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Abstract: Navigation and location technologies are continually advancing, allowing ever 
higher accuracies and operation under ever more challenging conditions. The development 
of such technologies requires the rapid evaluation of a large number of sensors and related 
utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs)  
such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, 
magnetometers and other sensors is allowing for novel applications, but is hindered by the 
difficulties to test and compare integrated solutions using multiple sensor sets. In order to 
achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable 
platform is required. This paper describes the design and testing of the NavCube,  
a multi-sensor navigation, location and timing platform. The system provides a research 
tool for pedestrian navigation, location and body motion analysis in an unobtrusive form 
factor that enables in situ data collections with minimal gait and posture impact. Testing 
and examples of applications of the NavCube are provided. 

Keywords: GPS (Global Positioning System); GNSS (Global Navigation Satellite System); 
INS (Inertial Navigation System); IMU (Inertial Measurement Unit); barometer; 
magnetometer; high sensitivity; pedestrian navigation; indoor navigation; sensor fusion 
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1. Introduction  

The development of the NavCube multi-sensor navigation platform is primarily motivated by:  
(i) the desire to accurately position and navigate pedestrians and objects in urban and indoor 
environments, (ii) simultaneously collect various sensor data at various points on the body, (iii) being 
unobtrusive when mounted on the body and (iv) unpretentiously collect data as though an individual 
was not configured with a data collection system (i.e., no physical change in the gait or posture).  
A system meeting these criteria is capable of providing extensive data in situ with the ability to 
compare various processing methods as a function of different sensor combinations or sensor locations 
(e.g., an ankle mounted tracking device vs. a smart phone). 

While superficially comparable to other classes of navigation applications, pedestrian navigation 
brings numerous challenges. An important challenge is cost, as the navigation system used by a 
pedestrian will generally be a component of another unrelated system such as a communication system 
or smart phone. Often the price of the components used in the navigation system is to be minimized 
while factoring in weight, size and power demands placed upon the host device.  

An additional challenge to practical pedestrian navigation systems involves the large range of 
dynamics that may be produced by human motions, which may exceed the measurement ranges of 
inertial navigation sensors [1]. As a consequence, a pedestrian navigation system must either omit 
inertial measurement units (IMUs) or alternatively select components, which are either capable of 
measuring the full range of expected human dynamics or implements algorithms which do not require 
continuous unsaturated observation of the user’s motion. 

Another consideration is the fact that a pedestrian will operate in environments that either limit or 
deny availability of satellite navigation signals such as those from GPS. While GNSS signals are 
extremely useful outside, their weak power levels and signal reflections limit their use in many indoor 
settings. As such, a pedestrian navigation platform should be capable of prolonged operation in 
environments where satellite navigation signals are either unavailable or only intermittently accessible. 
When operating under these conditions, a navigation system must fall back on other positioning 
methods, or include complementary relative positioning systems, which allow short term propagation 
of a known position and heading.  

Much research has been conducted in attempting to improve inertial based pedestrian navigation 
accuracy indoors (e.g., [2–16]), but very little is dedicated to methods of improving the data collection 
process’ within the study. It is therefore the scope of this paper to address a data collection tool that 
will facilitate an increased rate at which researchers can study pedestrian navigation and extend 
applications to the biomedical field. For examples of biomedical and navigation fields converging  
see [17–21]. Magnetometers are also being used to improve accuracy through innovative algorithms 
(e.g., [22–24]). 

To permit indoor operation of the NavCube, complimentary relative positioning and navigation 
sensors such as IMUs, magnetometers, and barometers are included in the system design along with 
provision for future use of non-GNSS absolute positioning methods, such as received signal strength 
indicators (RSSI) from 802.11 network based positioning systems and wheel speed sensors.  

