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Ring topologies of repressing genes have qualitatively different long-term dynamics if the
number of genes is odd (they oscillate) or even (they exhibit bistability). However, these
attractors may not fully explain the observed behaviour in transient and stochastic environ-
ments such as the cell. We show here that even repressilators possess quasi-stable, travelling
wave periodic solutions that are reachable, long-lived and robust to parameter changes. These
solutions underlie the sustained oscillations observed in even rings in the stochastic regime,
even if these circuits are expected to behave as switches. The existence of such solutions
can also be exploited for control purposes: operation of the system around the quasi-stable
orbit allows us to turn on and off the oscillations reliably and on demand. We illustrate
these ideas with a simple protocol based on optical interference that can induce oscillations
robustly both in the stochastic and deterministic regimes.
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1. INTRODUCTION

Recent experimental advances in cellular and molecu-
lar biology have made it possible to engineer
intricate gene regulatory circuits (Andrianantoandro
et al. 2006). Inspired in many cases by electronic
elements, simple gene networks have been designed
to perform reproducible, low-level functions. Some
classic examples include the toggle switch (Gardner
et al. 2000), the genetic ring oscillator known as the
repressilator (Elowitz & Leibler 2000) or a circuit
that can exhibit both oscillatory and switching behav-
iour through the alteration of biochemical interactions
(Atkinson et al. 2003). Such simple circuits could be
potentially interconnected and built up to form more
elaborate ‘biological devices’ with large numbers of
components. This trend is facilitated by simulation soft-
ware containing large numbers of genes (Marchisio &
Stelling 2008) as well as libraries of composable bio-
logical parts for experimental realization (MIT 2009).
Simple synthetic modules can also be integrated into
the complex machinery of the cell, as in the oscillator
recently implemented in a mammalian cell (Tigges
et al. 2009), or interfaced with cellular pathways to
induce particular responses, as in the construct
where the toggle switch was connected to the SOS
pathway to induce DNA protection mechanisms in
Escherichia coli when exposed to ultraviolet (UV)
light (Kobayashi et al. 2004). Similar principles have
been exploited in the rational design of internal
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negative feedback operated in conjunction with
external arabinose-driven positive feedback to produce
cell-synchronized oscillations (Stricker et al. 2008).

The central role played by oscillations in cellular
function has made oscillatory circuits a primary target
for the analysis and design of synthetic networks. A
particular area of interest is the elucidation of strategies
leading to robust timing and sequential activation in
the cell. For instance, key stages in developmental
biology and in cell differentiation may be controlled
by so-called master regulators—a small set of transcrip-
tion factors sequentially activating and driving several
other genes with accurate timing (Borneman et al.
2006; Liu et al. 2007; Bondue et al. 2008). In addition,
studies of both natural (Megerle et al. 2008; Spencer
et al. 2009) and engineered circuits (Glick 1995)
indicate that the correct timing and order of gene
activation is a key characteristic of balanced, optimal
cell function, as it reduces the metabolic burdening
that ensues from the continuous presence of hetero-
logous substances (A. Glieder 2009, personal
communication).

In this paper, we consider the dynamics and control
of noisy genetic oscillatory circuits in quasi-stable mode
operation. We exemplify our results with one of the sim-
plest and most widely studied synthetic networks: the
n-gene ring repressilator (figure 1a). Some natural net-
works of master regulators (Borneman et al. 2006)
contain such ring structures as subnetworks, making
the exploration of their dynamic behaviour relevant
for both naturally occurring and synthetic systems.
The underlying idea is well-known: when observing
the dynamics of systems operating in highly variable
environments, such as the cell, it might not be enough
This journal is q 2010 The Royal Society
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Figure 1. Attractors of the generalized repressilator model. (a) Topology of the generalized repressilator: n genes in a cycle where
each gene is repressed by the protein product of the preceding gene. Also shown is the reaction scheme underlying the dynamical
system (1) with production and degradation terms for the mRNA (mj) and protein (pj) of each gene. The repression of the pro-
duction of mRNA is modelled by a Hill-type term H( pj21). (b) Typical time traces of the long-term deterministic dynamics of an
odd ring and an even ring above the bifurcation point, c ¼ 2: odd rings converge to a globally attracting periodic solution while
even rings converge to fixed points. The time traces shown correspond to n ¼ 23 and n ¼ 22. (c) Stability of the fixed points of the
system as a function of the bifurcation parameter c. Even rings undergo a pitchfork bifurcation at c ¼ 2, leading to the emergence
of two stable fixed points. Odd rings undergo a Hopf bifurcation leading to the emergence of a limit cycle. The critical parameter
for the Hopf bifurcation depends on n but tends to c ¼ 2 as n grows (see the electronic supplementary material).
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to characterize only the long-term attractors of the
system since unstable solutions can play a significant
role. For instance, quasi-stable transients might be so
long-lived as to be the most significant feature of the
observed noisy dynamics (Trefethen & Embree 2005).
Moreover, the presence of noise in nonlinear systems
may induce non-stationary dynamics in systems with
only fixed point attractors in the deterministic setting
(Süel et al. 2006) or, conversely, noise may act as a
J. R. Soc. Interface (2010)
stabilizer of unstable deterministic states (Turcotte
et al. 2008).

