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Abstract: There is little knowledge about how the influence of non-pharmaceutical interventions
(NPIs) reduces the COVID-19 infection rate during the period of vaccine rollout. This study aimed
to examine the effectiveness of NPIs on decreasing the epidemic growth of COVID-19 between
before and after the vaccine rollout period among Asian countries. Our ecological study included
observations from 30 Asian countries over the 20 weeks of the pre- and post-vaccination period. Data
were extracted from the Oxford COVID-19 Government Response Tracker and other open databases.
Longitudinal analysis was utilized to evaluate the impacts of public health responses and vaccines.
The facial covering policy was the most effective intervention in the pre-vaccination period, followed
by border control and testing policies. In the post-vaccination period, restrictions on gatherings and
public transport closure both play a key role in reducing the epidemic growth rate. Vaccine coverage
of 1–5%, 5–10%, 10–30%, and over 30% of the population was linked with an average reduction
of 0.12%, 0.32%, 0.31%, and 0.59%, respectively. Our findings support the evidence that besides
the vaccine increasingly contributing to pandemic control, the implementation of NPIs also plays
a key role.

Keywords: non-pharmaceutical interventions; Asia; COVID-19; vaccine; longitudinal analysis

1. Introduction

The COVID-19 pandemic has been continuously raising the enormous burdens of
morbidity and mortality, leading to numerous consequences for societies and economies
on humans worldwide, with nearly 270 million cases recorded, and more than 5.3 million
deaths as of 13 December 2021 [1]. In 2020, many Asian governments obtained achieve-
ments in fighting against the COVID-19 pandemic thanks to introducing timely and robust
non-pharmaceutical interventions (NPIs) [2]. These common NPIs included containment
and closure policies (e.g., restrictions on gathering, school closure, public transport closure),
and health system policies (e.g., testing policy, contact tracing) [2–4]. However, Asian
countries have been facing new challenges in 2021. The vaccination coverage in most Asian
countries is low, and far from the target of community immunity [5,6] as a result of the lack
of vaccine supply, and vaccine hesitancy [7,8]. Besides, the emerging novel variants led to
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the resurgence of outbreaks in Asian countries [9–11], and threatened countries’ achievements
in the pandemic control. Hence, the NPIs are still major tools for Asian nations to cope
with pandemic waves before achieving herd immunity [12].

As far as we know, previous studies had demonstrated the effectiveness of NPIs
on mitigating the COVID-19 pandemic; however, they mostly focused on the first wave
of the pandemic, with limited analysis of subsequent waves, or were mainly based on
modeling studies [13,14]. Furthermore, most of them mainly focused on evaluating the
effectiveness of NPIs during a short period (from 30 days to 3 months) [15–18], and lacked
an investigation of the effects of NPIs in the post-vaccination period [19]. In addition,
recent studies mentioned pandemic fatigue could occur after the long-term impact of
NPIs [20,21], which might affect adherence to public health interventions, and decrease
the effectiveness of NPIs [20]. Therefore, we conducted this study to investigate the effects
of non-pharmaceutical interventions in Asian countries on the COVID-19 average daily
growth rate before and after the vaccine rollout period.

2. Materials and Methods
2.1. Study Design

We carried out an ecological study comprising 30 Asian countries over the two periods
before and after vaccine rollouts. Our inclusion criteria: (a) the countries that are in the
Asian Pacific list defined by the United Nations [22], and (b) provide the available data
of NPIs, (c) number of tests per thousand people on the Oxford COVID-19 Government
Response Tracker (OxCGRT) [3], and (d) vaccine data on the global database of COVID-19
vaccination [23].

2.2. Variables

Our outcome of interest is the average daily growth rate (wADGR) of the cumulative
weekly number of confirmed COVID-19 cases in a specific country or territory. The calcula-
tion of outcome was well developed in previous work [15]. The average daily growth rate

is computed by the formula: wADGRt = 7
√

Nt
Nt−1

– 1 (Supplementary Materials), where Nt

and Nt−1 denote the cumulative number of COVID-19 cases at the end of the given week
t and week t − 1, respectively [15]. Information on the cumulative number of COVID-19
cases was extracted from a data repository sourced from OxCGRT [3].