The NavCube functionalities can be used in other applications, scenarios and research. Biomechanics, 
bioengineering, guidance, robotics and animation are all engineering fields that used to be independent 
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from each other but now have merging sensors and principles. Indeed, with the progress in 
miniaturizing sensors, the data of interest for a specific domain is now available to others at little or no 
additional cost. For example, sport watches can include a GPS receiver and a heart rate monitor [25]. 
Accelerometers, gyroscopes, magnetometers and barometers are embedded in smartphones. The 
hardware is used in daily life activities and provides continuous information about their users. This is 
stimulating research in developing new processing methods for improving living conditions. 
Consequently, several new measurement units have been designed for conducting research on multiple 
aspects of micro-electromechanical measurement systems (MEMS) data processing for physiological 
or industrial applications and the combination of different scientific competences lead to novel results.  

A major evolution in the usage of mobile measurement units comes from the fact that until recently 
they were rigidly attached to vehicles for navigation purposes whereas nowadays they are carried by 
human of all ages in their hands, pockets or bags. Globally two categories of measurement units exist. 
The first one consists in systems able of recording measurements in a specific location and often equip 
a dedicated room. They are essentially capturing human movements or used for shaping industrial 
components. The second category consists of IMUs whose use is not restricted to a specific area and 
can be carried out by the user in indoor and outdoor environments. Although not exhaustive, a survey 
of tracking systems for biomedical analysis (e.g., human movement and stroke rehabilitation) can be 
found in [26]. 

Among the first category are optical tracking systems that calculate the position and orientation of 
markers rigidly attached to the body, which are readily available in laboratories (e.g., [27–29]). They 
often use real-time digital photogrammetry and optical triangulation techniques to track the markers.  
A classical biomechanical application of these systems is the measurement of the exact nature of 
human body segments during motion. Completed with laser scanning or marker free-technology [30], 
the measurements, which are constrained in a specific volume, can also be used for industrial 
metrology (e.g., 3D modeling of automotive parts). Unfortunately, constraining the activity or body of 
interest to a specific location and area limits the applications range. Thus IMUs, members of the 
second category, are principally tri-axis sensors integrated on a single main circuit board, which has its 
own power management and data logging system. The MPU-6000/6050 product family of tri-axis 
accelerometer and gyroscope from Invense [31], the tactical grade ten degrees of freedom inertial 
sensor ADIS16375 from Analog Devices [32] or the iNErtial MOdule V2 from STMicroelectronics [33] 
are examples of these IMUs. Some more advanced solutions comprise a logging system for recording 
time synchronized data from multiple IMUs attached to the body along a distributed architecture. 
Widely used in Europe, the products based on inertial sensors proposed by Xsens are recording 
synchronized data from multiple IMUs. They provide different options for mounting the sensors on the 
user’s body and are principally oriented toward the use of accelerometers and gyroscopes, especially 
with the six degrees of freedom MTx IMU [34]. Solutions for using magnetic field data and GPS 
signals are also available.  

The NavCube presented herein provides the ability to compare different GNSS receivers thus 
allowing comparison of different antenna combinations, locations and receiver type in pedestrian 
navigation activities. This benefit is in response to the advent of new GNSS signals and the wish to use 
GNSS pseudoranges and Doppler in signal degraded environments. As a consequence, research in 
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Figure 3. NavCube system assembled in enclosure. Features are as follows—Element A: 
2.4 GHz RF link antenna connectors. Element B: External sensor pod data, power and timing 
connectors. Element C: Charge connector. Element D: SD card socket (side of enclosure). 
Element E: Touchscreen. Element F: Indicator lights. Element G: High-Sensitivity 
GPS/GNSS receiver antenna connections. Element H: Control buttons. Element I: GPS, 
GLONASS multi-frequency receiver antenna connection. 

 

Table 1. GNSS receivers supported by the NavCube system and their typical application type. 