In the generalized repressilator, results due to Smith
(1987) and Müller et al. (2006) show that rings with an
even number of genes (e.g. the toggle switch (Gardner
et al. 2000) with n ¼ 2) exhibit multistability and
hence behave like switches in the stochastic regime.
On the other hand, rings with an odd number of
genes (like the standard repressilator (Elowitz & Leibler
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2000) with n ¼ 3) have a globally attracting limit cycle
and are therefore oscillators both in the stochastic and
deterministic regimes. However, here we show that gen-
eralized repressilators possess an intricate structure of
unstable periodic orbits that play an important part
in their observable noisy and transient dynamics. In
particular, even rings have a quasi-stable limit cycle
which, although unstable in terms of linear Floquet
stability analysis, has only one unstable direction with
a very slow escape rate. This means that trajectories
are attracted to the limit cycle from all directions but
one, hence leading to long-lived, inducible periodic tran-
sients in the deterministic setting and to sustained
oscillations in the stochastic system. These effects
become more pronounced as the number of genes
grows. Therefore, the finite-time, observable noisy
dynamics of an even repressilator ring is not necessarily
static (switch-like) but rather exhibits oscillatory
characteristics.

In addition to their effect on the observable
dynamics, quasi-stable oscillatory modes can be used
as operating points to control the system around
them. The advantage of such a scheme is that the oscil-
lations can be switched on and off, unlike the limit cycle
attracting behaviour of odd repressilators. Operation
around unstable modes, usually illustrated with an
example of the inverted pendulum (Franklin et al.
1993), is a classic scenario in control theory for
enhanced controllability and speed of response. It has
a long and successful history of applications in fluid
flow control (Ahuja & Rowley 2009) and in the steering
of jet aircraft (McRuer & Graham 2004). Here, we illus-
trate the application of this concept to gene networks
with a simple protocol of controlled interference based
on an optical mechanism for readout and induction of
gene expression. The current concept is based on an
alternative mechanism to the chemical intervention
proposed in Atkinson et al. (2003) to produce switch-
able oscillations. Our simulations show that even
repressilator rings in quasi-stable operation can
behave as a robust and on-demand switchable oscillator
in which genes become upregulated periodically in an
ordered sequence according to a travelling wave sol-
ution. This switchability, which is robust at both high
and low copy numbers, could be used for synthetic
biological applications such as accurately timed
interference with naturally occurring networks.
2. THEORY

2.1. Model equations and stability of
fixed points

The generalized repressilator consists of a ring of n
genes in which transcription of each gene is repressed
by the product of the preceding gene (figure 1a).
A deterministic model of this circuit is given by the
following set of ordinary differential equations:

_mj ¼
c1

1þ p2
j�1
� c2mj

and _pj ¼ c3mj � c4pj ;

9=
; ð2:1Þ

where pj and mj describe protein and mRNA
J. R. Soc. Interface (2010)
concentrations for each gene, respectively (Elowitz &
Leibler 2000). Here, j ¼ 1, . . . ,n with the periodic
boundary condition p0 ¼ pn, and c1 (c3) is the creation
rate and c2 (c4) is the degradation rate for the
mRNAs (proteins). The production of mRNA is mod-
elled as a source term that depends nonlinearly on the
concentration of the inhibitor protein. Proteins are
assumed to be produced at a rate linearly dependent
on the amount of the corresponding mRNA. The degra-
dation of mRNA and proteins is assumed to be linearly
proportional to their current amount. The toggle switch
(Gardner et al. 2000) and the repressilator oscillator
(Elowitz & Leibler 2000), which have both been
implemented in E. coli, are special cases with n ¼ 2
and n ¼ 3, respectively. Based on analytical results on
monotone systems (i.e. systems in which partial deriva-
tives do not change sign) owing to Smith (1987) and
Müller et al. (2006), the stability analysis of this circuit
reveals a fundamental difference between rings with odd
and even numbers of genes. We briefly sketch some
of the main results, which are also summarized in
figure 1b,c.

The stability analysis characterizes the long-term
dynamic behaviours of the deterministic system. An
example of such behaviour is given by the fixed points
of the system, i.e. the states in which the dynamics is
stationary. The variation of a parameter can produce
a change in the stability or the existence of fixed
points or other attractors. This is called a bifurcation
and it leads to qualitative changes in the long-term
behaviour of the system. One can find the parameter
values at which bifurcations are produced by perform-
ing a bifurcation analysis, which can be carried out
analytically (in some simple cases) or numerically
with the aid of continuation software packages such
as AUTO (Doedel 2007), which can also track the
stability of periodic solutions.

In our system equation (2.1), the fixed points,
where all derivatives are zero, are found from the
condition

p�j 1þ p�j�1
2

� �
¼ c1c3

c2c4
; c; 8j: ð2:2Þ

The parameter c defined in equation (2.2) will play the
role of the bifurcation parameter for even rings.
A positive and real solution is obtained if all proteins
have the same concentration: p�j ¼ p�jþ1 ¼ pm; 8j and

pm ¼
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ 1

27

r" #1=3

� 1
3

c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
þ 1

27

r" #�1=3

:

This solution, which exists as long as c is positive, is
stable for small c and becomes unstable for larger
values of c in both odd and even rings.