The independent variables were the time-varying intensity of NPIs, and the vaccine
coverage in each country. The data for the intensity of individual NPI was captured
through OxCGRT [3]. We first focused on the stringency index, which is calculated using
the containment and closure policies: school closure, workplace closure, public event
canceling, public transport closure, stay at home requirements, restrictions on internal
movement, border control (international travel controls), and public information campaign
indicators. The stringency index is measured on a continuous scale from 0 to 100. Then,
we also considered other health system policies, including testing policy, contact tracing,
and facial covering. The levels of these NPIs are presented on an ordinal scale (e.g.,
0 = no measures, 1 = recommend canceling, 2 = require canceling), and varied over time.
We took into account the time delay of the government response, which is the time interval
between the first day recording a COVID-19 case and the first day implementing the NPIs.

In terms of vaccine variables, we collected them from the global vaccine database [23],
which included: percentage of people vaccinated with at least one dose, people fully
vaccinated, and total vaccines per 100 people. In our study, vaccine coverage is defined as
the percentage of the population vaccinated with at least one dose [24].

The following variables were used as control variables in our study: population size
(number of people), population density (people per square kilometer), median age (years),
gross domestic product (GDP (US dollar)), percentage of the total population living in
urban areas, socio-demographic index, classification of country income (high income, upper
middle income, low-middle income), mobility index (a measure of human mobility pattern),
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and universal health coverage (UHC) index (a measure of health service coverage). Table S9
provides the explanation of all variables and data sources.

2.3. Study Periods

To compare the effectiveness of NPIs on the wADGR in different periods across
the countries, we extracted weekly data on the time-varying cumulative total cases, the
intensity of NPIs, and accumulative vaccination data in each country.

2.3.1. The Pre-Vaccination Period

As the time of implementation of the NPIs were varied between the countries, the
study period for analysis of the impact of NPIs began after the first containment and
closures measure was implemented. We deleted Jordan in our population, since data on
total cases were inconsistent (a smaller number of cumulative cases at a later time point).
Finally, the study sample included 600 country–week observations over 30 Asian countries.

The strict level of NPIs was measured at the onset of the study period (week 0), and
was followed up for 20 weeks. Since NPIs take time to contain the COVID-19 transmission,
the wADGR was recorded two weeks after the beginning of study periods as the maximum
incubation period for COVID-19 [25].

2.3.2. Post-Vaccination Period

We added the vaccination data in our model to explore the effects of NPIs on the
wADGR after the vaccine rollout period.

The study period starts when the vaccine data are first recorded in each country
(week 0), and is followed up for 20 weeks. We dropped China and Kazakhstan from our
study population because China had a large number of missing values of vaccine coverage
in a long period, whereas Kazakhstan provided inconsistent data on total cases during
this period. Finally, 28 countries, which consisted of 560 country–week observations, were
included in the study period.

Since the vaccine takes at least 14 days to have protective effects, we measured wADGR
with a two-week lag regarding the vaccination data [26,27].

Figure 1 presents how time points were defined in pre- and post- vaccination periods.

Figure 1. The definition of study periods.
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2.4. Statistical Analysis

We employed longitudinal analysis methods to evaluate the impact of NPIs and vac-
cine effects on epidemic growth rate in every study period. This approach was employed in
previous studies to deal with longitudinal data on COVID-19 [15,17,28]. First, we used the
linear mixed-effects model with a probit transformation of wADGR. This transformation
was implemented because the probit is the best transformation approach for our propor-
tional data (wADGR) that are highly skewed [29,30]. We then used the random intercepts
and slopes model to account for the time-varying characteristic of an individual country.
The forward selection approach, based on Bayesian information criterion (BIC), was used
to develop the most paramount model. We begin with univariable analyses to select the
independent variables showing statistical significance, and rank all of these variables in
decreasing order according to BIC. Then, we add every independent variable into the
model sequentially based on its rank, and remove insignificant ones.

To facilitate the interpretation of NPI impacts, we utilized the multivariable beta
regression generalized linear mixed model (mGLMM) with the probit link function, using
wADGR as an outcome variable. Using this model, we can estimate the average marginal
effects (AME) of NPIs, which represent the change in the wADGR as the result of changes
in NPI intensity.

All analyses were carried out on R software. We built a linear mixed effect model
using package lme4 with a maximum likelihood approach [31]. The generalized linear
mixed model with a restriction maximum likelihood approach [32] was developed by the
package, glmmTMB. We used the performance package to check each model’s AIC, BIC,
and R square indexes [33].

3. Results
3.1. The Pre-Vaccination Period

Over the first study period in 2020, 2,539,514 people were reported infected with
COVID-19 among 30 Asian nations (Table S10). The country with the highest number of
cases per 100 people was Qatar (3.72 cases/100 people); the nation with the lowest number
of cases per 100 people was Vietnam (0.00036/100 people).