Receiver Application Signals Supported Update Rate 
OEM628 Survey, Machine Control, Timing, 

Real-Time Kinematic Positioning 
L1/L2 GPS/GLONASS 
(L5 with firmware change) 

100 Hz 

u-blox 6T High Sensitivity, Timing L1 GPS 5 Hz 
SiRF IV High Sensitivity L1 GPS 1 Hz 
Teseo II High Sensitivity GNSS L1 GPS/GLONASS 1 Hz 

The list of GNSS receivers in Table 1 is not an exhaustive list of all possible supported GNSS 
systems, but rather indicates the receiver systems for which support boards have been designed to date. 
The OEM628 receiver forms the basis of the internal timing control of the NavCube and serves as the 
master timing reference for the rest of the system in addition to providing a GNSS receiver capable of 
very accurate phase measurements for Real-Time Kinematic positioning and high update rates. 
Secondary GNSS modules are installed via daughter cards, which allow future upgrade and 
replacement of these receivers, or the installation of multiple instances of the same receiver module 
when desired. Currently the system is operated with dual u-blox 6T modules, omitting the SiRF IV in 
order to gain multiple 5 Hz high sensitivity GPS sources.  

Following the same design philosophy for non-GNSS sensors within the NavCube as that followed 
for the secondary GNSS sensors, the non-GNSS sensors are installed on a replaceable daughter card to 
permit future upgrade as more advanced models become available. The design cycle of this component 
was shortened substantially by sharing a common electrical and similar physical design to the sensor 
boards contained in the ASP pods. Currently the non-GNSS carrier board mounts the sensors indicated 
in Table 2, though it is intended to upgrade these at a future date as part of the system evolution. The 
ASP communication is via RS-232 signaling protocol, EIA-232 voltage levels, at 115,200 baud rate.  
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Table 2. Non GNSS NavCube sensors included on internal carrier board. 

Sensor Sensor Application Key Parameters Update Rate 

ADIS16375 
State of the art < $1,000 

MEMS IMU 

Gyros: 
In Run Bias Stability: 12 °/hr (1) 
Dynamic Range: ±350 °/s (typ.) 

Accelerometers: 
In Run Bias Stability: 0.13 mg (1) 
Dynamic Range: ±18 g (min.) 

100 Hz 

HMC5883L Embedded compassing 
2 mg resolution 
3 axis measurement 

100 Hz 

BMP085 Embedded altimeter 3 Pa RMS noise 25 Hz 

The ADIS16375 MEMS IMU is noteworthy for being a sub $1,000 inertial navigation solution, 
which is sufficiently stable in terms of gyro bias stability to detect the rotation rate of the earth under 
ideal conditions. Earth rotation detection is typically a task that requires the use of a much higher 
priced, much higher power consumption, and often much larger and heavier Fibre Optic Gyro (FOG) 
or Ring Laser Gyroscope (RLG) based IMU. While the ADIS16375 is still far less stable than FOG 
and RLG solutions, for a pedestrian navigation system designed to be effortlessly carried on the person 
of the user, the 100 gram mass of the ADIS16375 IMU is an excellent compromise of size and weight 
for performance. 

To maintain the low weight of the system while gaining the capability of determining heading 
autonomously, the Honeywell HMC5883L magnetometer was selected for integration into the 
NavCube and ASP pods as a sub component of the inertial sensor carrier board. With a mass of less 
than 1 gram and negligible power consumption relative to the IMU, the inclusion of an HMC5883L 
enhances utility without degrading usability. Similarly, by integrating the Bosh Sensortec BMP085 
barometer, the system is able to estimate changes in its elevation over time. Though sensitive to 
changes in weather pattern, as well as to the pressurization level of building ventilation systems, the 
barometer remains a useful tool in the estimation and constraint of vertical motion.  

The NavCube weighs 1.2 kg, while each ASP is 0.1 kg. The total weight of the system including the 
NavCube, four ASPs, the wiring harness, a survey grade mobile GNSS antenna and its antenna cable, 
3 low cost mobile antennas and a custom neoprene case is 2.7 kg.  

2.1. Time Synchronization 

Most navigation processing software assumes that each sensor is synchronized with GPS time  
(or another atomic time scale such as UTC where offsets are known). Thus, timing within the 
NavCube requires each sensor’s output to be either time-tagged or synchronized with its internal clock 
via a Pulse Per Second (PPS) signal. The OEM628 GNSS receiver provides a PPS signal that is 
distributed to each ancillary module to maintain timing.  