In the case of even rings, a pitchfork bifurcation
takes place at c ¼ 2 for all n (figure 1c). The two
additional stable fixed points arising at that value of
the parameter correspond to p�j ¼ p�jþ2 = p�jþ1; 8j,
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which gives

p�j ¼
c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
� 1

r
; pu

and p�jþ1 ¼
c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

4
� 1

r
; pd:

9>>>=
>>>;

ð2:3Þ

Note that pu! c 2 1/c and pd! 1/c for large c. The
new fixed points of system (2.1) correspond to two dis-
tinct dimerized states: one in which genes with odd
indices are upregulated ( pu), while genes with even indi-
ces are downregulated ( pd); and another symmetric
state where the genes with odd and even indices
exchange their patterns of regulation. These solutions
are equivalent to tiling the ring with n/2 repeated
copies of the up–down solution of the two-gene ring.
Their structure is similar to that of other dimerized
degenerate solutions in classic models of conjugated
polymers and spin chains (Soos 2007). Therefore, after
the bifurcation, the system is bistable, i.e. it behaves
like a switch in the presence of noise.

In the case of odd rings (figure 1b), pm becomes
unstable following a bifurcation that occurs at a value
c(n) that approaches 2 as n grows. However, in this
case the bifurcation is Hopf: no additional fixed points
appear but rather the bifurcation signals the emergence
of a periodic solution. Smith (1987) proved that in
monotone systems such as the repressilator, the periodic
solution that emerges is a globally attracting stable
limit cycle. Therefore, odd rings behave as stable
oscillators following the Hopf bifurcation (HB).

2.2. Floquet theory and unstable periodic orbits

The stability analysis presented above does not provide
information about unstable periodic solutions.
Although, in principle, unstable periodic orbits are
not relevant for the long-term deterministic dynamics,
they can be key to the observed dynamics, especially
if the orbits involve slow time scales. Such long-lived
oscillations can appear as transients in deterministic
simulations and are likely to be observed in the corre-
sponding stochastic simulations. In fact, it was in
numerical simulations that we first noticed the
relevance of these modes in even repressilator rings.

Floquet theory can be used to find periodic solutions
and quantify their linear stability in terms of their Poin-
caré map, i.e. the crossings of the orbit with a
(hyper)plane in phase space. Under this analysis, a per-
iodic solution (a closed orbit) becomes a fixed point of
the Poincaré map and its stability is reformulated as
the linear stability of this fixed point. The eigenvalues
of the Poincaré map linearized around the fixed point
constitute the Floquet multipliers. They indicate how
an infinitesimal perturbation around the orbit decays
or grows (exponentially). The periodic solution is line-
arly stable if all the Floquet multipliers have
magnitudes smaller than unity (see the references and
details on Floquet theory in the electronic supplemen-
tary material). In some cases, a few (possibly only
one) Floquet multipliers will be slightly larger than
one. We will then have ‘quasi-stable’ periodic solutions
in that it takes a long time to diverge away from them.
J. R. Soc. Interface (2010)
Quasi-stability in this sense is a local property. To assess
if these solutions will be reachable (and therefore obser-
vable in the dynamics), one needs to employ global
techniques, e.g. sampling the space of initial conditions.
However, Floquet analysis provides an indication of
the possibility of observable, yet unstable, periodic solu-
tions. If a periodic orbit has a small number of very
weakly unstable directions, it is likely that it could be
observed as long-lived periodic transients in the determi-
nistic system and that it could also play a role in the
stochastic dynamics. Moreover, such quasi-stable orbits
are good targets for a control mechanism that can
make oscillations switchable, as shown below.
3. METHODS

3.1. Numerical simulations and analysis
of the dynamics

The deterministic system of ordinary differential
equations (2.1) was solved numerically with an
adaptive fourth-order Runge–Kutta integrator (Press
et al. 1992), in which the step-size automatically adapts
to meet the required accuracy e. We have checked that
the inducibility, reachability and transient times of the
quasi-stable oscillations are not affected by the accuracy
of the integrator by using the Runge–Kutta integrator
with accuracies e between 1022 and 1028 (see the details
in the electronic supplementary material). In addition,
the observability of the unstable orbits was confirmed
by using a nonlinear integrator (Zi et al. 2008).

The bifurcation analysis and the calculation of the
Floquet multipliers of the unstable periodic orbits
were carried out with the numerical continuation soft-
ware AUTO (Doedel 2007; see details in the electronic
supplementary material).

