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The development of resistance by Plutella xylostella to almost all insecticides is

of significant concern all over the world. Entomopathogenic fungi such as Isaria

fumosorosea have been used as an alternative to insecticides. However, the knowledge

of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage.

In the present study, P. xylostella was challenged with I. fumosorosea at four different

time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina

sequencing. The results of differential expression analysis exhibited that 23 miRNAs were

differentially expressed, compared to control, in all treatments. It is worth mentioning,

of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and

miR-2767, known to play critical roles in host-pathogen interaction, were also identified.

Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results

provide an essential information for further functional studies of the interaction between

I. fumosorosea and P. xylostella at the post-transcriptional level.

Keywords: microRNAs, immunity, innate, Plutella xylostella, Isaria fumosorosea, host pathogen interactions

INTRODUCTION

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is recognized as a
major invasive pest of Brassica crops worldwide. The annual control and damage costs for this
pest has reached approximately at 4–5 billion dollars globally (Zalucki et al., 2012). The use of
chemicals is considered as the major tool for suppressing P. xylostella populations, however, this
pest quickly evolves insecticide resistance (Shakeel et al., 2017a). The growing concern of insecticide
resistance coupled with their harmful effects on the environment has drawn the attention of
worldwide researchers toward the development of alternative control strategies (Shakeel et al.,
2017a). Therefore, the use of biological control agents, such as entomopathogenic fungi, has
received an increased attention. There are several benefits of employing fungal biological control
agents, including a decreased impact on the environment, less chance of resistance development,
and decreased no-target effects (Lai and Su, 2011; Fan et al., 2012; Smalling et al., 2013). A number
of entomopathogenic fungi have been isolated and used to control several insect pests, including
P. xylostella (Altre et al., 1999; Leemon and Jonsson, 2008; Bukhari et al., 2011). Amongst them,
Isaria fumosorosea has received attention to be used as a potential fungal biological control agent
and has been used in various mycopesticides worldwide (Zimmermann, 2008).
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The field of immunology, one of the fascinating facets
of biology, has always attracted researchers to elucidate
the mechanisms, molecular and cellular, involved in sensing
and neutralizing the infectious foreign agents (Imler, 2014).
All multicellular organisms have developed a potent and
diversified immune system to protect themselves from infectious
microorganisms. Insects represent by far the most numerous and
diverse group of multicellular organisms. Although insects lack
adaptive immunity, specialized defense system of vertebrates,
they do have innate immunity that is consisted of cellular
and humoral immune responses (Hultmark, 1993). The cellular
innate immune response is mainly mediated by hemocytes and
comprises phagocytosis, encapsulation, and nodulation (Lavine
and Strand, 2002). The insect humoral reactions involve clotting,
melanization, and production of potent antimicrobial peptides
(Hoffmann and Reichhart, 2002).

MicroRNAs, small non-coding RNA molecules of 18–24
nucleotides in length, are vital regulators of gene expression at
the post-transcriptional level in metazoans (Nehammer et al.,
2015). In eukaryotes, gene expression is regulated by miRNAs via
specific base-pairing with the 3′ untranslated regions (UTRs) of
corresponding target genes (Bartel, 2009). There is an increasing
number of reports that miRNAs play vital roles in many
physiological processes, including development, apoptosis, cell
division and differentiation, and immune challenge (Brennecke
et al., 2003; Stark et al., 2003; Leaman et al., 2005; Asgari, 2011).
While there is a well-established information available about
the role of miRNAs in vertebrate development, knowledge is
limited about their roles in insect host-pathogen interactions
(Hussain and Asgari, 2014). Although the role of insect miRNAs
against viruses is recognized, there is no report, until now,
according to our information, on miRNA-regulated reactions
against entomopathogenic fungi such as I. fumosorosea.