Figure 2 indicates the change in the stringency index and the wADGR throughout
20 weeks studied for each Asian country and overall. From Figure 2, the top panel shows
that during the initial phase of the epidemic, the majority of Asian countries achieved high
levels of NPI intensity, as expressed by the stringency index. These levels, in most cases,
experienced an increasing fluctuation in NPI intensity for the first nine weeks, peaking at
roughly 76 points, and slightly decreasing afterward. From the bottom panel in Figure 2, the
two-week lagged wADGR witnessed a steep fluctuation in most countries, with a declining
trend for the overall figure, reaching close zero values by the end of the study period. It was
noticeable that Sri Lanka, where the wADGR in the fifth week reached a sharp peak of just
over 0.6%, had a steep decrease afterward. India and Philippines reached peak wADGR at
week 3 (at 0.39%) and week 4 (at 0.43%), respectively. Myanmar experienced a rising trend
in the wADGR during the final three weeks of the study period, despite a minor fluctuation
from week 18 onwards.
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Figure 2. The evolution of stringency index and average daily growth rate (wADGR) over 20 weeks
among Asian countries during the pre-vaccination period.

Figure 3 shows the proportion of Asian nations with regard to implementing specific
NPIs, and their intensities, during the pre-vaccination period. The NPIs, namely closing
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schools, and cancelling public events, were applied with the highest intensity level in most
Asian nations. This was followed by restrictions on gatherings, and public transport closure.

Figure 3. The proportion of countries implementing different intensities of NPIs over time among
Asian countries during the pre-vaccination period.
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Figure 4 demonstrates the effectiveness of NPIs on the wADGR of COVID-19 among
Asian countries throughout the pre-vaccination period. The multivariable linear mixed
effect model shows that testing policy, facial covering policy, and border control were
significantly associated with a decrease in the probit transformation of wADGR. Of the
control variables, the UHC index also showed a negative association with the probit
wADGR, which means the higher the UHC index was, the lower the wADGR was.

Figure 4. The effectiveness of NPIs on average daily growth rate (wADGR) among Asian countries
in the pre-vaccination period.

Based on the AME estimated from the multivariable generalized linear mixed model,
we found that wearing masks was the most effective NPI to reduce the wADGR during
this period. Altering the facial covering policy from “no recommended or required wear
mask outside the home” to “recommended or required wear mask at some public space”,
“required wear mask in all public spaces”, and “required wear mask all the time” was
associated with reductions in the wADGR of 2.03%, 1.25%, and 0.78%, respectively.

Border control policy was the second most effective NPI. Prohibiting all regions con-
tributed to a 1.48% reduction of wADGR when compared to only screening or quarantining
the arrivals. The widespread testing on the public or those with COVID-19 symptoms
decreased wADGR by 1.73% and 0.62%, respectively, compared with a policy that only
focused on people with symptoms, and who satisfied the specific criteria.

3.2. Post-Vaccination Period

Among 28 Asian countries, the proportions of countries with vaccine coverage and
full vaccination less than 30% were around 70% and 82%, respectively (Table S11). Bhutan
ranked first in terms of vaccination coverage, with 68.53%, followed by Mongolia (63.18%),
and Qatar (59.57%). Iraq, Myanmar, and Bangladesh were nations with the lowest pro-
portions of vaccine coverage, with 2.01%, 3.36%, and 3.5%, respectively. Regarding the
full vaccination rate, the proportion of two-dose vaccination was the highest in Bhutan
(60.78%), Mongolia (53.95%), and Qatar (50.5%), whereas the reverse pattern was true for
Vietnam, Kuwait, and Iraq, with 0.38%, 0.88%, and 1.2%, respectively.

Figure 5 presents the changes in stringency index and wADGR over 20 weeks under
the vaccine rollout scenarios in each Asian country, and overall.
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Figure 5. The evolution of stringency index and average daily growth rate (wADGR) among Asian
countries during the post-vaccination period.

Asian countries kept stabilized in a high level of stringency policy (>60 points) over
the study period. Though most countries experienced a lower wADGR in this period,
several countries witnessed a surge in wADGR. The wADGR in Lao peaked in week five,
and then dropped significantly over the next three weeks. Mongolia, Cambodia, Timor, and
Vietnam also witnessed an increase in wADGR during this period, particularly Vietnam,
which experienced a considerable increasing growth rate from the 16th week.
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Figure 6 shows the percentage of countries with different levels of NPIs over the
post-vaccination periods. Over time, the NPIs that a high percentage of countries employed
at the high-intensity level were canceling public events and restrictions on gatherings,
closing public transport, and requiring people to stay at home. Workplace closure and
border control were applied at the middle level of intensity in most countries.