Within the ASP, the IMU, magnetometer and barometer timing is driven by a custom timing and 
data controller. This controller ensures that the 100 Hz IMU, 100 Hz magnetometer and 25 Hz 
barometer data has a near zero delay between sensors. Additionally, the controller steers the sampling 
train of all sensors such that the epochs of the IMU and barometer coincide with the next predicted 
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PPS event. As shown below in Figure 4, the steering process takes 2–3 s to complete, and ensures that 
users with multiple ASP units driven by a UTC synchronized PPS train will have simultaneous IMU 
and magnetometer samples within ±100 μs. Barometric pressure sample times are similarly steered to 
maintain their alignment to IMU/magnetometer sample epochs. However, as is depicted in the timing 
diagram below, the epoch of barometric sensor output is not steered into alignment with expected  
PPS events. 

Figure 4. ASP PPS and Sensor Epoch Alignment Example. 

 

The timing sequence of each ASP has three key aspects. First, the ASP time-stamps all events in 
terms of an internal free-running 32-bit counter. Naturally this counter will overflow back to zero on 
the clock cycle following 232-1. As such the user must take this overflow into account when handling 
data timing. Second, in order to unambiguously map the ASP PPS received epochs to UTC/GPS time, 
it is necessary to control the reception of the first time pulse and to know when this pulse occurred 
(e.g., by using the EVENT input from the NovAtel receiver log). Third, the timestamp data of the 
ADIS16375 sensor is compensated for the effects of digital filtering lag within the IMU. The 
implemented filter has a step response with a delay of 20 ms from the time of actual physical excitation. 
For this reason IMU timestamps will appear to refer to ‘the past’ with respect to other sensors, despite 
the fact that the actual sampling was simultaneous. When implementing a navigation filter which will 
utilize inertial data as well as barometric or magnetic data this timing behavior is required to be 
appropriately handled, as it should not be assumed that the samples of each sensor within the same 
frame are referred to the same moment in time.  

2.2. Autonomous Operation 

The NavCube operates on a four cell 88.8 Watt-hour lithium polymer battery pack. Given that the 
batteries data sheets are typically overly optimistic in terms of rated energy the available energy is 
approximately 82.1 Watt-hours within the batteries. A battery protection system ensures that the 
batteries remain within operating limits when nearing low power. Two voltage rails (3.3 V and 5.0 V) 
were required and thus power conversion circuitry was required. This reduced the available power by 
approximately 14%, to about 70.6 Watt-hours. Table 3 provides the net power usage of each 
component within the NavCube. The OEM6 GNSS receiver consumes the most power typically  
at 1.8 W, while each sensor pod requires 1.0 W. With a full complement eight sensor pods, the run 
time is approximately 4.5 h. 
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Table 3. NavCube Power Usage by Component Type. 

Component Voltage Rail Utilized (V) Net Usage (W) 
OEM6 − Digital + Antenna 3.3 1.8 
File System 3.3 0.33 
SiRF IV 3.3 0.10 
u-blox 6T 3.3 0.15 
Graphical LCD 5.0 0.85 
Core Controller 3.3 0.35 
Serial Port Replicators 3.3 0.45 
Serial Level Shifters 3.3 0.35 
Indicator LEDs 3.3 0.2 
XBee Link 3.3 1.0 
Adaptable Sensor Pod (Internal) 5.0 1.0 
Adaptable Sensor Pod (External) 5.0 1.0/unit 

Total System Power 7.58 W or 9.3 h 

The NavCube file system controller supports the use of SD, and SDHC memory cards. Use of cards 
with a 133x+ or class 10 rating is best, but UHS 1 or 2 rated cards also work. Both FAT16 and FAT32 
file systems are compatible with the system. Under these file systems maximum file size limits of two 
GB and four GB exist, respectively. Data collected exceeding these limits are stored in file sets and 
manually appended post mission. Data rates for each GNSS sensor are selectable by the user. Table 4 
provides the approximate data rates of the maximum frequency of the observations. Actual data 
storage (and power draw) depends on many factors including satellite availability and the surrounding 
conditions/environment. The sensor pods however are more stable in their data rates.  

