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Blocking tumor angiogenesis is an appealing therapeutic strategy, but to date, success has
been elusive. We previously identified HEYL, a downstream target of Notch signaling, as an
overexpressed gene in both breast cancer cells and as a tumor endothelial marker,
suggesting that HEYL overexpression in both compartments may contribute to
neoangiogenesis. Carcinomas arising in double transgenic Her2-neu/HeyL mice showed
higher tumor vessel density and significantly faster growth than tumors in parental Her2/neu
mice. Providing mechanistic insight, microarray-based mRNA profiling of HS578T-tet-off-
HEYLhumanbreast cancercells revealedupregulationofseveral angiogenic factors including
CXCL1/2/3 upon HEYL expression, which was validated by RT-qPCR and protein array
analysis. Upregulation of the cytokines CXCL1/2/3 occurred through direct binding of HEYL
to their promoter sequences. We found that vessel growth andmigration of human vascular
endothelial cells (HUVECs) was promoted by conditioned medium from HS578T-tet-off-
HEYL carcinoma cells, but was blocked by neutralizing antibodies against CXCL1/2/3.
Supporting these findings, suppressingHEYLexpressionusingshRNA inMDA-MB-231cells
significantly reduced tumor growth. In addition, suppressing the action of proangiogenic
cytokines induced by HEYL using a small molecule inhibitor of the CXCl1/2/3 receptor,
CXCR2, in combinationwith the anti-VEGFmonoclonal antibody, bevacizumab, significantly
reduced tumor growth of MDA-MB-231 xenografts. Thus, HEYL expression in tumor
epithelium has a profound effect on the vascular microenvironment in promoting
neoangiogenesis. Furthermore, we show that lack of HEYL expression in endothelial cells
leads to defects in neoangiogenesis, both under normal physiological conditions and in
cancer. Thus, HeyL-/- mice showed impaired vessel outgrowth in the neonatal retina, while
the growth of mammary tumor cells E0771 was retarded in syngeneic HeyL-/- mice
compared to wild type C57/Bl6 mice. Blocking HEYL’s angiogenesis-promoting function in
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both tumor cells and tumor-associated endothelium may enhance efficacy of therapy
targeting the tumor vasculature in breast cancer.
Keywords: breast, cancer, endothelium, HEYL, notch, cytokines, epithelium
INTRODUCTION

Angiogenesis, a requisite for tumor growth, is the net result of a
balance of angiogenic and antiangiogenic factors (1–3).
Neoangiogenesis has remained a promising cancer therapeutic
target for decades (4–6). However, the efficacy of anti-angiogenic
therapies, mainly based on blocking VEGF function, has been
limited in the clinical setting (7–12). This lack of therapeutic
efficacy may be due to compensation by other angiogenic factors
thereby resulting in resistance to anti-VEGF therapy (3, 13, 14),
or simply due to a lack of sprouting angiogenesis in lymph nodes
during early tumor dissemination (15, 16).

Devising effective anti-angiogenic therapy will depend on
careful identification of novel factors on a genome-wide scale that
promote angiogenesis in various cancer types. Using publicly
available imaging and genomic data from the Cancer Genome
Atlas GBM cohort, Rao et al. identified pathways associated with
angiogenesis, tumor proliferation, and cerebral blood flow in
glioblastoma (17). In another study, enhanced synthesis and
secretion of members of the IL-8/GRO chemokine family was
found to be associated with increased cell invasion and
angiogenesis, and was implicated in metastatic progression and
endocrine resistance of HER2-overexpressing breast carcinomas
(18). In search of predictive biomarkers of improved survival in
HER2-negative metastatic breast cancer in response to treatment
with bevacizumabandpaclitaxel, a predictivemodelof 13genes and
5 clinical variates was deduced which identified patients with
improved progression-free and overall survival (PFS and OS)
(19). Elsewhere, expression of a 43-gene set showed the strongest
correlation with the presence of endothelial “seed” genes in various
cancers. Itwas proposed that this gene set could provide ametric for
tumor angiogenesis and microvascular density (20).

Notch signaling activation has been reported in over 50% of
breast cancers (21). Notch signaling in both epithelial and
endothelial cells has also been shown to promote tumor
angiogenesis (22–24). Notch pathway activation in cancer
epithelial cells increased vascularization in the tumor
microenvironment (25). In addition, Notch signaling in
endothelial cells determines the fate of endothelial tip and stalk
cells and maintains the functions and structures of the tumor
vasculature (26). Given the significant impact of Notch signaling
in tumor angiogenesis, numerous approaches aiming to target
Notch signaling have been developed to inhibit tumorigenesis,
and almost all the approaches have a dual effect on tumor
epithelial and endothelial cells (27). Interestingly, it has been
reported that Notch signaling contributes to resistance to
bevacizumab, a humanized anti-human VEGF antibody, and that
inhibiting Notch pathway enhances anti-VEGF efficacy (28). The
known direct transcriptional targets of the Notch pathway are
members of the HEY (hairy/enhancer-of-split related with YRPW
motif) family,HEY1,HEY2, andHEYL (29, 30).However, HEYL is
2

