29 loci [3], our ana-
lysis showed that duplicons flanking the common dele-
tion interval are too closely spaced to resolve as
separate hybridization signals on metaphase chromo-
somes. Nevertheless, these duplicon blocks can still be
assayed by metaphase FISH with LC probes detecting a
second interchromosomal or remote intrachromosomal
locus. Generally, SC and LC FISH probes can be
employed either individually or as an ensemble to ana-
lyze both large (> 5 Mb) and small (0.5 Kb) recurrent
genomic rearrangements flanked by SDs. The increased
resolution of SC and LC FISH in complex duplicon
genomic regions may prove useful in distinguishing
rearrangements that appear to be similar in length
based on array CGH analysis, which actually span over-
lapping sequences that vary in length.

Interphase SC and LC FISH analysis may be feasible, if
multiple, closely-spaced duplicon-related signals from an
LC probe originate from the same homolog. We have
not yet tested this possibility, given the highly decon-
densed state of interphase chromatin and the limited
knowledge about spatial organization of homologous
SDs during interphase.

Comparison with array CGH in duplicon-rich genomic
intervals

Breakage intervals of chromosomal rearrangements
associated with SDs have been refined with several array
CGH platforms [38-41]. BAC arrays identify the initial
aberration and are refined by 2 or more customized oli-
gonucleotide arrays. Breakpoint junctions are then deli-
neated by long PCR or real time PCR with multiple
primer pairs staggered along a duplicon block with at
least one member of each pair lying in a repeat-masked
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sequence. Most customized oligonucleotide arrays
require at least five adjacent oligonucleotide probes to
be deleted or duplicated for reliable genotyping [42]. In
regions containing a high degree of homology between
duplicons, this strategy can result in false-positive sig-
nals from probes identical to those within the true
microdeletion or microduplication [39].

Therefore, microarray designs generally avoid or pro-
vide low probe coverage in intervals that have genomic
architectures such as SDs that confound the interpreta-
tion of copy number differences [43,44]. In relating the
breakage intervals to the duplicon architecture and
genes, we noted probes in the Agilent SurePrint 244K
microarray [13] (Figure 1B) that were present in dupli-
cons with paralogous sequences on other chromosomes
and within segmentally duplicated sequences in the BP1,
BP2, and BP3 regions (Table 1). On chromosome 15,
the cross-hybridizing oligonucleotide probes are on
average ~20 kb apart and are organized in clusters
which coincide with SDs in BP1, BP2 and BP3. Since
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these probe sequences had been expected to be unique,
their hybridization to interchromosomal and remote
intrachromosomal duplicons would be expected to dis-
tort the interpretation of chromosomal deletion
boundaries.

The AS breakage intervals were also compared to the
corresponding probe coverage by the Affymetrix SNP
6.0 microarray. Generally, there is a paucity of SNP
probes within SDs. The breakage intervals delineated by
SC and LC probes in the present study are not covered
by any probes on the SNP array. However, several diver-
gent SDs within BP1, BP2, and BP3 contained 3-10
probes targeting SNPs within duplicons. These probes
also overlapped interchromosomal duplicons (Table 2).
We further examined the subset of these SNP probes (n
= 14) representing the highest degree of cross-hybridiza-
tion to 15q11.2q13 breakpoint hotspots and found that
6 contained the same polymorphic variant targeting
intra or interchromosmal SDs with 96-100% similarity
to one another.

Table 1 Number of Agilent 244 K microarray oligonucleotide probe sets within 15q11.2q13.1 targeting distinct

interchromosomal duplicons

No. of Probes

Interchromosomal Duplicon Matches

Chromosome Location

BP1 (chr15:18,980,000-20,385,000, NCBI 36; hg18)

4 1 139132

2 1 20243

13 29 13q11, 18p11.21, 219112, 2921.1, 22q11.1, 14g11.1

3 3 17g11.2

1 1 2q14.1

11 1 1491122

6 1 14932.33

1 1 Yp11.32

2 1 16G24.2

1 4 16p11.2, 130313

2 1 3p22.1

1 1 20q13.12
BP2 (chr15:20,700,000-21,356,000, NCBI 36; hg18)

3 1 16p13.12

1 1 139313

1 1 160122
BP3 (chr15:25,941,000-27,286,000, NCBI 36; hg18)

3 4 16p11.2, 130313

1 1 3p223

1 1 5p15.31

The track features from the UCSC genome browser (hg18) of the Agilent SurePrint G3 Human CGH Microarray were analyzed. The Galaxy metaserver was used to
extract probe sequences coincident with the non-repeat-masked regions within BP1, BP2 and BP3. Interchromosomal duplicons with complete overlap to the
Agilent probe sets were enumerated. In BP1, approximately 73% (n = 47/64) of the probes (left column) targeted distinct interchromosomal duplicon loci (middle
column) in a chromosome band (right column). Probe targets in intrachromosomal duplicons and repeat-masked sequences were poorly represented in this
region (27%). In BP2, approximately 74% (n = 14/19) of the Agilent 244 K probe sets targeted repeat-masked sequences or intrachromosomal duplicons; however
their paralogs were distal to the BP3 region common to AS/PWS deletions. The remaining 26% (n = 5) of the probe sets targeted interchromosomal loci. Probe
coverage in BP3 constituted 94% (n = 74/79) of both repeat-masked and intrachromosomal duplicon sequences. The remaining probe coverage (6%) in BP3
contained targets to both interchromosomal and intrachromosomal duplicon loci that are coincident with BP2.
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Table 2 Number of Affymetrix SNP 6.0 microarray probe sets within 15q11.2q13.1 targeting distinct interchromosomal

duplicons

No. of Probes Interchromosomal Duplicon Matches

Chromosome Location

BP1 (chr15:18,980,000-20,385,000, NCBI 36)

1

139132

1

20243

1

3929

229122, 13q12.1

13q12.1, 18p11.21, 21g11.2, 2021.1, 22q11.1, 14q11.1

18p11.2, 21g11.2, 20211, 22q11.1, 14q11.1

17q11.2

2q14.]