Stochastic simulations of the generalized repressilator
were performed using the classical Gillespie algorithm
(Gillespie 1977). Random numbers and quasi-random
numbers for numerical simulations were generated with
the GSL Scientific Library (Galassi et al. 2009).
3.2. Global robustness analysis and control
aspects of quasi-stable oscillations

As part of our numerical evaluation of the generalized
repressilator, we have developed a method to carry
out a robustness and reachability analysis of its quasi-
stable oscillations. This was necessary because available
global robustness tools (Zi et al. 2008) quantify changes
in fixed points induced by parameter variations and are
therefore not directly applicable to oscillations. In order
to evaluate the global robustness and inducibility of the
quasi-stable oscillations, we attempt to induce sus-
tained oscillations with a predetermined intervention
and quantify changes in the observed response when
the model parameters are varied. The method defines
an operating point in parameter space (the reference
set c*j), based on biologically appropriate estimates,
and a hypercube around it to account for biological
variability, temperature gradients and other noise. We
then sample parameter sets from the hypercube using
reverse halton sequences (Halton 1960), quasi-random



Switchable quasi-stable gene oscillator N. Strelkowa and M. Barahona 1075
sequences that have been shown to converge faster than
standard Monte Carlo sampling for high-dimensional
spaces (Vandewoestyne & Cools 2006). For each
sampled parameter set, we attempt to induce oscil-
lations with the STOP–KICK scenario described
below and record if the system evolves towards sus-
tained oscillations. If oscillations are observed, we
numerically calculate the period of the oscillation and
the change in shape (see details in the electronic sup-
plementary material). Characterizing the change in
shape is essential to establish that the oscillation
remains detectable and functionally recognizable in
the biological system. Note that here we are only con-
cerned with global robustness of the reachability of
the solution. A modification of the same algorithm
could be used to study the parameter combinations
that contribute most strongly to the sensitivity of the
network, a question relevant for the experimental
tuning of the system that is not addressed here.
4. RESULTS

4.1. Stable and quasi-stable oscillations in the
generalized repressilator

As pointed out in the §2, odd repressilator rings are
globally attracted to stable limit cycle oscillations for
c . 2. Numerical simulations show that the period of
these solutions increases linearly with the number of
genes in the ring (figure 2a). The stability analysis
also shows that, in contrast, even rings only support
fixed points as stable solutions. However, direct dyna-
mical simulations of even repressilator rings reveal the
existence of long-lived periodic solutions, which are
easily reachable, as checked by extensive sampling
(not shown) of the space of initial conditions. The
period of these oscillations also increases linearly
with the number of genes, albeit with a slope that is
approximately half of that in odd rings (figure 2a).

These numerical observations do not pose a contradic-
tion with the stability analysis above: the observed
oscillations in even rings are periodic solutions yet
unstable. Unstable solutions can be studied using the
numerical bifurcation detection software AUTO (Doedel
2007), a continuation package that does not rely on dyna-
mical simulations (see the electronic supplementary
material). We have used AUTO to find bifurcations in the
biologically relevant range of the parameter c and to
assess the linear stability of fixed points and periodic
solutions—the latter through Floquet analysis.

The result for even rings is presented in table 1.
In agreement with the analytical results, a pitchfork
bifurcation is found numerically as a branching point
at c ¼ 2, above which HBs leading to the appearance
of unstable periodic solutions are detected in all rings
with more than four genes. The Floquet stability analy-
sis indicates that the first unstable periodic orbit to
emerge has only one unstable direction, regardless of
the number of genes. The only positive Floquet multi-
plier, which indicates how fast the trajectory diverges
away from the orbit, is small and decreases as the
length of the ring increases. This is the signature of
quasi-stability: if this periodic orbit is reached, it will
J. R. Soc. Interface (2010)
be long-lived. We have also checked that this solution
is reachable through numerical sampling of the space
of initial conditions (figure 3a,b and electronic sup-
plementary material). Such reachable quasi-stable
modes significantly affect the observed transient
dynamics and also play a central role in stochastic
dynamics, where unstable solutions are explored under
the effect of noise. Both these conditions are relevant
for dynamics of genetic circuits inside the cell.

The existence of quasi-stable modes provides us with
the opportunity to design a distinct control strategy. If
we operate the system to revolve around a quasi-stable
mode, the result is an oscillator that can be switched on,
kept oscillating and switched off on demand. Below, we
introduce a simple implementation of such a scenario
and evaluate its robustness of operation. Note that an
intricate family of unstable periodic orbits with high
symmetry exists both in odd and even rings (table 1
and electronic supplementary material). However,
these additional periodic solutions have several unstable
directions that make them essentially unobservable and
uncontrollable.
4.2. Spatio-temporal structure of the periodic
solutions

The spatio-temporal structure of the periodic solutions,
both in the odd and even cases, corresponds to a travel-
ling-wave solution propagating around the ring. The
snapshots in figure 2b,c show that this propagation
occurs against the backdrop of the dimerized fixed
point solution of the even ring, where all odd (even)
numbered genes are ‘up’ while the even (odd) numbered
genes are ‘down’ (Elowitz & Leibler 2000). Clearly, a
dimerized configuration cannot be accommodated in
an odd ring. This leads to a kink-like (frustrated) sol-
ution, where two consecutive genes have similar
expression levels. This local imbalance of repression
induces a dynamical instability that makes the kink
propagate around the odd ring in a periodic fashion
(figure 2b). This spatio-temporal structure underlies
the limit cycle solution in odd rings. The fact that the
period of the limit cycle increases (roughly) linearly
with the number of genes indicates that the speed of
propagation of the kink is (roughly) constant.