the only Notch downstream target gene that is associated with the
expression of theNotch ligand, Jagged, in breast cancer tissues (31).
We reported that HEYL is overexpressed in approximately 40% of
breast cancer epithelial cells, and HEYL promoted breast cancer
development by binding to TGFb-activated Smads and inhibiting
TGFb activity (32). In 2004, we reported the discovery of HEYL as
an overexpressed transcript through SAGE analysis of enriched
populations of breast cancer endothelial cells from primary tumors
(33). We also provided evidence that the expression of HEYL in
tumor endothelial cells is potentially important for angiogenesis in
breast cancer (33). Based on the literature and our own observation
of HEYL expression in both the tumor endothelial and epithelial
cells,weproposed thatof thedownstreameffectorsofNotch, among
the three members of the HEY family, HEYL may be the primary
mediator of Notch pathway action to induce tumor angiogenesis in
breast cancer.

In this paper, using engineeredmouse and humanmodel systems,
we investigated whether HEYL is a key regulator of Notch-mediated
angiogenesis in both epithelial and endothelial compartments in
breast cancer. Here, we show that HEYL expressed in tumor
epithelial cells increased expression of multiple angiogenic factors
and promoted neoangiogenesis, while HEYL expression in
endothelial cells appears to promote invasive growth behavior of
endothelial cells. Moreover, targeting two key molecules important
for angiogenesis, CXCR2 along with VEGF achieved improved
therapeutic endpoints. Thus, inhibition of angiogenic factors
induced by HEYL and VEGF using combinatorial regimens may
result in more clinically effective anti-angiogenic therapy.
METHODS

Establishment of HS578T-tet-off
HEYL Inducible Cell Lines
All the cell lines used in this study were authenticated within the
last year or were used in their early passages after receipt from
ATCC. Myc-tagged HEYL was cloned into a promoterless
pcDNA3-hygro vector fragment. The final vector, pcDNA3-
hygro-HEYL, was transfected into breast cancer cell line
HS578T with tTA-IRES-Neo vector. After selection, individual
clones were picked and cultured in 125 ug/ml hygromycin B,
100 ug/ml G418 and 10 ng/ml doxycycline for expansion.

Detecting Cytokines in the Supernatant
of HEYL-Inducible Cells
Antibody arrays (RayBiotech, Human Cytokine Array AAH-CYT-
1-2) were used to detect cytokines in the supernatant of HS578T-tet-
off-HEYL cells, under induced- (no doxycycline) and uninduced-
(with doxycycline) conditions. The arrays were blocked for 30 min
and incubated at 4°C overnight with 1ml supernatant of HEYL-
inducible cells under uninduced and induced condition for 6 h.
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After washing, a biotinylated antibody cocktail provided by the
manufacturer was added to the array and incubated at room
temperature for 2 h. After washing, the arrays were incubated with
HRP-Streptavidin at room temperature for 2 h. The arrays were
washed again and incubated with detection buffer mixture at room
temperature for 2 min. Finally, the chemiluminescent signals
were detected.

Establishment of MDA-MB-231 Cells With
shRNA Mediated Knockdown of HEYL
Retroviral vectors expressing scramble shRNA or 2 shRNAs
targeting HEYL (shRNA1: ATGGGTCTCTGAAATCA
CTGAA, shRNA2: AGACTTGCATCTTGTGTTTCTA) were
purchased from Openbiosystems. Retroviral packaging was
performed in 293T cells. The viral supernatant was used to
infect MDA-MB-231 cells which were selected with 2 ug/ml
puromycin. shRNA1 targets the very C-terminal end of HEYL
coding region, which does not disrupt HEYL function. A myc-
tagged HEYL lacking the HEYL target region of shRNA1 (hence
shRNA1-resistant) was cloned into PLHCX retroviral vector.
The retroviral supernatant was collected as above and used to
infect MDA-MB-231 cells. Infected cells were selected in
medium containing 250 ug/ml hygromycin B.

Generation and Characterization
of MMTV-HeyL/Her2-neu Double
Transgenic Mice
All animal experiments were conducted with approval from the
Johns Hopkins University Animal Care and Use Committee, and
performed according to their guidelines. Transgenic FVB/N,
MMTV-HeyL (32) were crossed with FVB/N, MMTV-Her2-
neu mice that overexpress wild type rat HER2/neu (34, 35) in the
mammary gland to generate MMTV-HeyL/Her2-neu double
transgenic mice. Virgin Her2-neu or HeyL/Her2-neu double
transgenic mice (n=22 in each group) were examined for
mammary tumor development twice a week. Tumor size was
measured using electronic calipers and calculated as
following: volume=0.5236*L*W*W.