1491122

12p1331

16024.2

1p36.23, Yq11.22

1

20243

1

3p22.1

N|lw(w]lN [ u,

2

20q13.12

BP2 (chr15:20,700,000-21,356,000, NCBI 36)

2

130313

1

16p13.12

1

16p13.12

BP3 (chr15:25,941,000-27,286,000, NCBI 36)

4

8

139313, 16p11.2

The probe distribution along 15¢11.2 q13 using the Affymetrix SNP 6.0 microarray showed 75% (n = 40/53) of the probes (left column) in BP1 occur within
distinct interchromosomal duplicon loci (middle column) in a given chromosome band (right column). Probes within intrachromosomal duplicons and repeat-
masked sequences showed poor representation in this region. Of the 59 probe features targeting SNPs in BP2, 19% (n = 11/59) were homologous with
interchromosomal duplicon intervals and would be expected to cross-hybridize. The remaining 81% (n = 48/59) of probe features targeted repeat-masked
sequences in intrachromosomal duplicons. Similarly in BP3, the majority of probes occurred within the repeat-masked sequences (89%, n = 158/177), however
the remaining probes (11%) in BP3 contained interchromosomal and intrachromosomal duplicon targets. Probes within BP2 and BP3 are underrepresented

relative to adjacent single copy regions.

Table 3 Number of lllumina Beadchip (Human WG) microarray probe sets within 15q11.2q13.1 targeting distinct

interchromosomal duplicons

No. Of Probes Interchromosomal Duplicon Matches

Chromosome Location

BP1 (chr15:20,719,986-22,833,559, GRCh37; hg19)

1 1

160122

1 1

139133

7 3

143233

21112, 13q11, 18p11.21

22q11.1, 2q21.1, 18p11.21, 21g11.2, 14q11.2

16024.2

2 1

16122

1 1

20q13.12

BP2 (chr15:23,148,559-23,804,907, GRCh37; hg19)

No probe coverage

BP3 (chr15:28,267,405-29,498,708, GRCh37; hg19)

3 1

16p11.2, 22q11.22, 19p13.3, 1g21.1, 22q11.21, 141, 13g31.3

2 1

20p12.1

Probe distribution along 15q11.2q13 with the Illumina Beadchip human whole genome array shows a high proportion of cross-hybridizing probes to SDs in BP1
and BP3, relative to those detecting unique intervals. 75% (n = 14/20) of the probes (left column) in BP1 also detect distinct interchromosomal duplicon loci
(middle column) in a given chromosome band (right column). In BP3, 50% (n = 5/10) of the probes hybridized to interchromosomal targets. The remaining
probes were found at paralogous loci on chromosome 15 or within repeat-masked regions. Probes within intrachromosomal duplicons (n = 5) and repeat-
masked sequences (n = 1) were poorly represented in BP1 and none were found in BP2.
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The Illumina Beadchip (Human WG@G) also showed
uneven coverage in the 15q11.2q13 region (Table 3).
The probes did not cover BP2 at all. BP1 and BP3 were
sparsely covered, with 20 probes occurring in BP1-asso-
ciated SDs and 10 probes in BP3 SDs. This characteris-
tic appears to have been intended in the array design, as
poor sensitivity for detection of pathogenic CNVs asso-
ciated with SDs has been noted [45,46]. Subsequent cus-
tom array CGH or MLPA were required to more
precisely define these abnormalities. Of those probes
detecting these intervals, the majority (19/20 in BP1 and
6/10 in BP3) of these sequences are present in multiple
intra or interchromosomal duplicons.

Copy number assessments in regions with two or
more highly homologous duplicons can be incorrect due
to intrinsic differences relative to balanced copy num-
ber. This affects normalization by reducing the dynamic
range which can result in misinterpretations when
investigating genomic copy number profiles [43,47].
This may explain some of the differences between the
breakage intervals delineated in our study and those
delineated by BAC and oligonucleotide microarrays. SC-
FISH may also compliment genome-wide resequencing
in SD-rich regions, which are more likely to contain
ambiguously mapped reads [48].

Summary

The chromosomal positions and orientations of genomic
probes are essential for defining rearrangements invol-
ving SDs. Delineating these rearrangements by SC and
LC FISH demonstrates disrupted genes or those whose
expression is altered. For disrupted genes whose func-
tions are associated with established phenotypes, the
strategy outlined here is likely to be relevant to clinical
management and genetic counseling.

Additional material

Additional file 1: Table S1 - SC and LC primers. Optimized melting
temperatures (Tm) and genomic positions (hg18) of the forward and
reverse primer pairs.
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