The quasi-stable periodic solution in even rings can
be interpreted under the same prism. Figure 2c shows
that it corresponds to two interacting kinks propagat-
ing around the ring at a roughly constant speed with
a period that is approximately one-half of that of the
closest odd ring (figure 2a). The instability of this per-
iodic solution has a clear meaning in this picture: if the
two kinks ‘collide’, they annihilate each other and the
system returns to the stable fixed point, i.e. the dimer-
ized solution. Figure 2c also shows that each kink has
a minimum spatial width that depends on the par-
ameters of the model. Hence, it is more difficult to
find these oscillatory solutions in rings that are not
large enough to fit two such perturbations although
they can still be observed in smaller, biologically rea-
lizable rings (see the electronic supplementary
material). For clarity, we have chosen to illustrate
the spatio-temporal structure of the solutions with
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long rings. However, we have checked that the quasi-
stable periodic orbits in rings with n ¼ 6, 8, 10 (not
shown) maintain the features of the two-kink structure
and operate under the same principles as the long
rings shown in figure 2c.
J. R. Soc. Interface (2010)
The spatio-temporal structure of the periodic solutions
in repressilator rings shows a strong parallelism with simi-
lar dynamical solutions observed in classical models of
discrete lattices (Braun & Kivshar 2004). The travelling-
wave nature of the oscillations could have potential



Table 1. Bifurcation analysis and unstable periodic solutions of repressilator rings with even number of genes. We use the
continuation package AUTO (Doedel 2007) to obtain the bifurcations of rings of size n (1). The parameter c, defined in equation
(2.2), is swept in the biologically relevant range c [ [0.001,30] by changing c1 with c2 ¼ 0.12, c3 ¼ 0.16 and c4 ¼ 0.06 constant.
In agreement with analytical calculations, a branching point corresponding to a pitchfork bifurcation (P) is found at c ¼ 2. A
series of HBs linked to the emergence of unstable periodic solutions are found subsequently. Floquet analysis indicates that the
first unstable orbit to emerge has only one unstable direction, regardless of the dimension of the system, and that the maximal
Floquet multiplier decreases with increasing n. Hence, this periodic solution is quasi-stable: if it is reached, the divergence away
from it is slow, and gets slower for longer rings. Other unstable orbits are present but their high instability makes them
irrelevant to the observed dynamics. A similar structure of unstable orbits exists in odd rings (see the electronic supplementary
material). The figure on the right shows the bifurcation diagrams for even rings of length n ¼ 6, 12, 16. The unstable periodic
orbits, shown as dark grey dashed lines, emerge through HBs.
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biological applicability if one were to use this circuit as a
control element for genes that must be activated in a
particular order and for a predefined time interval.
4.3. Robust induction of quasi-stable oscillations
in the deterministic regime

To test that the oscillations described above are reach-
able, and therefore observable, we have carried out a
sampling of the convergence to such solutions from
random initial conditions. The results are presented in
figure 3a,b, where we show that the proportion of initial
conditions leading to sustained oscillations in even rings
increases as the ring becomes longer but are already
J. R. Soc. Interface (2010)
substantial for n ¼ 10. This indicates that such oscil-
lations could be observable in transient dynamics,
especially in the presence of noise. This is highlighted
by stochastic numerics (figure 3b, inset) that show
an increased observability of these oscillations in the
corresponding stochastic system.

The causality imposed by the travelling wave structure
means that the manipulation of one gene will have a pre-
dictable effect on the others. This means that we can use
such causality to devise a protocol to induce and stop
oscillations in even rings reliably by activation of one
gene for a short time span. We illustrate this simple scen-
ario in figure 3c. First, the even ring is forced to converge
to one of the fixed point solutions with a STOP signal
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Figure 3. Induction of oscillations in even rings in the deterministic regime. (a) Quasi-stable periodic solutions in even repressi-
lator rings can be observed starting from random initial conditions. The dynamical trajectories shown here correspond to a ring
with n ¼ 18 and parameters c1 ¼ 2.6, c2 ¼ 0.12, c3 ¼ 0.2, c4 ¼ 0.06. (b) Percentage of initial conditions leading to 5 (filled circles),
10 (filled squares) and 50 (filled diamonds) oscillations. The percentages are obtained from a sampling of 104 initial conditions.
The inset shows the percentage of initial conditions leading to oscillations increases in the stochastic regime (see the electronic
supplementary material). (c) The quasi-stable oscillations can be induced reliably with a simple sequence of signals. First, apply
a STOP signal to gene j to force the system to approach a fixed point solution. Second, apply a KICK signal to gene j þ 1 to drive
the ring into oscillation. The oscillation can be terminated at will by applying another STOP signal. The signals can be
implemented via on-demand UV or red light gene transcription activation (Shimizu-Sato et al. 2002). This STOP–KICK–
STOP protocol is shown here for the same ring as in (a). (d) Global robustness of the inducibility of the quasi-stable oscillations.
The STOP–KICK scenario is applied to 104 random combinations of parameters cj for each even ring of length n and we record
the proportion of parameter sets that lead to five oscillations. The parameters are sampled with reverse Halton sequences from a
hypercube with 5 per cent (filled circles), 10 per cent (filled squares) and 20 per cent (filled diamonds) variation around the refer-
ence set. Quasi-stationary oscillations are robustly induced for n � 10 (see the electronic supplementary material for results
concerning the production of 10 oscillations). Small rings can be kept in the oscillating state applying repeated interventions
in a simple control protocol, as seen in figure 4. The inset shows the oscillations are robust in shape (see the electronic supplemen-
tary material) and in period with respect to changes in the parameters. The relative variability (coefficient of variation) of the
period of the induced oscillations is small and decreases with the length of the ring.
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that consists of the external activation of gene j for a time
interval longer than the period of the oscillation. This
signal is used to ‘initialize’ the system, suppressing any
transient oscillations present in the system. Once the
system is at rest, the oscillation can be started with a
KICK signal, consisting of the external activation of
gene jþ 1 with a step function of width and amplitude
similar to those of the oscillatory pattern. Such signals
can be elicited non-invasively through an optical
mechanism that uses UV or red light to activate the pro-
duction of mRNAs of particular genes (Shimizu-Sato
et al. 2002; Levskaya et al. 2005).