Previously, our results of RNA-Seq and differentially
expressed gene expression (DGE) analysis of destruxin A and
I. fumosorosea treated P. xylostella exhibited that most of the
immunity-related genes were up-regulated in response to
destruxin A injection, whereas I. fumosorosea has the ability
to suppress the immune system of P. xylostella (Shakeel et al.,
2017c; Xu et al., 2017). Therefore, given the fact that miRNAs play
important role in host-pathogen interaction, herein, we aimed to
explore the response of P. xylostella miRNAs to I. fumosorosea,
and to determine how the abundance of differential expression
of known and novel miRNAs changes following an infection and
whether it varies at different times of infection. To achieve these
results, we profiled miRNA expression in P. xylostella infected
with I. fumosorosea at 12, 18, 24, and 36 h time points with a
control using small RNA deep sequencing.

MATERIALS AND METHODS

Insect Stock
The susceptible population of P. xylostella was maintained under
insecticide free conditions for 10 generations in the Engineering
Research Centre of Biological Control, Ministry of Education,
South China Agricultural University (SCAU). The insects were

kept at 60–70% relative humidity and at 25± 1◦C under a 16:8 h
light: dark cycle.

Fungal Strain and Samples Collection
Stain IfB01 of I. fumosorosea (China Center for Type Culture
Collection access number: CCTCC M 2012400) was grown on
potato dextrose agar (PDA) at 26◦C. The conidia were prepared
as described previously (Huang et al., 2010). Healthy third
instar larvae of P. xylostella were selected and treated with 1 ×

107 spores/ml suspension and then surviving larvae (50) were
collected at 12, 18, 24, and 36 h, post-treatment. The control
group larvae were treated with sterile deionized water containing
0.05% Tween-80 and the samples were collected at 0 h post-
treatment.

RNA Extraction, Small RNA Library
Construction, and Sequencing
Trizol Total RNA Isolation Kit (Takara, Japan) was used to extract
total RNA from normal and treated larval samples following
manufacturer’s instructions. The concentrations of RNA were
assessed using Nanodrop (Bio-Rad, USA) and its integrity was
determined on Agilent 2100 Bioanalyzer (Agilent, USA). The
small RNA libraries were constructed from each time-point of
infection using a TruSeq small RNA sample preparation kit
(Illumina). Briefly, RNAs were firstly ligated with 3′ adapter and
after size fraction ligated to 5′ adapter. The small RNA fractions
were then used for reverse transcription following PCR. The final
ligation PCR products, after purification, were sequenced using
Illumina Genome Analyzer (San Diego, CA, USA) at the Beijing
Genomics Institute (BGI, Shenzhen, China).

Bioinformatics Analysis of Small RNA
Sequences
To screen clean reads, raw data reads were filtered to remove low-
quality, 5′ primer contaminants, without 3′ primers and insert
tag, and sequences fewer than 18 nucleotides. The remaining
high-quality reads were initially mapped to P. xylostella genome
(GCA_000330985.1) using Bowtie software (Langmead and
Salzberg, 2012), and then annotated into different classes to
remove rRNA, scRNA, snoRNA, snRNA, and tRNA using Rfam
database. Finally, the unannotated clean sequences were used to
predict novel miRNAs using the miRDeep2 software.

Differential Expression Analysis of miRNAs

The expression of miRNAs was compared between treatment
and control to identify differentially expressed miRNAs. First,
the expression of miRNA in the five libraries was normalized to
transcripts per million (TPM). If the normalized expression of
the miRNA was 0, it was modified to 0.01 to enable calculation.
If the normalized expression of the miRNA was less than 1 in
all libraries, it was ignored to compare for low expression. The
normalization formula was:

Normalized expression = Actual miRNA count

/Total count of clean reads×106.
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The normalized data were then used to calculate fold-change
values and P-values, and a scatter plot of the fold-change values
was generated. Fold-change was calculated as;

Fold-change= log2 (Treatment/Control).
The P-value was calculated by the following equation:

p(x
∣

∣y ) =

(

N2

N1

)y (x+ y)!

x!y!
(

1+ N2
N1

)(x+y+1)

C(y ≤ ymin |x ) =
∑ y≤ymin

y=0 p(y |x )

D(y ≥ ymax |x ) =
∑

∞
y≥ymax

p(y |x )

Where x represents small RNA total clean reads in the control,
y represents total clean reads in the treatment, N1 represents
the normalized expression of a miRNA in library control, and
N2 represents the normalized expression of the same miRNA
in library treatment. The corrected P-value corresponds to
differential gene expression test using Bonferroni method (Abdi,
2007).

