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Abstract

Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions
between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness.
We used a functional magnetic resonance imaging paradigm designed to dissociate the various components of the cortico-
limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), to explore bottom-up appraisal
as well as top-down control during emotion processing. In schizophrenia patients compared with healthy controls, bottom-up
processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and
the dorsolateral prefrontal cortex. Contrariwise, top-down control processes led to stronger connectivity between the ventral
affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the dorsolateral prefrontal
cortex as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction
in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the pre-
frontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit.
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Introduction

Emotional disturbances are critical features of schizophrenia
with significant consequences for clinical trajectory and func-
tional outcome (Yung and McGorry, 1996; Hafner et al., 2003; Kee
et al., 2003). Research on healthy individuals suggests that emo-
tional processing is mediated through reciprocal interaction of a
ventral and a dorsal system, which define the cortico-limbic cir-
cuit. Schematically, the ventral system is centered in the limbic
regions, particularly the amygdala, and is involved in bottom-
up appraisal of emotional information and subsequent produc-
tion of the affective state. The dorsal system, which includes
the dorsal regions of the prefrontal cortex (PFC) and the anterior
cingulate cortex (ACC), enables top-down regulation of emo-
tional responses (Phillips et al., 2003, 2008).

Neuroimaging studies of emotional processing in schizophre-
nia have extensively focused on the amygdala, given its cardinal
role in affective processing. There is, however, a disparity in the
results reported to date. Numerous studies show underrecruit-
ment of the amygdala in schizophrenia patients (Gur et al., 2002;
Paradiso et al., 2003; Takahashi et al., 2004; Seiferth et al., 2009),
while others demonstrate intact or even overrecruitment of the
amygdala (Kosaka et al., 2002; Taylor et al., 2005; Holt et al., 2006;
Hall et al., 2008). Recent meta-analyses report a modest degree of
amygdala underrecruitment in schizophrenia patients as com-
pared with healthy controls (Anticevic et al., 2012; Taylor et al.,
2012). Yet between-group differences in amygdala activity are
strongly determined by methodological variables (e.g. the use of
neutral stimuli as control condition) (Hall et al., 2008; Blasi et al.,
2009; Salgado-Pineda et al., 2010; Anticevic et al., 2012; Taylor et al.,
2012). It remains therefore difficult to reach firm conclusions.
Similarly, an extensive literature describes dysfunctional engage-
ment of PFC in schizophrenia, particularly in the dorsolateral PFC
(DLPFC) and the ACC, during tasks of executive function
(Weinberger et al., 1986; Barch et al., 2003; Kerns et al., 2005).
Importantly, control processes mediated by prefrontal and cingu-
late cortices also contribute to emotional processing (Ochsner
and Gross, 2005), notably through the interpretation and regula-
tion of emotions (Phan et al., 2002; Delgado et al., 2008; Goldin
et al., 2008). Although prefrontal recruitment has been poorly
explored in the context of emotional tasks, some studies have
shown abnormal engagement of DLPFC as well as ACC in schizo-
phrenia or psychosis proneness during tasks requiring cognitive
reappraisal or inhibition of emotional distractors (Park et al., 2008;
Dichter et al., 2010; Modinos et al., 2010; Anticevic et al., 2011;
Morris et al., 2012; van der Meer et al., 2014).

Rather than considering solely the blood oxygen level-
dependent (BOLD) activation of restricted brain regions, the
exploration of connectivity in brain circuits may be more inform-
ative. The dysconnection hypothesis in schizophrenia has be-
come increasingly influential (Weinberger et al., 1992; Friston and
Frith, 1995). It relies on converging evidence of widely distributed
abnormalities in structural and functional connectivity
(Weinberger et al., 1992; Friston and Frith, 1995; Stephan et al.,
2006; Pettersson-Yeo et al., 2011; Buckholtz and Meyer-Lindenberg,
2012). This theory proposes that abnormal integration between
distinct brain regions underlies the impairments found in schizo-
phrenia (Friston and Frith, 1995). Accordingly, the aberrant emo-
tional responses observed in schizophrenia may result from
impaired connectivity between cortico-limbic regions that sup-
port emotional processing. Connectivity studies in schizophrenia