Microarray Analysis of Gene Expression
Using tet-off HEYL-Inducible Cells
RNeasy mini kit (Qiagen) was used to extract RNA at 6 and 24 h
after doxycyline withdrawal from HS578Ttet-off-HEYL cells.
Following quality control, the RNA was hybridized to
Affymetrix human U133 2.0 arrays. The data was analyzed by
the Johns Hopkins Microarray Core.

Real-Time RT-qPCR
RNAwasextractedusingRNeasymini kit and treatedwithDNAse I
to remove genomicDNAcontamination (32).Onemicrogramtotal
RNA was used for reverse transcription with MuMLV-reverse
transcriptase (Promega). 0.25 ug cDNA was used as template and
quantitative PCRwas performedwithQuantitect SYBRGreenPCR
kit (Qiagen). The primer sequences are available on request.mRNA
levels were expressed as delta Ct values relative to 36B4, a
ribosomal gene.
Frontiers in Oncology | www.frontiersin.org 3
Vascular Characterization–Quantitation
of CD31-Stained Microvessels
Methods were followed as described (36). Formalin fixed
paraffin-embedded sections of 2 mammary glands each from 5
mice were stained using the anti-CD31 antibody (Dianova). A
1:40 dilution of the antibody was used to stain the sections
overnight. Diluted biotinylated anti-rat IgG (Vectastain kit) was
added to the sections and incubated for 30 min. Vectastain ABC
reagent (Vector) and 3, 30-diaminobenzamidine (DAB) was then
used for color development. The vessel number, cumulative
circumferential vessel length and cumulative vessel area were
quantified using MetaVue software. For more details, refer to
Supplementary Methods.

HUVEC Branching Network Formation,
Migration, and Invasion Assay
Methods described in (37) were followed with modifications. For
the migration assay, 2x104 HUVEC cells were added in the upper
chamber, and 750 ul complete, uninduced or induced HS578T-
tet-off-HEYL conditioned medium (CM) was added to bottom
chamber. For the invasion assay, 1.5x104 HUVEC cells were
added in the upper chamber, and 750 ul complete EGM2
medium (Lonza) was added to bottom chamber. For both
migration and invasion assays, the cells in the upper chamber
were removed 16 h later with a cotton tip, and the migrated cells
at the bottom of the membrane were fixed and stained by crystal
violet. The number of cells on the membrane was manually
counted for each well and averaged across the three wells for each
treatment condition. For the branched network formation assay,
30 ul Matrigel was added in the wells in 96-well plates. After the
gel was solidified, 2x104 HUVEC cells in 100 ul complete EGM2
media, uninduced or induced CM were added onto the gel.
Sixteen hours later, the cells were fixed. For each well, five
random 10x fields were chosen for assessment of end points. A
branch point cell was defined as any cell with 3 or more
connections to neighboring cells. The number of branch point
cells was calculated for each field, and the average number of
branch point cells per field was calculated for each condition.
This average number was compared across conditions. To test
the effects of antiangiogenic antibodies or drugs, branched
network formation assays were performed. Four micrograms
per milliliter anti-CXCL1/2/3, and 5 nM SB265610 was added to
the CM from induced cells. Each experiment was repeated at
least 3 times.

Tumor Xenografts and Treatment in Mice
To study the effects of HEYL depletion or overexpression, 1x106

MDA-MB-231-scr or MDA-MB-231-HEYL–shRNA expressing
cells were injected into the mammary fat pad (mfp) of Balb/c nu/
nu mice. Syngeneic C57/Bl6 HeyL+/+ and HeyL-/- mice received
mfp injections of E0771 mouse mammary tumor cells (5x105).
For testing therapies, MDA-MB-231 (5x105) cells were injected
subcutaneous (sc) into flanks of Balb/c nu/nu mice. Mice were
treated intraperitoneally (ip) with vehicle, the CXCR2 inhibitor
SB265610 (2 mg/kg/daily), the VEGF-inhibitor bevacizumab (10
mg/kg/biweekly) or a combination of SB265610 plus
January 2021 | Volume 10 | Article 581459
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bevacizumab for 3 weeks. Six to nine mice/group were used in
each experiment.

Retinal Vessel Staining
The techniques were essentially as described in (38). Six-day old
Heyl +/+ andHeyL -/- mouse pups (littermates from the same cage)
were used for comparison. A freshly prepared stock (3 mg/ml) of 5′-
bromo-2′ deoxyuridine (BrdU, Invitrogen, cat. no. B23151) was
used each time; 300 mg of BrdU was injected intraperitoneally
(i.p.) into the 6-day-old pups. 2.5 h later the mice were euthanized
and the eyes fixed in 4% paraformaldehyde (PFA) at 4°C
overnight, washed in PBS and retina was dissected out.