miRNA Target Prediction and Functional
Analysis
The potential mRNA targets of differentially expressed miRNAs
were predicted and analyzed using three different programs,
such as RNAhybrid, miRanda, and TargetScan following already
established criteria for target prediction (Allen et al., 2005;
Schwab et al., 2005). To get more reliable results, we selected
those mRNA targets which were predicted by all three programs.
Additionally, functional annotation of all the predicted target
genes was conducted by using Gene Ontology (GO) database and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses, with the threshold set at a corrected P-value ≤ 0.05.

RT-qPCR Validation
Real-time quantitative PCR (RT-qPCR) is the method of choice
for analyzing expression of genes and to confirm the results of
RNA-Sequencing (Shakeel et al., 2017b). Thus, to confirm the
results of sRNA-Seq in the current study, RT-qPCR analysis was
conducted to ensure the expression levels of miRNAs displayed
by Illumina sequencing results and 10 miRNAs were selected.
RT-qPCR was performed on a Bio-Rad iQ2 optical system (Bio-
Rad) using SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA,
USA) following the instructions of the manufacturer. The U6
snRNA was used as an internal control. The reaction program
was set as 95◦C for 30 s, 40 cycles of 95◦C for 5 s, and 55◦C

for 10 s with a dissociation curve generated from 65 to 95◦C
to ensure the purity of PCR products (Shakeel et al., 2015).
Each experiment was replicated in triplicate. Finally, data analysis
was performed using 2−11CT method (Livak and Schmittgen,
2001).

RESULTS AND DISCUSSION

Overview of Small RNA Dataset
To identify miRNAs in I. fumosorosea challenged P. xylostella,
we constructed five small RNA libraries (Tween (TW), 12,
18, 24, and 36 h) using high-throughput Illumina sequencing
platform. In total, 11,861,547; 11,872,699; 11,944,980; 11,956,814,
and 11,866,077 raw reads were obtained, respectively. After
low-quality sequences, adaptors, and sequences less than 18
nucleotides were discarded, 92.93, 98.17, 98.96, 98.63, and
94.62% clean reads were obtained in TW, 12, 18, 24, and 36 h,
respectively, for further analysis (Table 1).

The small RNA size distribution in the five libraries showed
that most of the sRNAs ranged from 18 to 30 nt, with 28 nt
being the most abundant following 22, and 23 nt (Figure 1) in
the five libraries. The two peaks observed at 22 and 28 nt, in the
present study, represent a typical length of miRNAs and piwi-
interacting RNAs, respectively. Our findings are in consistency
with the typical size of miRNAs and piwi-interacting RNAs in
previous reports (Wei et al., 2009; Etebari et al., 2013; Xu et al.,
2015; Li et al., 2016). Among the clean reads, 85.10% sRNAs were
common between 12 and 18 h, 85.31% sRNAs between 24 and
12 h, 83.28% sRNAs between 24 and 18 h, 83.92% sRNAs between
24 and 36 h, 84.55% sRNAs between 24 h and TW, 84.89% sRNAs
between 36 and 12 h, 83.91% sRNAs between 36 and 18 h, 86.44%
sRNAs between 36 h and TW, 85.77% sRNAs between TW and
12 h, and 84.18% sRNAs between TW and 18 h, respectively
(Supplementary Figure 1).

Genome Mapping and Small RNA
Annotation
Of the clean reads, 6,784,087, 6,965,570, 7,410,628, 7,023,256,
and 6,510,880 reads from control, 12, 18, 24, and 36 h accounted

TABLE 1 | The classification of total small RNAs of the Plutella xylostella by sequencing.

