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Abstract: Person verification using online handwritten signatures is one of the most widely researched
behavior-biometrics. Many signature verification systems typically require five, ten, or even more
signatures for an enrolled user to provide an accurate verification of the claimed identity. To mitigate
this drawback, this paper proposes a new elastic curve matching using only one reference signature,
which we have named the curve similarity model (CSM). In the CSM, we give a new definition
of curve similarity and its calculation method. We use evolutionary computation (EC) to search
for the optimal matching between two curves under different similarity transformations, so as to
obtain the similarity distance between two curves. Referring to the geometric similarity property,
curve similarity can realize translation, stretching and rotation transformation between curves, thus
adapting to the inconsistency of signature size, position and rotation angle in signature curves. In the
matching process of signature curves, we design a sectional optimal matching algorithm. On this
basis, for each section, we develop a new consistent and discriminative fusion feature extraction
for identifying the similarity of signature curves. The experimental results show that our system
achieves the same performance with five samples assessed with multiple state-of-the-art automatic
signature verifiers and multiple datasets. Furthermore, it suggests that our system, with a single
reference signature, is capable of achieving a similar performance to other systems with up to five
signatures trained.

Keywords: curve similarity; curve similarity model; curve similarity transformation; similarity
distance; segmentation matching; evolutionary computation

1. Introduction

Biometric authentication has always been a field of primary concern in the security application
field [1,2]. Person authentication or verification using handwritten signatures is one of the most
widely researched behavior-biometrics and the most popular method for identity verification [3].
Usually, signature verification systems can be divided into two categories, namely, off-line and
on-line systems, which have a significant difference. Dynamic signatures are too difficult to imitate
and forge, even for skilled forgers [4] because they are unique and consistent for a given period.
Compared with off-line signatures [5], online signatures are more robust and gain a higher level of
security by monitoring dynamic features like time series of position trajectories, pressure, altitude,
and azimuth. There is a tendency to recover online signatures from offline signature images [6].

Online signature verification can basically be viewed as a problem of similarity discrimination,
whereby a decision must be made about whether a given online signature corresponds to the claimed
identity or not. In a signature verification system, we compare the features of a test signature against
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those from a set of genuine signatures of an enrolled user, which can be called reference signatures
or template signatures. By stable and discriminative feature extraction and selection, there are two
approaches to identify the authenticity of a signature, which can be called the function approach and
the parameter approach.

Signature verification methods based on the parameter approach include the statistical
classification [7,8], neural network [9], support vector machine (SVM) [10], Bayesian decision [11] and
features cluster [12], where some global or local features derived from the original signature signal,
e.g., average speed, pressure, the number of strokes, etc., constitute signature feature patterns or
feature vectors.

The signature verification system based on a function considers each signature signal as a function
of time and verifies the signer by comparing the reference signature with the test signature directly.
Usually, matching procedures or special function parameter calculations are a need between signatures,
requiring more time and space. The common approaches include Dynamic Time Wrapping (DTW) [13],
its improved version [14-19] and the hidden Markov model (HMM) [20,21].

Bonus template matching approaches are considered, and a longest common subsequences (LCSS)
combined elastic distance metrics is also used [22]. A discrete cosine transform (DCT) [23] has been
applied to 44 time signals. A multi-section vector quantization (VQ) approach [24] has been suggested
where all signatures are represented by vectors of the same length. Similar methods such as the Fourier
description [25], wavelet packet and discrete wavelet transform (DWT) [26] have been presented too.

A function-based system utilizes all original information about the signature, and shows better
performance than parameter-based systems. Nowadays, fusion for improving verification accuracy
has become a promising trend, and a combination of parametric approaches and functional approaches
is often adopted in literature [16-18,27].

1.1. Related Work

Although a signature can show individual behavior features, it is more unstable and diverse
than other biometric verification technologies such as fingerprint recognition, iris recognition, face
recognition and so on. Due to changes in the internal and external environment, there are fluctuations
in the size, location and rotation angle of signatures with the same signer at different input times.
In addition, signatures will not maintain high consistency for a long time as writing habits and the
external environment change. As a result, two repetitions of a signature from the same writer never
have an identical appearance [28]. Each person can even have several signatures of diverse styles,
and one style of signature is obviously not suitable for the verification of another style of signature.
Of course, the style variability also makes signature verification better for privacy protection than fixed
biometric recognition technology.