The retinawasflattenedwith either four orfive incisions radially
around the optic nerve. Therefore, each retina had four or five
wedges extending from the optic nerve along whichmeasurements
of retinal vessel migration distance could be made. After blocking/
permeabilization, the retina was stained for 2 h in PBS containing
biotinylated isolectin B4 (Vector Labs 1:50) (39, 40). Eleven retinas
from 7 HeyL-/- mice and 8 retinas from 5 HeyL+/+ mice were
examined. 4x images (2738umx2086um)were takenof eachof the
4 or 5 retinal wedges and Image J software was used to quantify the
length of a line segment bisecting the wedge and extending from
the outer margin of the optic nerve to the border of the vascular
network. The average length from the optic nerve to the vascular
front was calculated for the HeyL-/- mice and the HeyL+/+ mice
and the twowere compared using 2-tailed Student’s T test. Detailed
methods for BrdU quantification and processing and staining of
retina are provided in Supplementary Methods.

In Vitro 3-D Fibrin Gel Culture
This assay was performed as reported (41). One million HUVEC
cells were incubated with Cytodex 3 beads in EGM2 media
overnight. 25 beads plus 200 ul of 2.5 mg/ml fibrinogen were
added to each well of 48-well plate that contained 50U/ml
thrombin. After the gels were solidified, 600 ul EGM2 media
plus 60 ul conditioned media (CM) from primary human lung
fibroblasts was added. Sprout length was measured using Image J
imaging software.

In Vivo Matrigel Plug Assay
Methods described in (42) was followed. Five hundred microliter
growth factor-reduced Matrigel (#354234, Corning) plugs
containing 150 ng/ml bFGF were injected sc into the ventral
flank of wild type HeyL +/+ and HeyL -/- mice (n=5). On day 10
the plugs were removed, fixed in 10% formalin, sectioned and
stained with Masson’s Trichrome to detect ECM of blood vessels.

Statistical Tests
Each experiment was performed at least three times. Significance
between different groups studied for angiogenesis was calculated
using Welch’s corrected T-test, and Bonferroni correction was
applied as multiple test correction where appropriate. Significance
of differences in xenograft growth in mice was calculated by
ANOVA 2-way comparisons with Bonferroni correction for
comparison of effects between treatment groups with time.
GraphPadPrizmsoftwarewas used. *P<0.05, **P<0.01, ***P<0.001.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

HeyL Transgenic Mice Show
Characteristics of Increased Angiogenesis
in the Mammary Gland and Tumors
We have previously reported the finding that 24% of the
multiparous MMTV-HeyL transgenic mice developed mammary
tumors at 13–20months of age (32). To examine ifHeyL expression
in epithelial cells contributes to neoangiogenesis, we compared
characteristics of blood vessel growth in themammary gland of 13-
week old virgin MMTV-Heyl transgenic mice to the mammary
gland of parental FVB/N mice. Using an anti-CD31 antibody,
immunohistochemical (IHC) analysis of mammary tissue from
MMTV-HeyL transgenic mice showed significantly higher vessel
density in the mammary gland (Figure 1A), vessel length, number
and percent area (Figure 1B) compared to wild-type FVB/Nmice.
To test if this enhanced blood vessel formation caused by the HeyL
transgene affects tumor growth, MMTV-HeyL mice were crossed
withMMTV-Her2-neumice that overexpress wild type HER2/neu
proto-oncogenes. The HER2 proto-oncogene has been reported to
beoverexpressed and amplified in about 15 to 20%of breast cancers
(43). For the subtype of HER2-positive breast cancers, a variety of
anti-HER2 antibody-based therapies and novel tyrosine kinase
inhibitors have been developed and have achieved significant
anti-tumor effects (44). It has also been reported that the crosstalk
between HER2 activity and Notch signaling contributes to tumor
resistance to anti-HER2 monoclonal antibody, trastuzumab (45).
Mammary tumors arising in theMMTV-Heyl/Her2-neumice grew
significantly faster compared to those in the MMTV-Her2-neu
transgenicmice (Figure1C).By IHCanalysis,MMTV-HeyL/Her2-
neu transgenic mouse tumors had a higher density of blood vessels
(Figure 1D), vessel length, number and percent area (Figure 1E)
compared to mammary tumors arising inMMTV-Her2-neumice.