Figure 6. The proportion of countries implementing different intensities of NPIs over the 20 weeks
among Asian countries during the post-vaccination period.
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Figure 7 presents the effectiveness of NPIs under the vaccine rollout scenario in 2021.
The results in this study period are different from the previous period in 2020. On the left
panel of the multivariable linear mixed effect model results, we found significant predictors
of changes in the probit_wADGR were restrictions on gathering, closing public transport,
closing school, vaccine coverage, and a log of population density.

Figure 7. The effectiveness of NPIs on average daily growth rate (wADGR) among Asian countries
under the vaccine rollout scenarios.

The right panel of AME shows that restrictions on gathering have the highest effect
on reducing the wADGR. Changes for restrictions on gathering from “no measure of
restrictions on gathering” to restrictions on gatherings of <10 people, 10–100 people, and
over 100 people were associated with decreasing the wADGR by 0.77%, 0.65%, and 0.74%,
respectively. Regarding vaccine coverage, for the time that countries achieved 1–5%,
5–10%, 10–30%, and over 30%, the wADGR decreased by 0.12%, 0.32%, 0.31%, and 0.59%,
respectively, compared to the period with below 1% vaccine coverage. The results indicated
that closing public transport contributes to a lower wADGR of 0.42% compared to no
measure of restrictions on public transport. In contrast, school closing at all levels increased
wADGR by 0.33% compared to no measure. We also found a negative coefficient of the
population density (log transformation), which indicated that the higher the population
density, the lower the wADGR.

4. Discussion

To our knowledge, this is the first study to systematically investigate the effects of
NPIs on the epidemic rate of COVID-19 in the pre- and post-vaccination period in Asian
countries. Our finding highlighted that although the implementation of NPIs in the period
of vaccine rollout has lower declining effects on epidemic rate compared with the initial
phase of the pandemic, several NPIs are still considerably contributing to containing the
widespread SARS-CoV2 virus.
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4.1. The Pre-Vaccination Period

We found that mask-wearing requirements, restrictions on international travelers, and
testing policies significantly predict the reduction of the epidemic during the study period
of 2020.

There is evidence from cross-country studies that facial-covering policies demonstrated
their effectiveness in containing the infection rate [15,19]. However, their effectiveness in
the prevention of SARS-CoV transmission has been a controversial issue. Pozo Martin
et al. showed that an earlier implementation of mask-wearing requirements led to a greater
reduction in epidemic growth during the initial phase of the pandemic [15]. A recent
meta-analysis study concluded that mask-wearing by the public is strongly recommended,
especially when the widespread infection continues to grow, and physical distancing is
unable to conduct [34]. However, scholars debated the effectiveness of mask-wearing by
the public in countries where public events and gatherings at public spaces were strongly
restricted [35].

We also observed that border control was effective during the outbreak stage of 2020;
this result is consistent with those from previous studies [19,36]. In addition, recent studies
showed that prohibitions on all international travel significantly decreased the reproduction
number due to transmission from imported cases in Vietnam [37], and the peak number of
cases in Kazakhstan [38].

Our findings showed evidence of a differential effect on epidemic growth when
different levels of testing policy were implemented. This result is in line with previous
studies [39]. In an analysis with data from 40 countries, Jeffrey et al. found that countries
adopting broader testing have shown disease trajectory changes, and have the lowest
COVID-19 mortality rate [39]. A typical example is South Korea, where performing a mass
testing strategy was used as a key tool to detect the possible outbreaks, and flatten the
epidemic curve [18]. However, this policy might result in an increased growth rate in the
short term of the pandemic period [15,16].

With regards to the control variables, we found that, in countries with a higher UHC
index, the wADGR tends to be lower. UHC index is the extent of the ability of a government
to assure the provision of the essential health-related services people need in community
settings [40]. The United Nations proposed that UHC is an essential foundation of an
effective response to COVID-19 [41]. Furthermore, Yonghong et al. found that a higher
UHC index was correlated with a higher reduction in mobility, which might increase the
effectiveness of physical containment measures [42].