have mainly focused on amygdala interactions and principally
shown that patients have absent or decreased amygdala func-
tional connectivity with PFC during emotional facial processing
(Das et al., 2007; Fakra et al., 2008; Satterthwaite et al., 2010), nega-
tive affective interference (Anticevic et al., 2012) and at rest
(Anticevic et al., 2014; Liu et al., 2014). There is also some evidence
to suggest disturbed integration within prefrontal regions in pa-
tients during cognitive tasks (Kyriakopoulos et al., 2012;
Sambataro et al., 2012). However, the functional connectivity of
dorsal cognitive regions in schizophrenia patients has yet to be
addressed within an emotional context. Furthermore, by focusing
solely on ‘bottom-up’ or ‘top-down’ mechanisms, the results of
previous studies make it difficult to draw definitive assumptions
about the respective involvement of appraisal and control sys-
tems in the emotional disturbances observed in schizophrenia. In
this study, we explored changes in functional connectivity in
schizophrenia patients during an emotional task purposely de-
signed to dissociate the various components of the cortico-limbic
circuit, that is, the dorsal cognitive circuit (dorsal ACC–DLPFC) and
the ventral automatic circuit (ventral ACC–amygdala). More spe-
cifically, the task varied according to three parameters that differ-
entially indexed processes of appraisal and regulation: emotional
valence (positive or negative), emotional congruency (same or op-
posite emotional stimulus content) and allocation of attention
(low or high attentional load) (Comte et al., 2014).

Materials and methods
Participants

Twenty-eight patients with schizophrenia and 33 demographic-
ally matched healthy volunteers completed the study. All pa-
tients fulfilled diagnostic and statistical manual of mental
disorders (DSM)-IV-repetition time (TR) criteria for schizophrenia
(American Psychiatric Association, 2000) and were stabilized by
antipsychotic monotherapy with Aripiprazole or Risperidone for
at least 6 weeks prior to the study. Healthy controls were
matched to patients on gender, age and education. The non-
patient version of the Structured Clinical Interview for DSM-IV
(First et al., 2002) was used to ensure the absence of any psychi-
atric disorder or psychiatric history in control participants.
Individuals were excluded from both groups if any of the follow-
ing were present: magnetic resonance imaging (MRI) contraindi-
cation; history of head trauma or neurological disorder;
concomitant major medical disorder or drug abuse. All partici-
pants were right-handed according to the Edinburgh Handedness
Inventory (Oldfield, 1971). This study was conducted in accord-
ance with the principles of the declaration of Helsinki. Approval
was obtained from the local ethics committee (Comité de protec-
tion des personnes, Marseille). Each participant gave informed
written consent before entering the study.

Data from nine participants were removed because of exces-
sive head motion, anomalies detected on anatomical scans or
visible artifacts in functional images. Thus, the final analyses
included data from 26 patients and 26 healthy controls (Table 1).

Experimental paradigm

In the experimental task [variable attention and congruency
task (VAAT), Comte et al., 2014], participants were presented
with images composed of two parts. The central part of the
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image displayed photographs of faces expressing positive emo-
tion (joy) or negative emotion (fear, disgust or anger), from the
NimStim Face stimulus set (Tottenham et al., 2009). The periph-
eral part, on which face images were superimposed, repre-
sented scenes with pleasant or unpleasant emotional content,
extracted from international affective picture system (IAPS) files
(Lang et al., 2008). Subjects were asked to focus on the part of
the image framed in green (either the central face or the periph-
eral scene) and determine its emotional content (pleasant vs
unpleasant) by pressing the corresponding key.