HEYL Induces the Expression of Multiple
Angiogenic Factors
HEYL is a basic Helix-Loop-Helix transcriptional factor, but the
genes that it regulates are not known. To investigate the gene
expression profile induced by HEYL, we generated a HS578T-tet-
off-HEYL cell line that expresses myc-tagged HEYL after
doxycycline withdrawal. After 24 h of gene induction/dox
withdrawal, reintroduction of doxycycline to the medium for an
additional 48 h (72h from0 timepoint) resulted indecreasedHEYL
expression (Figure 2A). Microarray analysis was performed using
RNA extracted from these cells at 0, 6, and 24 h after induction. The
data showed that upon HEYL-induction only approximately 100
genesunderwent changes in expression thatwerehigher than2-fold
(Figure 2B, Supplementary Table 1). Interestingly, many of these
genes were secreted proteins, and included well-known angiogenic
cytokines such as CXCL1, 2, and 3, IL6, IL8, and FGF1 (Figure 2B).
Consistent with the microarray data, by RT-qPCR, expression of
these genes was higher at 6 and 24 h following HEYL induction
compared to baseline (Figure 2C). When doxycycline was added
back to themedium24 h post-HEYL induction, expression of these
genes was reduced (Figure 2C). To determine changes in protein
expression, conditioned medium (CM) from HS578T-tet-off-
January 2021 | Volume 10 | Article 581459
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HEYL cells with, or without HEYL induction for 6 h was analyzed
by protein array. In a pattern consistent with the gene expression
data, increased levels of angiogenic cytokines were found in the
media from cells with induced HEYL expression (Figure 2D). We
tested the effect ofHEYL expression on cytokine gene expression in
a second breast cancer cell line, MDA-MB-231, with shRNAs
mediating downregulation of endogenous HEYL (Figure 2E).
Compared to the MDA-MB-231 cells expressing scramble-
shRNA, MDA-MB-231 cells with HEYL-shRNA expression
showed reduced mRNA expression of these cytokines (Figure
2F). Conversely, also shown in the western blot (Figure 2E),
when an exogenous HEYL (that was not targeted by the shRNA)
Frontiers in Oncology | www.frontiersin.org 5
was expressed in MD-MB-231 cells, cytokine expression increased
significantly or showed the same trend (Figure 2F). The results in
bothmodel systems, usinga tet-inducibleHS578Tsystemandusing
downregulationofHEYLwith shRNA, followedby re-expressionof
HEYL in MDA-MB-231 cells strongly suggested that HEYL may,
directly or indirectly, regulate the expression of a number of
cytokines that have been previously implicated in neoangiogenesis.

To determine if HEYL exerts direct transcriptional control on
the expression of the cytokine genes, we searched for HEYL
consensus DNA-binding sites from previously published HEYL
ChIP-seq data on HEYL-expressing HEK293 cells (46). Heisig
et al. reported that HEYL bound strongly to the promoter regions
A

B

D

E

C

FIGURE 1 | HeyL promotes angiogenesis in transgenic mice. (A) Anti-CD31 IHC analysis of blood vessels in mammary glands of 13 week-old virgin, MMTV-HeyL
transgenic mice compared to parental FVB/N mice (n=4 mice/group). (B) Number of blood vessels, vessel length and average area occupied by blood vessels in mammary
glands fromMMTV-HeyL and parental FVB/N mice, analyzed in (A). (C)Mammary tumors arising spontaneously in MMTV-HeyL/Her2-neu are larger compared to those in
MMTV-Her2-neu mice (n=22/group). Measurement was initiated after detection of palpable tumors. (D) Anti-CD31 IHC analysis of blood vessels in mammary tumors in
MMTV-HeyL/Her2-neu compared to MMTV-Her2-neu mice from (C), (n=6 mice each group) (E). Number of blood vessels, vessel length and average area occupied by
blood vessels in mammary tumors in MMTV-HeyL/Her2-neu mice compared to MMTV-Her2-neu mice from (D) *P < 0.05; **< 0.05.
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of CXCL1, 2, and 3, while HEY1 and HEY2 displayed much
lower binding affinity to these sites (46). We performed ChIP
assays to test whether HEYL bound to the promoter regions of
CXCL1, 2, or 3 in HS578T-tet-off-HEYL cells. Gene loci for these
three chemokines are located on the same chromosome,
separated from one another by 60–170 kb. HEYL did not bind
to all of the sites predicted by the ChIP-seq data (46). As shown
by PCR analysis of the immunoprecipitated protein-DNA
complex in HS578T cells, HEYL bound to the following
regions: 2 kb upstream of the CXCL1 transcription start site
(TSS), 2 kb upstream of the CXCL2 TSS, close to both the TSS for
CXCL2 and for CXCL3, and 1.4 kb upstream of the CXCL3 TSS
(Supplementary Figure 1). These data supported the notion that
HEYL is a direct regulator of CXCL1, -2 and -3. We hypothesized
Frontiers in Oncology | www.frontiersin.org 6
that HEYL expression in the tumor cells, in all likelihood,
promotes angiogenesis through upregulation and expression of
these and other chemokines.