4.2. The Post-Vaccination Period

In comparison with the initial phase of the pandemic, our finding supports the evi-
dence that NPIs have a smaller effect on decreasing the wADGR during the latter phase of
the pandemic [15,43]. A possible explanation for this might be the influence of other factors
on lowering the effects of public health measures, including the compliance of people with
NPIs [44], pandemic fatigue [20], and the emergence of new variants [45]. However, NPIs
keep playing a key role in preventing the widespread pandemic across Asian countries
where vaccine rollout is still slow and has a low coverage rate. These results were also
in line with the previous modeling studies [46–48]. A data-driven model study across
200 countries found that the combined effects of NPIs and vaccination might decrease 99%
the COVID-19 burden [46].

Our finding found higher vaccination coverage was significantly associated with
reducing epidemic growth rate. Liang et al. found that vaccine coverage was signifi-
cantly linked to a reduction in case mortality rates after the percentage of the population
vaccinated reached 8% [49]. Another study discovered that vaccination coverage could
contribute more to preventing the spread of pandemic than vaccine efficacy [50].

Our study revealed that limitations on gatherings and public transport closure were
both highly effective in reducing COVID-19 transmission under the vaccination scenarios.
In a survey carried out in 130 countries, restrictions on gatherings had significant impacts
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on reducing the epidemic growth rate [19] during the latter phase of a pandemic. Liang
et al. found that the effects of restrictions on gatherings on prolonging the double case
were only consistent over a long period in the nations with a high level of government
effectiveness [43]. Although the effectiveness of public transport closure was shown in
studies during the earlier phase of the pandemic [16,17,51], we have not found that this
measure was a predictor of the flattening of the epidemic growth under the vaccination
period. Since the number of studies on the effects of NPIs in the post-vaccination period is
limited, further study is needed to investigate the other factors related to the mechanisms
behind this phenomenon.

Surprisingly, the policy of school closure had the opposite effect on the reduction of
infection rate. This finding is inconsistent with previous studies [43]. Liang et al. found
the school closure was effective in prolonged COVID-19 case doubling time [43]. The
opposite effect could reflect the new strategies of NPI implementation in the late pandemic
or post-vaccination period [52]. In the countries witnessing a drop in new cases, the NPIs
could be gradually relaxed to reduce the negative impacts on society and the economy,
whereas countries with a continuous growth of new cases can keep implementing NPIs.

Our model also identified that population density was negatively associated with the
epidemic growth rate of these control variables. This result is counterintuitive because the
countries with higher population density tend to increase the contact probability, and raise
the infection rate. Therefore, this result could be an artefact. A similar finding of an artefact
was also observed in a previous study in which the countries with a higher percentage of
an urban population led to a decrease in the epidemic rate [15].

Our study has some limitations. Firstly, all information of new cases was mainly
based on the government report, and COVID-19 incidence might be underreported in
some countries with limitations in their national health information systems or testing
capability. Secondly, our model cannot cover all aspects or factors that might influence
the growth rate of COVID-19 cases, including adherence to NPI policy, the quality of
NPI implementation, and the influence of meteorological factors. Therefore, our results
might have underestimated or overestimated the effectiveness of NPIs. Further studies are
necessary when the data on these factors become available. In this study, available data on
NPIs policies were mainly focused at the national level on the OxCGRT database; hence,
regional policies were not included in our analysis.

Despite the above limitations, our studies have some significant contributions to the
existing literature on the effectiveness of NPIs in combination with vaccination. Firstly,
after integrating the vaccination data, we evaluated the effects of NPIs under vaccination
scenarios; providing evidence to urge policymakers to pay more attention before mitigating
the level of NPIs in the different contexts of vaccine coverage. Secondly, we utilized
longitudinal data that can take into account the effects of NPIs in different time points
within different countries. In addition, we extended the study period to 20 weeks to
evaluate the stability of NPI effects on epidemic growth.

5. Conclusions

This study examined the effects of NPIs on the epidemic growth rate across 30 Asian
countries during the pre- and post- vaccination period. The policies of facial coverings,
testing, and border control considerably decreased the average daily growth rate in the
weekly cumulative COVID-19 cases during the pre-vaccination period. In the latter period,
restrictions on gatherings, and public transport closure were the most significant interven-
tions to control the pandemic. Therefore, NPIs continue to play a significant role in curbing
the COVID-19 pandemic, even with the implementation of vaccination. Our results make
the implication that countries should be cautious in the mitigation of NPI intensity level
before achieving the target immunization coverage rate.
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