The task (VAAT) consisted of 2� 2� 2 conditions varying ac-
cording to emotional valence (positive or negative), emotional
congruency (same or different emotional content in the face
and the scene) and attentional load [attention focused on the
face (low attention) or on the scene (high attention)]. The VAAT
had a mixed event-related/block design, comprising four ses-
sions of 6 min 8 s each. The sessions were divided in 16 blocks
that each lasted 20.4 s. The blocks began by an instruction panel
(displayed during 1400 ms) specifying which part of the image
the participant had to focus on during the block, followed by
four experimental trials, each lasting 3000 ms, during which
time subjects provided their response. The valence parameter
varied from trial to trial whereas the congruency and attention
parameters varied from block to block. The interstimulus inter-
val (ISI) and interblock interval (IBI) were randomly jittered
ranging from 1 to 1.8 s for the ISI and from 1.2 to 2 s for the IBI,
with a respective mean of 1.4 and 1.6 s. Block order was random-
ized within sessions, and the order of the sessions was counter-
balanced across subjects.

Behavioral data analysis

Behavioral data [reaction time (RT) and accuracy] were analyzed
using statistical package for the social sciences (SPSS) (v18.0).
Effects of diagnostic and task conditions on participants’ per-
formance were assessed by entering subjects’ mean RT and ac-
curacy for each condition into a mixed model analysis of
variance (ANOVA) with one between-subject factor (schizophre-
nia patients vs healthy controls) and three within-subject

factors (emotional valence, emotional congruency and atten-
tional load). In case of significant effects, Bonferroni corrections
were applied in post hoc analyses to correct for multiple
comparisons.

MRI acquisition

Data were acquired on a 3-T MEDSPEC 30/80 AVANCE imager
(Bruker). After an initial localizing scan, functional data were
acquired using a T2*-weighted gradient-echoplanar imaging se-
quence (TR¼ 3000 ms; echo time (TE)¼ 30 ms; field-of- view
(FOV)¼ 192� 192 mm; 64� 64 matrix; flip angle 84.8�; voxel size
3� 3� 3 mm3). Four functional runs of 45 interleaved axial slices
were acquired along the anterior–posterior commissure plane
with a continuous slice thickness of 3 mm. Following the func-
tional MRI (fMRI) scans, high-resolution anatomical images
were acquired for the purpose of anatomical identification with
a sagittal T1-weighted magnetization-prepared rapid gradient-
echo (MP-RAGE) sequence (TR¼ 9.4 ms; TE¼ 4.42 ms; inversion
time (TI)¼ 800 ms; 256� 256� 180 matrix; flip angle 30�, voxel
size 1� 1� 1 mm3).

fMRI data analysis

All data were analyzed using SPM8 software (Wellcome depart-
ment of Cognitive Neurobiology, University College London;
http://www.fil.ion.ucl.ac.uk/spm/software/spm8). We performed
standard preprocessing procedures, including slice timing cor-
rection, motion correction, coregistration of anatomical images
to the functional images, normalization into the Montreal
Neurological Institute space and smoothing with a 6 mm
Gaussian kernel. Realignment plots were examined to ensure
the absence of excessive movements during the scan. Data were
discarded from further analysis if movements in any axis were
superior to 3 mm and/or 2�.

The preprocessed functional images were analyzed using an
event-related approach. Hemodynamic responses were mod-
eled using a canonical function and convolved with the onsets
and durations of each condition to form the general linear
model. Six movement parameters were included in the analysis
as regressors of no interest. A 128 s high-pass filter was applied
to the data to remove low-frequency noise. First-level contrast
images were calculated to estimate BOLD signal changes due to
variations in: emotional valence (negative vs positive valence
conditions), emotional congruency (incongruent vs congruent
conditions) and attentional level [attention to the scene (high)
vs attention to the face (low)]. The first-level contrast images
were then entered into a second-level two-sample t-test with a
random effects statistical model to examine between-group ef-
fects. We used a region of interest (ROI) approach focusing on
areas previously implicated in emotion processing: the amyg-
dala, ACC and DLPFC. The ROIs were anatomically defined using
the Automated Anatomical Labeling software implemented in
the Wake Forest University School of Medicine Pickatlas (WFU)
PickAtlas (Maldjian et al., 2003). Results were examined at
P< 0.001 voxel-wise (uncorrected for multiple comparisons),
and clusters were considered significant at P< 0.05 [family-wise
error (FWE) corrected at the cluster level]. Finally, we also per-
formed exploratory whole-brain analyses, with a threshold of
P< 0.001 (uncorrected) and a 10 voxel spatial extent.