Table 4. NavCube Sensor Data Rates. 

Sensor 
Approximate Data Rate Maximum Observation 

Frequency (Hz) KB/s MB/Hour 
Novatel OEM6 60 211 100 
ASP (Int. or Ext.) 6.0 21 100 
u-blox 6T 4.5 16 5 
Sirf IV 3.0 11 1 
Teseo II 2.5 9 1 
XBee Link 11 39 N/A 
1 External Sensor 6.0 21 100 
TOTAL 93 328  

3. Applications and Field Testing 

In this section field tests carried out with the NavCube and ASP pods are described to showcase its 
versatility in navigation based research. The first of these is a series of testing scenarios focused on the 
use of embedded sensors in handheld device navigation. 
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3.1. Handheld Navigation 

With the proliferation of smart phone devices which provide enhanced functionality given accurate 
location awareness, new methods of navigation and positioning indoors where GNSS is not available 
are needed. Step detection and step length estimation algorithms that function reliably within handheld 
devices, both during natural motion, as well as that which would be expected if the user were typing on 
a smartphone or otherwise interacting with a smartphone, rather than simply holding it on the side, are 
being pursued. 

Figure 5. Pedestrian wearing the NavCube in a backpack with one IMU fixed on each foot 
and one IMU held in hand. 

  

Figure 6. Comparison of the steps detected with the handheld inertial sensors (cyan dots) 
and the strides events detected with the sensors rigidly attached to the left foot (red dots). 

 

Five men and five women participated in a 450 m flat test course data collection for conducting gait 
analysis of pedestrians walking, but only using a handheld inertial sensor. Algorithms for detecting 
steps, classifying the user’s activity and evaluating step frequency had been developed previously  
(e.g., [37]). To confirm that the proposed step detection methods based on handheld device were 
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reliably detecting user footfalls in both texting and normal walking modes of use, the NavCube was 
configured to include a foot mounted IMU. A shown in Figure 5, by placing one ASP on each foot as a 
step detection reference, in addition to one ASP unit in hand and one in the waist mounted NavCube, 
the effectiveness of step detection through handheld inertial sensors was directly observable.  

The handheld IMU senses the footfalls of both feet, whereas a foot mounted IMU senses only the 
beginning of the foot corresponding to the stride. Figure 6 presents the results of the step detection 
process and effectively observes this phenomenon since for one footfall, marked with a red dot, and 
two steps marked with the cyan dots, detection occurs with handheld inertial sensors.  

Figure 7, is also useful when attempting to categorize whether the motion being measured is the 
result of the handheld device swinging with the users stride or if it is indicative of a fixed body-device 
orientation, which is expected during interaction of the user with the device or if it captures a hand 
motion that is considered as parasite for the navigation process. Since different navigation algorithms 
can be tailored to each of these user motion categories, reliably differentiating between them improves 
the navigation performance achievable with handheld devices. Data analysis and results of these 
handheld navigation tests are presented in [37]. 

Figure 7. Time series of the spectrum of user hand motion when walking naturally with a 
handheld device. Dominant frequencies are observed in the range 0–5 Hertz and can be 
used to classify the motions of the hand and user.  

 

3.2. Pedestrian Navigation 

Some applications allow or require that the navigation system or tracking device be mounted on the 
user’s ankle. Using the NavCube as a platform, data was collected from an ankle-mounted 
combination of ASP pod and the antenna from the NavCube integrated u-blox 6 HSGNSS system. The 
results of this collection are shown in Figure 8 where data from the reference trajectory obtained from 
a SPANTM LCI tactical grade inertial system is shown in white, while HSGPS alone is in red, and the 
combined ASP plus HSGPS ankle data is shown in green. The algorithms and additional analysis are 
provided in [38].  