We tested this concept in cultured human vascular
endothelial cells (HUVEC). HUVEC cultured on Matrigel
using CM from induced HS578T-tet-off-HEYL cells formed
more branched network like structures than HUVEC exposed
to CM from uninduced cells (Figures 3A, B). Neutralizing
antibodies against CXCL1, -2, and -3 inhibited HUVEC
branched network formation [Figures 3C (upper panels), D].
Since CXCL1, -2, -3 and IL8 all bind to the CXCR2 receptor (47),
a potent CXCR2 receptor blocker, SB265610, was also tested.
Branched network formation in HUVEC cells was inhibited
when SB265610 was added to CM from induced-HS578T-tet-
A B

D

E

F

C

FIGURE 2 | HEYL controls the expression of multiple angiogenic factors. (A) Western blot analysis of Myc-tagged HEYL expression in HS578T-tet-off-HEYL at 0, 6,
and 24 h after doxycyline (dox) withdrawal. At the 24 h time point, Dox was re-added, and Myc-tagged HEYL expression was examined 48 h later (72 h after
initiation of the experiment). (B) A scatter plot (showing log2-fold change) and heatmap show genes with expression changes at 6 and 24 h after HEYL induction
relative to 0 h cells (uninduced cells) (also listed in Supplementary Table 1). (C) RT-qPCR validation of expression of major cytokines in the HS578T-tet-off-HEYL-
inducible cells in (B) at 0, 6, 24, and at the 72 h time point (48h after re-induction of HEYL expression). mRNA expression levels relative to 36B4, a ribosomal gene,
are shown. (D) Antibody array-based detection of cytokines in conditioned medium from HS578T-tet-off-HEYL-induced and –uninduced cells (6h); +C are quality
controls (E) Western blot analysis of HEYL in MDA-MB-231-shRNA cells and re-expression after introduction of shRNA-resistant, Myc-tagged HEYL. (F) qPCR of
cytokine expression in the MDA-MB-231 cell panel in (E). mRNA expression levels relative to 36B4, a ribosomal gene, are shown. *P < 0.05; **< 0.05; ***< 0.001.
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off-HEYL cells [Figures 3C (lower panels), D]. Additionally,
HUVECs migrated more rapidly toward CM from induced cells
than uninduced cells (Figure 3E). These data indicate that
angiogenic chemokines and/or cytokines present in HEYL-
induced CM promoted angiogenesis in vitro. Next, we
examined HEYL’s ability to promote growth in xenografts of
human breast cancer cells. Immunodeficient mice received
injections (mfp) of MDA-MB-231 cells expressing scr-shRNA,
or shRNA1 or shRNA 2 that target HEYL. MDA-MB-231-scr
cells grew significantly faster (*p<0.05) than MDA-MB-231-
HEYLshRNA cells (Figure 3F).

HEYL Expression in Tumor Endothelial
Cells Promotes Cell Invasion
We had previously reported that serial analysis of gene
expression (SAGE) profiles showed that HEYL is upregulated
Frontiers in Oncology | www.frontiersin.org 7
20-fold in tumor endothelial cells of breast cancer compared to
EC from normal breast (33, 48). We also showed that HEYL
promoted HUVEC proliferation and survival (33). These data
strongly suggested that the differential expression of HEYL in
another tumor compartment, i.e., endothelial cells, may support
tumor cell growth. Therefore, to examine the effect of the
presence or absence of HEYL in endothelial cells on
angiogenesis in vivo, we studied neonatal mouse retinal blood
vessel growth in wild type (WT) and HeyL-/- mice (49, 50). At
postnatal day 6, retinal vessels in WTmice reached the periphery
(red arrows, Figures 4A, B). However, in HeyL-/- mice of the
same age, incomplete vessel growth and invasion was observed
(blue outline of margins, Figures 4A, B). This finding could be
attributed to a slow rate of growth of the retinal vessels. No
differences were observed in BrdU incorporation in the
endothelial cells of WT compared to HeyL-/- mice
A B

D

E

F

C

FIGURE 3 | HEYL functionally regulates angiogenesis in vitro and supports tumor growth in vivo. (A) Branched network formation on Matrigel of HUVEC cells
incubated with complete EGM2 medium, or conditioned medium from HS578T-tet-off-HEYL-induced, or –uninduced cells. (B) The quantification of cells with more
than 3 branching sites in (A). (C) Antibodies that neutralize CXCX1/2/3, or a CXCR2 inhibitor, SB265610 (SB) reduced HUVEC branched network formation. (D) The
quantification of cells with more than 3 branching sites in (C). (E) Cell migration assay with HS578T-tet-off-HEYL cell- induced or uninduced conditioned media.
Panels show stained HUVECs that have migrated through a membrane in a Boyden chamber assay. (F) Growth rate of xenografts in nu/nu mice of MDA-MB-231
with scr-shRNA (n=9) or shRNA1 (n=7) and shRNA2 (n=8) targeting HEYL. *P < 0.05; **< 0.05; ***< 0.001.
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(Supplementary Figure 2), suggesting that cell invasion, not
proliferation, accounted for differences in retinal angiogenesis.
Therefore, the expression of HEYL in endothelial or the cells in
their microenvironment may assist vessel invasion into normal
anatomical areas. Similarly, invasion through Matrigel in Boyden
chambers of HUVEC cells expressing GFP was less frequent than
HUVEC cells expressing HEYL (Figures 4C, D). Also, in 3-D
fibrin gel cultures, HUVEC-HEYL-cells showed faster invasion
with longer sprout lengths (Figure 4E). These findings suggested
that loss of HEYL might lead to defects in neoangiogenesis.
Direct evidence was sought for HeyL’s involvement in mouse
tumor angiogenesis and growth in vivo. Matrigel plugs
Frontiers in Oncology | www.frontiersin.org 8
containing bFGF were injected subcutaneously (sc) into HeyL+/+
and HeyL-/- mice. Gel plugs retrieved from HeyL knockout mice
had fewer blood vessels and a paler appearance compared to
plugs from HeyL+/+ mice (Figure 4F). Sections of plugs stained
with Masson’s trichrome to visualize vessel ECM supported these
observations (Figure 4G). Furthermore, HeyL+/+ mice supported
the growth of syngeneic E0771 mouse mammary tumors better
than HeyL-/- mice (Figure 4H). Tumors grew significantly larger
in HeyL+/+ mice than in HeyL-/- mice. Since these mice lack
HEYL expression in all cell types, we do not know whether the
impeded tumor growth is due of HeyL loss in endothelial cells or
in any other cell population.
A B