Functional connectivity analyses

We used a generalized form of psychophysiological interaction
(gPPI, http://brainmap.wisc.edu/PPI) (McLaren et al., 2012) to

Table 1. Sociodemographic and clinical characteristics of
participants

Schizophrenia
patients
(N ¼ 26)

Healthy
controls
(N ¼ 26)

P

Age (years) 32.31 (8.87) 32.65 (7.68) 0.88
Gender(male/female) 17/9 17/9 1
Educational level (years) 12.0 (2.57) 12.85 (1.59) 0.16
NART score (premorbid IQ) 25.5 (7.4) 28.5 (5.2) 0.10
Aripiprazole (N) 15
Risperidone (N) 11
Chlorpromazine

equivalents (mg/day)
274.36 (139.07)

Total PANSS score 46.65 (18.09)
Positive factor 8.04 (5.02)
Negative factor 13.04 (7.32)
Excitation factor 2.81 (3.45)
Cognitive factor 9.27 (3.93)
Depression factor 5.19 (3.0)

Notes: Means are presented with s.d.’s in parentheses. PANSS, Positive and

Negative Syndrome Scale; IQ, intelligence quotient; NART, National Adult

Reading Test.
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assess context-dependent variations in functional connectivity
between the ROI. gPPI can model all task conditions simultan-
eously resulting in a better model fit compared with traditional
PPI analyses. We conducted three separate gPPI analyses using
the three ROI as seed regions to examine the variations in their
functional interactions according to either the negative>posi-
tive contrast (for the amygdala), incongruent> congruent con-
trast (for the ACC) and high attention> low attention contrast
(for the DLPFC). For each subject, the seed masks were created
using a 5 mm radius sphere (3 mm for the amygdala) around the
coordinates of the subject-specific local maxima in the ROI that
were within 15 mm (10 mm for the amygdala) of the between-
group difference maxima or, in absence of significant group
difference, of the healthy group maxima and within the same
anatomical mask, as defined by the PickAtlas toolbox (Maldjian
et al., 2003). Within each seed region, the time series of the first
eigenvariate of the BOLD signal were temporally filtered, mean
corrected and deconvolved to generate the physiological vari-
able. PPI terms were computed as the cross product of the
physiological variable and each task regressor (negative va-
lence, positive valence, congruent, incongruent, low attentional
load and high attentional load). Finally, the physiological vari-
able of the seed region, the psychological regressors and
PPI variables were entered as regressors in a first-level general
linear model (GLM). The six movement parameters were also
included in the model as nuisance variables.

The individual contrast images were then entered into
second-level analyses using two-sample t-tests to assess
between-group effects on functional connectivity. Given the
subtle nature of brain activity during emotion processing, the
use of a priori defined regions, and the general tendency of PPI
analyses to lack power and generate a high proportion of false
negatives (O’Reilly et al., 2012), group differences were assessed
at a combined statistical threshold of P< 0.005 voxel-wise with
a 10 voxel extent threshold. This approach provides a reason-
able balance with respect to types I and II error concerns
(Lieberman and Cunningham, 2009) and is consistent with ear-
lier studies on emotional processing in psychiatric populations
(Foland et al., 2008; Monk et al., 2008; Townsend et al., 2013).