Type Tween (TW) 12 h 18 h 24 h 36 h

Counts Percent Counts Percent Counts Percent Counts Percent Counts Percent

High-quality reads 11,861,547 100 11,872,699 100 11,944,980 100 11,956,814 100 11,866,077 100

3′ adapter-null 27,731 0.23 45,757 0.39 3,422 0.03 2,394 0.02 29,205 0.25

Insert-null 8,951 0.08 4,048 0.03 6,282 0.05 4,351 0.04 10,499 0.09

5′ adapter-contaminants 205,353 1.73 61,614 0.52 49,186 0.41 25,940 0.22 75,571 0.64

Smaller than 18 nt 595,179 5.02 105,692 0.89 65,511 0.55 131,053 1.1 522,744 4.41

PolyA 907 0.01 142 0 130 0 134 0 275 0

Clean reads 11,023,426 92.93 11,655,446 98.17 11,820,449 98.96 11,792,942 98.63 11,227,783 94.62
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for 61.54, 59.76, 62.69, 59.55, and 57.99%, respectively, and were
mapped to the genome of P. xylostella (Supplementary Table 1).
The annotation of sRNAs was carried out by following priority
rule of rRNA etc.; (GenBank>Rfam) > known miRNA > repeat
> exon > intron (Calabrese et al., 2007). The clean reads were
categorized into miRNA, rRNA, snRNA, snoRNA, tRNA, and
unannotated (unann). The composition of the sRNA classes in
each library is displayed in Supplementary Figure 2.

Identification of Known and Novel miRNAs
After successful mapping of clean reads against P. xylostella
genome, the mapped miRNA sequences were matched to
miRNAs reported by Etebari and Asgari (2016). Our analysis
initially identified, based on sequence similarity, in total, 191

FIGURE 1 | Size distribution of small RNA reads in the libraries of Plutella

xylostella. Different colors represent different libraries. X-axis represents small

RNA length distribution and Y-axis represents frequency percentage. Tween

(TW) was used as a control.

mature miRNAs. Then, precursor sequences of these mature
miRNAs were aligned to those reported by Etebari and Asgari
(2016), and 102 highly confident precursor miRNAs, which
produced 172 of 194 mature miRNAs. Our analysis indicated
that precursor miRNA sequences of the remaining 22 conserved
miRNAs were not detectable in the current assembly of
P. xylostella genome. After removing those known miRNAs
with read count <10 in all libraries, remaining 116 known
miRNAs with precursor sequences (Supplementary Table 2),
and 15 miRNAs without precursor sequences (Supplementary
Table 3) were retained for further analysis. The remaining
sequences that were not matched to conserved miRNAs were
used to predict novel miRNAs by using miRDeep2 program
(Friedländer et al., 2012). The prediction of novel miRNAs
analysis predicted 42 potential novel miRNAs from all the
libraries (Supplementary Table 4) following the standard criteria
of novel miRNA prediction with a miRDeep score >1, randfold
P-value < 0.05, and MFE < −19 kcal/mol.

It is worth mentioning that a low copy number of miR-1, a
conserved miRNA, was detected after parasitization in a previous
report (Etebari et al., 2013), however, in the present study, miR-1
was the most abundant miRNA following pxy-let-7-5p, pxy-miR-
184-3p, pxy-miR-10-3p, and miR-31-5p (Table 2). The abundant
and common expression of these conserved miRNAs indicates
that these miRNAs might play crucial roles in P. xylostella.
Our results are in consistency with previous reports where a
high expression of these miRNAs was observed in other insect
small RNA libraries (Cai et al., 2010; Cristino et al., 2011; Liu
et al., 2012). Bantam, a most abundantly expressed miRNA,
plays multiple roles in insects such as apoptosis inhibition,
cell proliferation and stem cell stem cell maintenance, and
immunity in Drosophila melanogaster (Smibert and Lai, 2010;
Fullaondo and Lee, 2012). Although a high copy number of
bantam was observed in our study, however, its up-regulation
after infection was less than 1-fold. Let-7, a highly conserved
miRNA, has also been reported to play an important role in
immunity, for example, it binds to 3’ UTR of antimicrobial
peptide diptericin to repress translation of this protein in
D. melanogaster (Garbuzov and Tatar, 2010). Interestingly, we

TABLE 2 | Top 10 most abundant miRNAs commonly expressed in the five libraries of Plutella xylostella.