The STOP–KICK scenario induces long-lived oscil-
lations with absolute reliability in rings with n . 6
identical genes. In order to check that the proposed proto-
col is robust to parameter variations, we have carried out
a global robustness analysis as outlined in §3. We con-
struct a hypercube by taking variations of 5, 10 and 20
J. R. Soc. Interface (2010)
per cent around the reference values of the parameters
in equation (2.1) and take 104 samples in this hypercube
varying all parameters simultaneously. Sampling is per-
formed with quasi-random reverse Halton sequences for
improved convergence (Halton 1960; Vandewoestyne &
Cools 2006). Figure 3d shows that the fraction of par-
ameter samples that lead to oscillations with this
protocol converges to 1 for large rings. Our numerics
also show that oscillations can be elicited with significant
robustness in rings with n . 6. When oscillations are
present, the period shows very small variation with
respect to the reference set, as shown by the coefficient
of variation (figure 3d, inset). We have also quantified
the change in the shape of oscillations through a nor-
malized mean square measure and found that the
shapes in the perturbed system exhibit very high simi-
larity (approx. 99%) to the reference set (see the
electronic supplementary material). In summary, our
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Figure 4. Stochastic oscillations in even rings and readout-based control. (a) Illustration of the readout-based control scheme for a
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defined according to the oscillating behaviour of the ring, with similar period and a shift between consecutive genes. The reference
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light-responsive gene promoters. In the numerical simulations shown in (b), the KICK signals are indicated with the red markings
in the upper panels. (b) A simple readout-based control reliably switches on the oscillations, sustains them and switches them off.
The control mechanism functions by monitoring two successive proteins in the ring. Whenever each of them falls below a
threshold, a KICK signal for the corresponding protein is given. These threshold-based KICK signals are indicated with red
and magenta markings in the upper panels. The oscillation can be terminated with a STOP signal as in the deterministic
state. The optical readout can be based on GFP or YFP protein labelling, while the response can be implemented with on-
demand UV or red light that enhances the production of the corresponding mRNAs (Shimizu-Sato et al. 2002). The figure
shows the application of this mechanism to a ring with n ¼ 10. The stochastic time traces correspond to the protein expression
of proteins pj with j ¼ 1, 3, 5, 7, 9 and the corresponding control (top) in response to proteins p1 and p2 (trace not shown). The
right figure is a magnification of the dashed square inside the main figure. We have also checked that this control protocol is
applicable for rings with as low as n ¼ 6 genes (not shown).
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global robustness analysis indicates that in the determi-
nistic regime, long-lived quasi-stable periodic solutions
are reliably inducible in larger rings with a single inter-
vention. For moderate size rings, oscillations can still be
induced for a large fraction of the parameter hypercube
but are short-lived. This suggests that repeated inter-
ventions could be used in order to keep the ring in the
quasi-stable oscillating state. A simple control protocol
that implements these ideas is proposed in the following
section and shown to be applicable for rings as small as
n ¼ 6 operating in the stochastic regime.

4.4. Stochastic oscillations in even rings and
readout-based control

We have used the standard Gillespie algorithm (Gillespie
1977) to study the generalized repressilator in the
J. R. Soc. Interface (2010)
stochastic regime, i.e. when intrinsic noise is high
owing to low copy numbers. It is well known that
stochastic models of odd rings behave as oscillators
and that the travelling wave structure is preserved
(Elowitz & Leibler 2000; Hemberg & Barahona 2007).
In the case of even rings, we have performed long sto-
chastic simulations (not shown) and found bistability
and switching events, as expected from the long-term
attractors of the underlying deterministic system.
Additionally, the simulations show sustained oscillatory
behaviour, especially in longer rings although they are
also observable in rings as small as n ¼ 6 (see the elec-
tronic supplementary material). The oscillations appear
in a variety of settings: as transients from a variety of
initial conditions; spontaneously emerging from one of
the stable points; or associated with switching events.
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It is also easy to induce such oscillations with localized
interventions in particular genes; to sustain them with
periodic driving; and to terminate them with a pro-
longed induction of a gene (as in the STOP signal
above). We have examined the structure of these oscil-
lations and they correspond well with the quasi-stable
periodic solutions in the deterministic system: their
period is approximately half the period of the closest
odd ring (figure 2a) and the spatio-temporal travelling
wave structure is maintained.