Finally, to assess any associations between functional brain
imaging data and either severity of symptoms or treatment,
additional analyses were conducted in patients. Doses of anti-
psychotic medication were converted to chlorpromazine
equivalence (Woods, 2003). Using the MARSBAR toolbox (Brett
et al., 2002), we extracted for each patient the mean activity and
connectivity beta values from the significant clusters obtained
in between-group analyses. We carried out correlation analyses
between BOLD activation and functional connectivity data and
chlorpromazine equivalent, as well as each dimension of the
Positive and Negative Syndrome Scale (negative, positive, cogni-
tive, excitation and depression) (Lindenmayer et al., 1995).
Bonferroni corrections were applied to correct for multiple
comparisons.

Results
Behavioral data

The mixed model ANOVA revealed a significant main effect of
group (F 1,50¼ 4.54, P¼ 0.038) on RT, suggesting that schizophre-
nia patients were generally slower than healthy controls.
Results also showed main effects of congruency (F 1,50¼ 11.45,
P¼ 0.001) and attention (F 1,50¼ 188.35, P� 0.001). There was no
significant main effect of valence on RT. There was a significant

interaction between group and congruency (F 1,50¼ 5.40,
P¼ 0.024). Post hoc t-tests revealed that the slowing induced by
incongruency (RTs for incongruent stimuli minus RTs for con-
gruent stimuli) was amplified in patients compared with con-
trols (t 50¼ 2.32, P¼ 0.024). There was no significant group �
attention interaction (Supplementary Figure S1).

Participants’ accuracy was high, with a mean value of
92.3% (s.d.¼ 1) for healthy controls and 85.5% (s.d.¼ 2.1) for schizo-
phrenia patients. There was a main effect of group (F 1,50¼ 8.31,
P¼ 0.006), indicating that patients were generally less accurate in
performing the task. The mixed model ANOVA also revealed main
effects of congruency (F 1,50¼ 14.40, P� 0.001). There was no sig-
nificant main effect of valence or attention on accuracy. There
was a significant interaction between group and congruency (F
1,50¼ 4.46, P¼ 0.040). Post hoc t-tests suggested that the decrease
in accuracy as a function of congruency (% correct for incongruent
stimuli minus % correct for congruent stimuli) was greater for pa-
tients compared with controls (t 50¼ 2.11, P¼ 0.040); however, this
result did not survive Bonferroni correction for multiple compari-
sons (Supplementary Figure S1).

Because behavioral data suggest that the task may have
been more difficult for schizophrenia patients than healthy con-
trols, all imaging analyses reported below were carried out with
subjects’ between-task mean RT and accuracy differences
entered as covariates, thus ensuring that effects of task diffi-
culty would not confound interpretation of the fMRI data (Price
and Friston, 1999; Callicott et al., 2000).

fMRI data

Regional brain activation. For the valence contrast (negative vs
positive stimuli), t-test analysis revealed no significant group
differences in amygdala activity. Likewise, the comparison be-
tween incongruent and congruent conditions revealed no sig-
nificant group differences in BOLD signal within the ACC that
survived cluster-wise FWE correction for multiple comparisons.
Finally, when comparing high with low attentional load
(i.e. focusing on the scene rather than the face), patients dem-
onstrated decreased activity relative to controls within the right
DLPFC [x, y, z ¼ 52, 24, 28; k ¼ 29; T ¼ 3.5; P (FWE cluster-wise)¼
0.043], indicating weaker recruitment of this region in patients
in response to higher attentional demands. Results obtained
from whole-brain analyses are displayed in Supplementary
Table S1.