D

E F

G H
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FIGURE 4 | HEYL expression in endothelial cells promotes endothelial cell invasion. (A) Retinal blood vessel growth in neonatal (day 6) retina in HeyL+/+ mice
extends farther than in HeyL-/- mice. The blue lines in the figure indicate the extent of outgrowth of the blood vessels while the red arrows define the length achieved
in retina of wild type mice. (B) A significant difference is observed in the length of the blood vessels from center to periphery of the retina of 6-day old HeyL+/+ and
Heyl-/- mouse pups. (C) Matrigel invasion assay of HUVEC-HEYL or HUVEC-GFP cells. (D) Quantification of the number of the invaded cells in a Matrigel invasion
assay shows HUVEC-HEYL cells migrate 2X faster than control HUVEC–GFP cells. (E) (Left panel) 3-D fibrin gel invasion assay was used to measure growth of
sprouts of HUVEC-GFP or HUVEC-HEYL cells at day 1, 3 and 5. Right panel: The average sprout length was measured in the two groups. Quantification of three
determinations is shown. (F) Matrigel plugs containing bFGF examined 10 days after sc implantation in wild type HeyL+/+ and HeyL -/- mice show different extent of
mouse blood vessel infiltration (n=5 mice per group). (G) Sections of matrigel from (F) were stained with Masson’s Trichrome to visualize ECM surrounding blood
vessels show greater infiltration in HeyL-/- mice compared to HeyL+/+ mice (n=5 per group). (H) Impaired growth of mouse mammary tumor, E0771, in the
mammary fat pad of syngeneic HeyL-/- mice compared to HeyL+/+ mice (n =12 per group). *P < 0.05; **< 0.05; ***< 0.001.
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Blocking VEGF and CXCR2 Signaling
Enhanced Antiangiogenic Effects
of Bevacizumab
The evidence presented thus far suggested that an epithelial–
endothelial crosstalk elicits tumor-specific angiogenesis. This
provides a therapeutic opportunity for combined targeting of
both compartments to interrupt signaling leading to neo-
angiogenesis. The efficacy of bevacizumab, a humanized anti-
human VEGF antibody in breast cancer was not high enough to
warrant its use as a single agent (7, 8). This lack of efficacy could
be attributed to the fact that many other angiogenic factors are
expressed in breast cancer. For example, CXCR2 activation upon
cytokine binding leads to VEGFR2 transactivation either directly
through CXCR2 interaction with VEGFR2, or indirectly through
NFĸB-dependent autocrine activation of VEGFR2 receptors
(51). Since HEYL increased expression of CXCR2 receptor
ligands (CXCL1, 2, and 3, and IL8) (Figure 2), we tested the
combined antitumor effects of known anti-CXCR2 and anti-
VEGF agents using MDA-MB-231 cells with high endogenous
expression of HEYL. Treatment with the CXCR2 inhibitor,
SB265610, plus the anti-human VEGF antibody, bevacizumab,
significantly reduced tumor growth of MDA-MB-231 xenografts
compared to bevacizumab or SB alone (Figure 5A). Tumor vessel
density was decreased by treatment with either SB265610 or
bevacizumab alone as compared with control, while the combined
treatment (bevacizumab +SB) was even more effective (Figures 5B,
Frontiers in Oncology | www.frontiersin.org 9
C). These results suggested that HEYL, through its action on CXCL1,
2, 3 and IL8, contributed substantially to promoting tumor growth,
likely through its effects on the tumor endothelial cells. Thus,
reduction of tumor size was achieved by using a combination of
specific inhibitors of the cytokine receptor and VEGF.