miR_name Mature sequence Counts

Tween (TW) 12 h 18 h 24 h 36 h

pxy-mir-1-3p TGGAATGTAAAGAAGTATGGAG 371,221 289,079 276,684 241,868 404,656

pxy-let7-5p TGAGGTAGTAGGTTGTATAG 77,144 62,823 67,701 101,438 64,418

pxy-mir-184-3p TGGACGGAGAACTGATAAGGGC 45,689 37,401 40,854 48,942 27,575

pxy-mir-10-3p CAAATTCGGTTCTAGAGAGGTTT 18,052 11,877 12,032 13,447 16,493

pxy-mir-31-5p AGGCAAGATGTCGGCATAGCTGA 12,857 11,904 13,039 12,037 10,224

pxy-mir-2755-3p CACCCTGTCAGACCATACTTGTT 11,483 10,586 10,295 13,527 8,105

pxy-miR-281-5p AAGAGAGCTATCCGTCGACAGT 9,156 10,361 10,020 7,132 10,957

pxy-mir-10-5p TACCCTGTAGATCCGAATTTGT 6,647 4,482 4,503 6,458 5,884

pxy-mir-276-3p TAGGAACTTCATACCGTGCTCT 4,6 99 3,004 2,867 2,217 6,354

pxy-mir-279c-3p TGACTAGATCCATACTCGTCTG 4,658 5,833 5,468 7,341 6,376
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found that few miRNAs like miR-2755, miR-10, and miR-31
showed high expression in all treatments. A higher expression of
thesemiRNAs after fungal treatment indicates that thesemiRNAs
might play important roles in defending P. xylostella against
pathogens.

The novel miRNA analysis identified 42 potential novel
miRNAs in P. xylostella after infection (Supplementary Table 4).
Among novel miRNAs, pxy-novel-miR-26 was the abundantly
expressed miRNA following pxy-novel-miR-1, pxy-novel-miR-
33, and pxy-novel-miR-35 (Supplementary Table 4).

I. fumosorosea Responsive MiRNAs
The differential abundance of host miRNAs, a common
observation in host-pathogen systems, changes at different
infection stages following an infection (Asgari, 2011). In the
present study, to find out the I. fumosorosea responsive
miRNAs, a differential expression analysis was performed using
the sequencing results (Figure 2). The differential expression
analysis exhibited that 13, 12, 16, and 5 known miRNAs were
differentially expressed in 12, 18, 24, and 36 h, respectively,
compared to control (Supplementary Table 5). The top five

FIGURE 2 | Volcano plot of differentially expressed microRNAs in Plutella xylostella post-infection. The volcano plots represent differentially expressed miRNAs at

different time points (12, 18, 24, and 36 h) post-infection compared to control.
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differentially expressed known miRNAs are presented in Table 3.
Furthermore, 12, 19, 13, and 11 novel miRNAs were differentially
expressed, in 12, 18, 24, and 36 h, respectively, compared to
control (Supplementary Table 6).

Interestingly, in the present study, we found that the
expression of few conserved miRNAs like miR-2, miR-9, miR-
279, miR-745, miR-7b, and miR-2767 was changed following
the infection of I. fumosorosea. Our findings suggest that
these miRNAs might play very important roles in P. xylostella
immunity to I. fumosorosea. In accordance to our study, previous
reports also suggested the important roles of these conserved
miRNAs in the immunity of different insects against different
pathogens, such as bacteria-injected larvae of Manduca sexta
and Diadegma semiclausum parasitized P. xylostella resulted
in differential expression of miR-2, miR-9, and miR-279,
indicating the role of these miRNAs in immunity against
bacteria and parasite, respectively (Zhang et al., 2012; Etebari
et al., 2013). It is of note that miR-9 has been predicted
to play an essential role in signal recognition in M. sexta,

and in toll pathway in Drosophila melanogaster (Fullaondo
and Lee, 2012). It is worth mentioning that the read number
of most of the miRNAs dropped after infection and, overall,
only 3 miRNAs (miR-282,−2796, and −34) were up-regulated
while 20 miRNAs were down-regulated in all the treatments
compared to control. Previously, it has been reported that when
Galleria mellonella was infected with entomopathogenic fungi,
Metarhizium anisopliae, at larval stage, only one miRNA (miR-
210b) showed differential expression (Mukherjee and Vilcinskas,
2014), whereas, in our study, 23 miRNAs were differentially
expressed, however, miR-210b was not detected in our small RNA
libraries.