Functional connectivity: gPPI. In response to negative valence
compared with positive valence stimuli, gPPI analyses revealed
that schizophrenia patients, relative to healthy controls, ex-
hibited significant weaker task-related increase in functional
coupling between the amygdala seed region and both dorsal
ACC (x, y, z¼ 2, 14, 28; k ¼ 35; T¼ 3.73; P� 0.005) and ventral ACC
(x, y, z¼ 8, 34, �10; k ¼ 16; T¼ 3.54; P� 0.005), as well as left
DLPFC (x, y, z¼�46, 8, 22; k¼ 30; T ¼ 3.45; P� 0.005). In response
to incongruent vs congruent trials, patients compared with con-
trols showed stronger task-related functional connectivity be-
tween the dorsal ACC seed region and more ventral parts of the
ACC (x, y, z �12, 44, 14; k¼ 37; T ¼ 4.22; P� 0.005; x, y, z 6, 46, 16;
k¼ 23; T ¼ 3.33; P� 0.005; and x, y, z 4 22 �8; k¼ 12; T ¼ 3.29;
P� 0.005). Finally, as a result of increased attentional load, pa-
tients compared with controls, exhibited increased task-related
functional connectivity between the DLPFC seed region and
ventral ACC (x, y, z 2, 26, 14; k¼ 29; T ¼ 3.14; P� 0.005) (Figure 1).

Furthermore, there was a significant negative correlation be-
tween DLPFC activity in high attentional condition compared
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with low attentional condition and antipsychotic dosage
(r ¼ �0.504, P¼ 0.009). No other correlation survived Bonferroni
correction for multiple comparisons.

Discussion

This study explored variations in functional connectivity
underlying bottom-up appraisal and top-down regulation
mechanisms during emotion processing in schizophrenia pa-
tients. For this purpose, we independently manipulated three
experimental parameters: emotional valence assessed bottom-
up processing, whereas congruency and allocation of attention
evaluated top-down modulation. Regarding bottom-up ap-
praisal processing, schizophrenia patients relative to healthy
controls demonstrated reduced task-related functional inter-
action between the amygdala seed region and prefrontal

cortical regions (dorsal and ventral ACC as well as left DLPFC).
Concerning top-down processes, patients showed a broad pat-
tern of increased task-related functional connectivity in the dor-
sal component of the cortico-limbic system. More precisely, this
pattern was characterized by increased task-related coupling
between the dorsal ACC seed region and ventral ACC as well as
enhanced task-related coupling between the DLPFC seed region
and ventral ACC.

Bottom-up processes

Our findings reveal reduced task-related functional interaction
(i.e. weaker increase in connectivity in response to negative
compared with positive stimuli) between the amygdala and
both ACC and DLPFC. This result confirms previous literature
reporting decreased or absent connectivity between the

Fig. 1. Functional connectivity analyses. Upper panel (I): voxels in ACC (B) and in left DLPFC (C) that show lower connectivity with the right amygdala (A) in schizophre-

nia patients compared with healthy controls. (D) Schematic representation of between-group differences in amygdala functional connectivity as a function of valence;

the blue arrows represent decreased connectivity in patients compared with controls. Middle panel (II): voxels in the ventral ACC (F) that show stronger connectivity

with the dorsal ACC (E) in patients compared with controls during emotional conflict. (G) Schematic representation of between-group differences in dorsal ACC func-

tional connectivity as a function of conflict; the red arrows represent increased connectivity in patients compared with controls. Bottom panel (III): voxels in the ventral

ACC (I) that show stronger connectivity with the right DLPFC (H) in patients compared with controls during high attentional load conditions. (J) Schematic representa-

tion of between-group differences in DLPFC functional connectivity as a function of attention. Results are displayed on a single subject’s anatomical slices, at P<0.005