Our numerical simulations confirm the relevance of
the underlying quasi-stable oscillations for the observed
stochastic dynamics of even rings (figure 3b, inset).
Similar to the deterministic case, the quasi-stable
mode can also be used as a control operating point
such that the system becomes switchable. The robust
reachability of this mode allows us to use an extremely
simplified feedback mechanism that could be
implemented through an optical readout (GFP, YFP
or luciferase protein labelling) and response (on-
demand UV or red light gene transcription activation;
Shimizu-sato et al. 2002). The simple control scheme
illustrated in figure 4a uses the optical readout from
two successive proteins in the ring to introduce optical
KICK signals that sustain the oscillation based on a
threshold rule (figure 4b). The oscillation can be started
and terminated using the same optical signals.
Although we have chosen to illustrate the possible
implementation of the scheme with light sensitive indu-
cers, it is worth remarking that any suitable mechanism
capable of precisely timed gene induction with good
spatial resolution at the cell population could be used.
A potential advantage of a switchable mode of oper-
ation is the economical and targeted use of the
transcriptional resources without overburdening the
cell with unnecessary mRNA production (A. Glieder
2009, personal communication).
5. DISCUSSION

In this work, we have studied how the presence of quasi-
stable periodic solutions affects the observable
dynamics of even repressilator rings. Previously, even
rings have been thought of as switches owing to the
fact that they only support fixed point solutions. How-
ever, our bifurcation analysis reveals the existence of a
set of unstable orbits, some of which have slow time
scales associated with them. These quasi-stable periodic
solutions are both reachable and long-lived, thus play-
ing a role in the observed dynamics, both transient
and stochastic. This suggests that oscillatory behaviour
might be more widespread than expected in genetic
models, since it could feature in systems that possess
only static attractors.

The presence of quasi-stable solutions provides us
with the possibility of designing control protocols that
operate the system around such modes, so that the oscil-
lations can be turned on and off reliably. Our numerics
indicate that a robust mechanism could be implemented
based on appropriate optical feedback to switch the
system between stable fixed points and quasi-stable
oscillations. Although the proposed pared-down control
J. R. Soc. Interface (2010)
scheme is only intended to provide an illustration of the
potential implementation and its performance could be
improved using optimized strategies for stochastic and
robust control that take into account specific details
of the experimental setup, some of its limitations are
worth discussing. The challenge for the dynamical con-
trol algorithm is to deliver the optical interference
signal necessary for the induction of gene expression
for a short time period, to a particular spatial area of
the cell population, and with a well-controlled delay fol-
lowing the fluorescent signal of the proteins. The
proposed scheme shows both enough spatial and time
resolution to address individual cells in a population
with well-defined pulses (Shimizu-Sato et al. 2002).
The scheme would need to rely on proper calibration
of lifetimes of fluorescent proteins affected by photo-
toxic and photo-bleaching effects, as reviewed in
detail by Bennett & Hasty (2009). Finally, we note
that the delay between the actual protein concentration
and the corresponding fluorescent signal introduced by
the maturation time (approx. 2–8 min) is short when
compared with the period of the oscillation (approx.
130 min), hence acceptable for the control scheme.

A synthetic circuit operating under such principles
could be interfaced with a naturally occurring network
to induce an intrinsic interference that is interruptible
on demand. The switchability of this regulatory
element can help avoid the appearance of adverse
cumulative effects. The NFkB pathway is an example
where such a regulator could provide controlled acti-
vation over short time intervals as an alternative to
conventional knock-downs and other functional
interventions that modify the balance of important pro-
teins for the cell cycle (Karin & Lin 2002; Naugler &
Karin 2008). The underlying travelling wave structure
of the observed periodic solutions could also be poten-
tially useful for design purposes. It allows for
coordinated intervention when the timing and order
of activation of different pathways is crucial. Examples
of cellular networks, e.g. in developmental biology, indi-
cate that timed patterns of sequential activation are at
the heart of the function of families of master regulators
(Holtzendorff et al. 2004; Liu et al. 2007; Ashall et al.
2009; Spencer et al. 2009) and, in the case of the
vertebrate segmentation clock (Yun-Jin et al. 2000;
Pourquie 2003), the associated oscillations are
well defined but do not survive in the long term. The
importance of heterogeneously timed gene induction
has also been highlighted in a model of arabinose
uptake in E. coli (Megerle et al. 2008). Experiments
with genetically engineered yeast have also shown that
pulsed activation of chaperons followed by pulsed acti-
vation of the associated heterologous proteins is more
efficient at maximizing the production of particular
metabolites (A. Glieder 2009, personal communi-
cation). These applications hint at potential uses for
circuits that can produce sequential patterns of acti-
vation on demand, such as the even repressilator
studied here, which interact with other cellular path-
ways via intrinsic proteins, thus avoiding the timed
delivery of external agents through the cell membrane.