DISCUSSION

Tumor angiogenesis is a complex process involving cooperative
interactions between carcinoma cells and their microenvironment.
In this paper, we present evidence that overexpression of HEYL in
breast carcinoma cells elicits a response in both tumor epithelial and
endothelial cells that promotes angiogenesis.

Identification of angiogenic factors, other than VEGF, has
remained a critical quest in cancer therapy. The Notch pathway
has been reported to function in both tumor epithelial and
endothelial cells to support tumor growth and angiogenesis.
Various therapies targeting the Notch pathway including Notch
receptor/ligand monoclonal antibody and inhibitors of g-secretase,
that is an enzyme necessary for Notch receptor cleavage and signal
transduction, have been developed to inhibit tumor growth and
showed promising anti-angiogenesis effects (27). HEYL is the only
Notch downstream target gene that correlated to the expression of
the Notch ligand, Jagged, in breast cancer tissues (31). High HEYL
expression was found to be present in about 40% of breast cancers—
a pattern consistent with enhanced Notch signaling in breast cancer
A B

C

FIGURE 5 | Targeting Notch pathway and VEGFR2 inhibits tumor growth. (A) Growth of sc xenografts of MDA-MB-231 cells in immunodeficient mice treated with
vehicle (n=8), SB265610 (n=7), bevacizumab (n=9) and SB265610 plus bevacizumab (n=9). (B) Anti-CD31 IHC analysis of blood vessels in MDA-MB-231 xenografts
shows significant reduction of tumor size in mice treated with bevacizumab and a combination of bevacizumab plus SB265610 compared to other groups.
(C) Quantification of number of blood vessels, vessel length and average area occupied by blood vessels in mice (B) treated with single agents or combination of
bevacizumab plus SB265610 compared to vehicle control mice. *P < 0.05; **< 0.05; ***< 0.001.
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(32, 33). We have also shown previously that HEYL is a direct
transcriptional target of Notch in breast cancer cells (32).

Our functional assays indicate an important role for epithelial
HEYL expression in the promotion of tumor angiogenesis. We have
shown that HEYL increased the expression of several angiogenic
cytokines (Figure 2) and enhanced angiogenesis and tumor growth
by its action in both epithelial (Figure 3) and endothelial cells
(Figure 4). CXCR2 is a receptor for CXCL1, 2, and 3, and IL8 that
has been shown to have a profound effect on tumor epithelial
interactions with stromal cells (52). Combined treatment of MDA-
MB-231 xenografts using a CXCR2 inhibitor, SB265610, and an
anti-VEGF antibody, bevacizumab, showed significant anti-tumor
effects (Figure 5) both on size of the tumor and reduction in
neoangiogenesis. Thus, our work revealed novel anti-angiogenesis
strategies that might target tumors with an active Notch-HEYL-
angiogenic factor axis using a CXCR2-inhibitor combined with
bevacizumab. Our results are consistent with previous reports in
which an enhanced anti-angiogenesis effect was achieved by using
bevacizumab in combination with DBZ, a small molecule inhibitor
of g-secretase to inhibit Notch signaling (28). Collectively, these data
also suggest that high HEYL expression in tumors may help identify
patients who may be amenable to anti-Notch or anti-CXCR2-
targeted therapies. In addition, we found that HEYL expression in
both tumor epithelial (Figure 3) and endothelial cells (Figure 4) has
functional consequences. Overexpression of HEYL in HUVEC
promoted cell invasion. The loss of HEYL expression in
endothelial cells reduced endothelial cell invasion in vitro.
Absence of HEYL in the HEYL-/- mice impaired physiological
retina blood vessel development and tumor growth of syngeneic
cancer cells (Figure 4). These findings are in concordance with our
previous observations that HEYL overexpression augmented
proliferation in human mammary microvascular endothelial cells,
and also was protective against apoptosis in HUVEC (33). However,
a direct function for HEYL in endothelial cells during
neoangiogenesis still remains to be substantiated. In HEYL-/-
Frontiers in Oncology | www.frontiersin.org 10
mouse retina, the observed phenotype of retarded retinal vessel
outgrowth could be attributed to non-endothelial cells in the retina
such as macrophages and pericytes, as well as to endothelial cells.
Similarly, slower growth of syngeneic E0771 tumor cells in HEYL-/-
mice may occur due to lack of HEYL in other cell types in the tumor
microenvironment or due to distant effects.

In summary, we found that HEYL is expressed in both tumor
epithelial and endothelial cells. HEYL exerts separable and potentially
cooperating effects on angiogenesis. HEYL is a downstream target of
Notch. Here, our data suggest a Notch-HEYL-angiogenic factor axis
in breast cancer. HEYL may have angiogenic effects through
overexpression in two different tumor cellular compartments. The
complex and proposed functions of HEYL in tumor epithelial and
endothelial cells are illustrated in Figure 6. Anti-HEYL targeted
therapy may be a promising new component of treatment regimens
aimed at targeting multiple angiogenic factors.
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