(uncorrected).
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amygdala and the PFC during emotional tasks (Das et al., 2007;
Fakra et al., 2008; Satterthwaite et al., 2010; Anticevic et al., 2012)
or at rest (Anticevic et al., 2014; Liu et al., 2014). The amygdala is
believed to be involved in early/automatic processing of the
emotional salience of sensory stimuli (Davis and Whalen, 2001;
Phillips et al., 2003), and to signal the occurrence of biologically
relevant sensory stimuli in preparation for an appropriate re-
sponse (LeDoux, 2000). In so doing, the amygdala mediates the
privileged access of emotional information (particularly that
related to fear) to attentional systems, through a bottom-up in-
fluence on higher-order executive control regions (Armony and
LeDoux, 1997; Whalen et al., 1998; Phelps, 2006). Conversely, the
prefrontal and cingulate cortices are regions strongly related to
the evaluative aspects of emotional processing (Hariri et al.,
2003), such as awareness and interpretation of emotional stim-
uli (Lane et al., 1997; Davidson and Irwin, 1999; Phan et al., 2002;
Ochsner and Gross, 2005). Such connectivity deficits observed
here in bottom-up processes may thus underlie patients’ diffi-
culties in judging the significance of emotional stimuli and re-
sponding accordingly.

Top-down processes

Impaired conflict monitoring, mediated by ACC dysfunction,
has been proposed to play an important role in cognitive control
deficits in schizophrenia patients (Kerns et al., 2005). Analogous
to the ventral/dorsal distinction in the limbic system, the ACC
has been divided into ‘cognitive’/dorsal and ‘affective’/ventral
subdivisions (Bush et al, 2000; Mohanty et al., 2007). Consistent
with previous literature, we found that incongruent compared
with congruent trials were associated with reduced functional
connectivity between dorsal and ventral ACC in healthy con-
trols (Margulies et al., 2007) but with stronger functional cou-
pling between ACC subregions in schizophrenia patients
(Garrity et al., 2007; Hoptman et al., 2010; Salvador et al., 2010).
Such a lack of functional decoupling within the ACC during
emotional conflict may relate to patients’ difficulty in appre-
hending ambiguous emotional information (Miller and Cohen,
2001; Egner and Hirsch, 2005; Speechley et al., 2013; Mitchell and
Rossell, 2014; Patrick et al., 2016, 2015).

Similarly, the other top-down condition, i.e. the contrast of
high vs low attentional demand, showed that schizophrenia pa-
tients, when compared with healthy controls, exhibited signifi-
cantly reduced activation within the right DLPFC and higher
task-related functional coupling between DLPFC and ventral
ACC. An extensive literature has shown that prefrontal dysfunc-
tion constitutes a robust and critical pathophysiological feature
in schizophrenia (Weinberger et al., 1992; Barch et al., 2003;
Dichter et al., 2010; Taylor et al., 2012; Tully et al., 2014; Shin et al.,
2015). The DLPFC is considered a key region in top-down modu-
lation of stimulus processing (Miller and Cohen, 2001; Corbetta
and Shulman, 2002), particularly by controlling the allocation of
attentional resources (Price and Friston, 1999; MacDonald, 2000;
Perlstein et al., 2001; Ramsey et al., 2002; Blasi et al., 2007).
The decreased DLPFC BOLD signal we observed in patients may
also be explained by treatment effects, as we noted an inverse
correlation between DLPFC activity and antipsychotic dosage.
It should be noted, however, that the literature is sparse and in-
conclusive regarding the influence of antipsychotics on pre-
frontal functioning (Honey et al., 1999; Snitz et al., 2005; Keedy
et al., 2009), and our study design is not adequate for testing
treatment effects.

In addition to reduced DLPFC BOLD signal, schizophrenia pa-
tients exhibited higher activity than controls in a set of regions

including cuneus, precuneus, precentral gyrus and middle frontal
gyrus during conditions of high attentional load. Interestingly, ear-
lier neuroimaging studies (Fakra et al., 2008; Mukherjee et al., 2014),
as well as a recent meta-analysis (Taylor et al., 2012), have found
these regions to be more strongly activated in schizophrenia pa-
tients during emotional processing, even though they are not usu-
ally solicited in emotional tasks. One may therefore speculate that
the overrecruitment of these regions indicates compensatory pro-
cess meant to counterbalance ineffective DLPFC functioning when
attentional demands increase. Alternatively, this distributed net-
work of activation, or less ‘tuned’ activity, may indicate unstable
cortical signal processing in the PFC, a characteristic feature of
schizophrenia (Winterer et al., 2006). As such, attentional proc-
esses that specifically engage DLPFC in healthy subjects would in-
stead recruit a broader set of ‘non-specialized’ brain regions in
patients, coherent with the view of decreased functional segrega-
tion of prefrontal brain regions in schizophrenia.