The data from the ASP and HSGPS receiver were processed using the Multiple IMU Navigation 
Software (MINS), originally developed in [39] and since adapted to integrate barometric measurements 
and Quasi Static Field (QSF) technology introduced in [40]. While originally developed for applications 
utilizing multiple IMUs, the MINS software package is now capable of processing navigation data 
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from multiple sensor types. In addition to GPS INS integration, the MINS software package is capable 
of utilizing barometric pressure sensors to derive height information, as well as updating the heading 
and gyro bias estimates of the INS by using the QSF updates from a magnetometer. 

Figure 8. Pedestrian testing results collected using the NavCube in the dense urban canyon 
environment of downtown Calgary. The white trace is the truth trajectory produced by a 
SPANTM LCI tactical grade inertial navigation system (INS), the red trace is the trajectory 
produced by a GPS+GLONASS GNSS receiver and the green trace is derived from 
combined GPS+GLONASS with IMU, barometric, and magnetic field measurements [38].  

 

In an urban canyon navigation scenario, the MINS software estimates the biases in the IMU 
gyroscopes and accelerometers when GNSS is available, and subsequently uses these estimated 
corrections to determine the position and heading of the user via the IMU when GNSS data is 
unavailable or degraded. The addition of QSF allows the MINS software to estimate gyro biases when 
the system passes through a region of stable magnetic field, which constrains the system heading error 
over time, allowing more accurate position estimates in GNSS degraded environments. Simultaneously, 
MINS may make use of barometric pressure data to contain errors in the navigation solutions vertical 
component. The aggregate result of MINS processing of the input of a GNSS sensor combined with an 
ASP pod mounted on the user ankle with a calibrated magnetometer per [41], and a barometer is a 
considerable improvement in position accuracy relative to a GNSS only solution when navigating in an 
urban canyon.  

3.3. Sport Applications 

Navigation and body limb motion monitoring are becomingly more critical in athletic training and 
coaching. Numerous sports, including skiing, running, rowing and field hockey are using multisensory 
systems to track and improve performance (e.g., [26,42–46]). Because a large part of sport activities 
takes place outdoors, where users are free to perform any kind of motion, equipment used for 
performance evaluation must be light and noninvasive. Data collected by a hiker wearing the NavCube 
has been used for assessing different navigation and biometric parameters. Two APSs were rigidly 
attached to the legs above the hiking boots and another on the left shoulder; the core module of the 
NavCube was carried at the waist using a neoprene case and belt, two antennas located on the right 
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shoulder and one antenna rigidly connected to the ASP located on the left foot. The complete data 
collection setup is illustrated in Figure 9. 

Figure 9. Hiker wearing the NavCube at the waist, two IMUs attached to the leg above the 
boots, one IMU on the shoulder and a GNSS antenna on the other shoulder. 

 

The hiker hiked 3.5 km and ascended 700 m vertically in 68 min and took approximately 2,750 steps 
(one step is from heel lift to heel lift of the same foot). Each step length and velocity was averaged to 
determine a nominal step profile and is shown in Figures 10 and 11. The left foot was used to determine 
the start and end of each step. Figure 10 shows the displacement of each ASP, both horizontally and 
vertically. Each profile varies slightly due to uncorrectable errors, but these errors are limited to a few 
centimetres. It can be derived from this figure that the hiker has an average step height of 29 and 30 cm 
and a step length of 119 and 121 cm for the left and right feet while hiking. The back and shoulder 
sensors are in close agreement, but vary likely due to the user bending forward at steeper inclines.  

Figure 10. Hiker’s Average Displacement at Various Sensor Locations during each Step. 

 

Figure 11 provides a profile of the speed during the single gait cycle. The user had an average 
maximum foot speed of 2.20 m/s and 2.13 m/s for the left and right feet, respectively. The shoulder 
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and back velocities also provide a clear view of the periodic speed related to each step. The vertical 
speed indicates a rising and falling velocity during each step on the order of 0.25 m/s. A GPS only, 
epoch-by-epoch least-squares solution averaged over the same intervals confirmed the negative 
velocities. This results from the hiker leaning forward at each step.  