Validation of Differentially Expressed
miRNAs by RT-qPCR
To validate small RNA sequencing results, 10 randomly selected
miRNAs were analyzed by RT-qPCR (Figure 3). The results
exhibited that the trend of the expression level of the selected
miRNAs showed consistency with sequencing results except for a

TABLE 3 | Five common differentially expressed miRNAs at 12 and 18 h compared to Tween (TW) in Plutella xylostella.

miRNA TW (TPM) 12h (TPM) 12 h/TW P-value FDR 18h (TPM) 18 h/TW P-value FDR

pxy-mir-7b-5p 17.64 3.92 −2.169925 3.29E-20 2.44E-19 2.6 −2.762267033 5.81E-27 5.52E-26

pxy-mir-2768-3p 14.23 4.35 −1.709848 1.94E-12 9.50E-12 5.1 −1.48036651 1.35E-10 6.30E-10

pxy-mir-79-3p 26.74 8.92 −1.583884 5.50E-20 3.82E-19 9.06 −1.56141651 4.42E-20 3.36E-19

pxy-mir-8507-3p 124.38 43.84 −1.504435 8.98E-81 1.61E-79 57.56 −1.111616025 2.44E-52 3.97E-51

pxy-mir-2a-3p 11.49 5.11 −1.168984 2.08E-06 6.78E-06 2.39 −2.265296275 1.16E-14 6.63E-14

FIGURE 3 | Validation of expression of ten miRNAs achieved by RT-qPCR and sRNA-Seq in Plutella xylostella after Isaria. fumosorosea infection. Error bars represent

± SD from three independent experiments. U6 snRNA was used as an internal control.
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FIGURE 4 | Prediction of potential target genes in all libraries. Venn diagram

show the number of miRNA targets and their overlapping spots predicted by

the three programs (RNAhybrid, miRanda, and TargetScan).

few miRNAs like pxy-miR-2a-3p, pxy-miR-2b-3p, and pxy-miR-
274-5p.

Prediction and Annotation of miRNA Target
Genes
To better understand the function of differentially expressed
miRNAs, putative target genes were predicted using the
genome of P. xylostella using RNAhybrid, miRanda, and
TargetScan software. Our target prediction results indicated
that 30,930 common spots were detected between RNAhybrid
and TargetScan, 30,818 between RNAhybrid and miRanda, and
31,942 between TargetScan and miRanda. When the target
prediction results of all three software were combined, 30,699
common spots were detected and were selected for further
analysis (Figure 4).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Analysis
The GO enrichment analysis was performed to classify
the functions of miRNA target genes. The putative target
genes were classified into three major categories, biological
process, cellular component, and molecular function, of GO
classification. Our results exhibited that cellular process,
cell part, and catalytic activity were the most enriched
categories in the biological process, cellular component, and
molecular function, respectively, at all-time points of treatment
(Supplementary Figure 3). Similar to our findings, previously,
target genes of Ostrinia. furnacallis in response to Bacillus
thuringiensis andWolbachia- responsive miRNAs in Tetranychus
urticae were also categorized into the cellular process, cell

part, and catalytic activity (Rong et al., 2014; Xu et al.,
2015).

To find out particular signaling pathways of the putative
miRNA target genes, Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis was performed. The most enriched categories
were transport and catabolism, signal transduction, and cancers
in cellular processes, environmental information processing, and
human diseases, respectively, at all-time points of infection
(Supplementary Figure 4).

CONCLUSION

In conclusion, using high-throughput sRNA sequencing, we
screened out I. fumosorosea responsive immunity-related
miRNAs in P. xylostella. Based on our knowledge, this is the first
study about immunity-related miRNA profiles of P. xylostella
in response to I. fumosorosea. The major finding of this study is
the identification of conserved immunity-related differentially
expressed miRNAs such as miR-2, miR-9, miR-92, miR-745,
and miR-2767. Our findings provide an essential information
for further functional studies of the interaction between
I. fumosorosea and P. xylostella at the post-transcriptional
level.
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