This study has some limitations. The interpretation of our
connectivity analyses must be considered within the context of
the inherent limitations of functional connectivity measures.
PPI connectivity analyses rely on statistical correlations and
thus cannot indicate the directionality of regional influence.
Nonetheless, we believe that theory and previous research lay a
reasonable foundation for the model presented. Indeed, numer-
ous studies support the view that the amygdala facilitates per-
ceptual processing of emotion-laden stimuli especially negative
ones by biasing attention through bottom-up influences on
higher attentional control regions (LeDoux, 2000; Davis and
Whalen, 2001; Phelps, 2006). Concurrently, a growing literature
indicates that cognitive processes such as distraction, re-
appraisal or even emotional conflict resolution can regulate
emotional responses through top-down negative effects on
amygdala activity (Ochsner and Gross, 2005; Etkin et al., 2006;
McRae et al., 2010; Kanske et al., 2011; Ochsner et al., 2012).
Additionally, we were able to relate PPI results to behavior per-
formances within the various conditions under study, thus
strengthening our findings. Interestingly, correlations between
connectivity indices and performances in the behavioral task
confirmed our expectations: when switching to the increased
difficulty-load condition (i.e. positive to negative stimuli or low-
attention to high-attention stimuli), executing the task required
greater connectivity and was associated with longer RTs as well
as lower accuracy. This stood true for both healthy controls
and patients. However, in the congruency contrast, decoupling
of the ACC subregions was associated with better accuracy
in healthy controls but not in patients (Supplementary
Information).

In summary, the current findings demonstrate that schizo-
phrenia is associated with disturbed functional connectivity
within the cortico-limbic system during emotional processing.
These abnormal patterns of connectivity comprise a loss of cou-
pling in amygdala-PFC circuits during bottom-up emotional
processes associated with increased connectivity between the
ventral affective and the dorsal cognitive subcircuits during top-
down emotional control. Functional dysconnection has been
widely implicated as a core pathological factor in schizophrenia.
Studies of functional connectivity disturbance in schizophrenia
have found changes in a wide variety of brain systems, many of
which involve prefrontal brain regions (Cole et al., 2011;
Pettersson-Yeo et al., 2011; Fornito et al., 2012). Although de-
creases in functional connectivity are more commonly reported
(Lynall et al., 2010; Zalesky et al., 2010), there is a substantial
number of studies describing functional connectivity increases
within frontal regions in schizophrenia patients and non-
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affected first degree relatives, both at rest and during the execu-
tion of cognitive tasks (Whitfield-Gabrieli et al., 2009; Skudlarski
et al., 2010; Sambataro et al., 2012). Fornito and Bullmore (2015)
recently proposed an explanatory framework for brain dyscon-
nection in schizophrenia, suggesting that neurodevelopmen-
tally driven reductions in anatomical connectivity, especially
within associative areas that constitute hubs integrating infor-
mation from different network components, could dysregulate
communication across widespread areas. This would lead to
complex alterations in brain dynamics including both abnormal
hypo- and hyperconnectivity. In this model, connectivity in-
creases may reflect a compensatory process for dysregulated
signaling in specific parts of the network or may result from ab-
normal wiring of structural connections leading to a breakdown
of normally segregated systems and a dedifferentiation of neu-
ral activity. Such mechanisms would appear in our results as
both a diffuse pattern of activation (rather than a focused signal
in the DLPFC) and aberrant amplified connectivity in the PFC,
likely reflecting cortical hyperexcitability and resulting
increased neural synchrony (Spencer et al., 2004).
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