Figure 11. Hiker’s Average Velocity at Various Sensor Locations during each Step. 

 

3.4. Use of Magnetometers for Navigation 

The Earth magnetic field is a force that can be sensed everywhere and used to compute azimuth.  
If the magnetometer is in hand, there exists an ambiguity of the sensor’s orientation in its body frame 
and the user’s direction of travel. Thus multiple sensors are often required to determine the hand’s 
azimuth and the azimuth of the user to assess algorithms using only one set of sensors.  

An important condition for using magnetometers is that the sensor should measure only the earth 
magnetic field and no other artificial magnetic source. Consequently any field produced by electronic 
components embedded in the device has to be mitigated with proper calibration. These fields produce a 
magnetic deviation consisting of hard and soft iron perturbations. Hard iron effects produce a permanent 
magnetic deviation resulting from magnetized materials or other fixed magnetic field sources within 
the vicinity of the magnetometer. Soft iron effects correspond to induced magnetization caused by the 
permeability of ferromagnetic compounds onboard the sensor and that are interacting with an external 
field. A calibration method for mitigating the magnetic deviation but also all errors due to fabrication 
issues developed previously [41,47] was applied to the hiking data. 

Using the NavCube, it is possible to compare the calibration results of different magnetometers 
mounted on body. In Figure 12, calibrated and non-calibrated magnetic field measurements are shown 
for the left foot (a), the right foot (b) and the shoulder (c), respectively. When visualized in the vector 
space, ideal magnetic field measurements shape a perfectly spherical representation of a constant local 
field centered at the origin, however due to errors, the surface is an ellipsoid not centered at the origin. 
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As it can be observed in Figure 12, even with all sensors carried by the same hiker, the perturbation 
effect is unique for each magnetometer. This is due to individual fabrication issues but more specifically 
to surrounding ferromagnetic compounds, for example metallic parts in the shoes. In Figure 13, a 
comparison of the norm of the measured local magnetic field magnitude in a calibrated (green) versus 
un-calibrated (red) magnetometer is given. Although the raw data is totally different for the three 
IMUs, the apparent field magnitude fluctuations are removed for all sensors leading to the norm of the 
Earth magnetic field extracted from the International Geomagnetic Reference Field (IGRF). 

Figure 12. Biased and distorted magnetic field observations (blue) are calibrated resulting 
in the nearly ideal observation sphere (cyan) for the magnetometers embedded in IMUs 
attached to the left foot (a), the right foot (b) and the shoulder (c). 

 

(a) (b) (c) 

Figure 13. Norm, before (red) and after the calibration (green), of the magnetometer’s field 
measured with the IMUs attached to the left foot, the right foot and the shoulder. The norm 
of calibrated data equals the norm of the local Earth Magnetic Field: 0.57 Gauss for this 
dataset and location.  
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Application of these corrections allows the estimation of accurate headings despite the local 
environment of the magnetometer containing a plethora of active electronics and some ferromagnetic 
material. The new algorithms used above are discussed in [41] while the use of similarly calibrated low 
cost amorphous magneto-resistive (AMR) sensors for navigation in magnetically perturbed indoor 
environments are discussed in [47]. 

4. Conclusions and Future Plans 

The system developed herein has proved an invaluable pedestrian navigation system due to its 
capability to power, synchronize, log and support a plurality of pedestrian navigation sensors. With 
applications of the system already spanning pedestrian navigation research topics, planned extension to 
include additional sensors will further broaden its range. The system also provides valuable information 
for biomechanics and sport applications.  

Future sensors under consideration include supplementary absolute positioning via 802.11 wireless 
network observations through an internal network card, as well as the evolution of relative positioning 
capabilities through periodic replacement of both internal and external IMUs. The next planned  
non-GNSS enhancement is expected to be activation of the capability of the system to interface to a 
tactical grade IMU in order to provide researchers with a high accuracy indoor reference trajectory.  
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