The design of control strategies for the operation of
systems around an inherently unstable state has a
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long history in other disciplines (e.g. flight and fluid
control) since it affords enhanced responsiveness and
controllability with relative ease and simplicity of
design (Franklin et al. 1993). This strategy differs fun-
damentally from the biochemical alteration of the
network topology proposed by Atkinson et al. (2003)
based on a smaller gene circuit but with a complex
regulatory scheme involving promoter and repressor
sites regulating one gene. The molecular kinetics of
such regulators are less well understood than those
with single regulatory sites owing to unavoidable cross--
talk and compound logic. The ring topology relies on
simple regulation to provide a sequence of causal signals
but at the expense of involving a larger number of genes.

The present scheme is also in contrast with pre-
viously engineered gene circuits, such as odd
repressilators, which possess globally attracting limit
cycles leading to behaviour that is robust yet not con-
trollable. Quasi-stable operation, on the other hand, is
robustly switchable. The switchability of the oscillator
coupled with dynamic control that affords good spatial
resolution could be used to elicit localized oscillations in
cell populations as an aid to examine mechanisms of cell
synchronization. It is an open area of current research
to elucidate the role of a design concept based on con-
trol around unstable behaviour, similar to the
inverted pendulum in classic control theory, to further
our understanding of cell strategies and its potential
use in the design of synthetic topologies that can
interfere with naturally occurring pathways.
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2008 Timing and dynamics of single cell gene expression
in the arabinose utilization system. Biophys. J. 95,
2103–2115. (doi:10.1529/biophysj.107.127191)

MIT. 2009 Registry of standard biological parts. See http://
partsregistry.org.

Müller, S., Hofbauer, J., Endler, L., Flamm, C., Widder, S. &
Schuster, P. 2006 A generalized model of the repressilator.
J. Math. Biol. 53, 905–937. (doi:10.1007/s00285-006-0035-9)

Naugler, W. E. & Karin, M. 2008 NF-kB and cancer—
identifying targets and mechanisms. Curr. Opin. Genet.
Dev. 18, 19–26. (doi:10.1016/j.gde.2008.01.020)

http://www.arxiv.org/abs/0902.1207
http://www.arxiv.org/abs/0902.1207
http://dx.doi.org/doi:10.1038/msb4100073
http://dx.doi.org/doi:10.1126/science.1164860
http://dx.doi.org/doi:10.1016/S0092-8674(03)00346-5
http://dx.doi.org/doi:10.1038/nrg2625
http://dx.doi.org/doi:10.1016/j.stem.2008.06.009
http://dx.doi.org/doi:10.1016/j.stem.2008.06.009
http://dx.doi.org/doi:10.1101/gad.1389306
http://dx.doi.org/doi:10.1038/35002125
http://dx.doi.org/doi:10.1038/35002131
http://dx.doi.org/doi:10.1021/j100540a008
http://dx.doi.org/doi:10.1016/0734-9750(95)00004-A
http://dx.doi.org/doi:10.1016/0734-9750(95)00004-A
http://dx.doi.org/doi:10.1007/BF01386213
http://dx.doi.org/doi:10.1529/biophysj.106.099390
http://dx.doi.org/doi:10.1126/science.1095191
http://dx.doi.org/doi:10.1038/ni0302-221
http://dx.doi.org/doi:10.1038/ni0302-221
http://dx.doi.org/doi:10.1073/pnas.0402940101
http://dx.doi.org/doi:10.1073/pnas.0402940101
http://dx.doi.org/doi:10.1038/nature04405
http://dx.doi.org/doi:10.1073/pnas.0609100104
http://dx.doi.org/doi:10.1093/bioinformatics/btn330
http://dx.doi.org/doi:10.2514/1.4586
http://dx.doi.org/doi:10.1529/biophysj.107.127191
http://partsregistry.org
http://partsregistry.org
http://partsregistry.org
http://dx.doi.org/doi:10.1007/s00285-006-0035-9
http://dx.doi.org/doi:10.1016/j.gde.2008.01.020


1082 Switchable quasi-stable gene oscillator N. Strelkowa and M. Barahona
Pourquie, O. 2003 The segmentation clock: converting
embryonic time into spatial pattern. Science 301,
328–330. (doi:10.1126/science.1085887)

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery,
B. P. 1992 Numerical recipes in C: the art of scientific
computing, 2nd edn. Cambridge, UK: Cambridge
University Press.

Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H.
2002 A light-switchable gene promoter system. Nat.
Biotechol. 20, 1041–1044. (doi:10.1038/nbt734)

Smith, H., 1987 Oscillations and multiple steady states in
a cyclic gene model with repression. J. Math. Biol. 25,
169–190. (doi:10.1007/BF00276388)

Soos, Z. 2007 Identification of dimerization phase
transitions driven by Peierls and other mechanisms.
Chem. Phys. Lett. 440, 87–91. (doi:10.1016/j.cplett.
2007.04.024)

Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. &
Sorger, P. K. 2009 Non-genetic origins of cell-to-cell varia-
bility in TRAIL-induced apoptosis. Nature 459, 428–432.
(doi:10.1038/nature08012)

Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H.,
Tsimring, L. S. & Hasty, J. 2008 A fast, robust and tunable
synthetic gene oscillator. Nature 456, 516–519. (doi:10.
1038/nature07389)
J. R. Soc. Interface (2010)
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