In a traditional signature verification system, a large number of samples are mandatory when
building a reliable statistical classifier and many algorithms even also require skilled forgery samples [29].
Figuring out a stable signature region is also a hot topic in recent research. Similarly [19,29], extraction
of a stable signature region also depends on availabiliy of a large number of training signatures.
In practice, it is often impractical to obtain various signature samples from a signer, which limits the
applicability of a signature verification system.

How to reduce the enrollment signature size is a crucial issue. Another problem is how to reduce
the differences between different signatures, that is, the problem of signature alignment is also a key
problem to be solved.

It is the most widely used and recommended method for size alignment by max-min
normalization [30]. Some template matching methods, such as DTW [14], LCSS [22] and so on,
also apply for alignment. Recently, alignment methods based on Gaussian mixture model (GMM) have
been developed [17], but training a Gauss model requires a large number of samples.
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For selecting effective reference signatures, the intra-class variation of genuine signatures can be
quantified with a correlation-based criterion which detects and recovers non-linear time distortions in
different specimens as described in [31].

A single reference signature system (SRSS) for training with only a single reference signature has
been proposed in [28], which followed the strategy of duplicating the reference signature to enlarge the
training set. In this work, the strategy consists of duplicating the given signature a number of times
and training an automatic signature verifier with each of the resulting signatures and the duplication
scheme is based on a sigma lognormal decomposition of the reference signature.

Nevertheless, in a real situation, it is sometimes difficult to obtain enough signatures from a
signer, especially in commercial applications and forensic covers. Therefore, this paper discusses
the model and method of designing an automatic signature verification system using only one real
reference signature per enrolled signer. Moreover, in this study, it is vitally important to effectively
align the test signature to the reference signature for verification in order to cut down the influence
of fluctuations caused by variances of size, location and rotation angle, which may deteriorate the
performance of verification.

The signature trajectory can be viewed as a 2D/3D curve. The similarity between two signatures
can be measured by curve similarity [32]. Curve similarity is a major category of similarity measure and
a large number of similarity problems can be transformed or abstract into curve similarity problems.

Measuring curve similarity is a common method for curve matching. The curves are usually
assumed to be represented as polygonal chains in the plane and to be measured by distance such as
DTW or Fréchet distance as in [33]. The Fréchet distance, which relies on fewer features, can be applied
for signature verification as proposed in [33].

By computing cumulative distance, DTW provides normalization and alignment as a
computational technique to determine the best match between two curves, which might produce
different sample points. The Fréchet distance belongs to a general class of distance measures that
are sometimes called “dog-man” distances and is a max measure which is outlined in terms of the
maximum leash length over a parameterization. However, two classical curve similarity measures
are sensitive to data anomaly points and cannot adapt to changes in the translation and scaling of
the curve.

1.2. This Paper

Our goal of this paper is to design an automatic signature verification system for a SRSS. To this
end, a new curve similarity measure model and calculation method has been established, which we
call the curve similarity model (CSM). The curve similarity draw lessons from geometric similarity;,
and can be adapted to various transformations such as translation, scaling and rotation, and can better
be adapted to the inconsistency of signatures such as signature size, position and rotation angle in the
signature curve.

The procedure presented in this paper considers a rigorous and adaptive CSM to build a robust
SRSS. Therefore, we completed the exploratory work reported in [32], proposed a continuous and
discrete curve similarity model based on transformation, and accomplished the curve optimal matching
calculation based on evolutionary computation (EC) [32]. Based on the characteristics of the SRSS,
a differentiated fusion feature named local similarity score (LSC) is designed for the difference
calculation between two signatures.

The paper is organized as follows: Section 2 introduces the relevant definitions of CSM. Section 3
describes the proposed curve similarity calculation method and process. The fourth section describes
the optimal sectional matching of signature curves and local matching feature extraction for SRSS.
The experimental results will be presented and discussed in Section 3. Conclusions are drawn in the
last section.
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2. Model and Method
2.1. Curve Similarity Model

2.1.1. Original Definition

One curve is typically represented by a function. A definition must be provided to study the
problem of the curve similarity. In geometry, there is a strict definition for shape similarity, which is an
accurate similarity. In engineering applications, due to the large number of error factors, the definition
of fuzzy curve similarity is adopted. Taking a 2D plane curve as an example, a kind of curve similarity
is defined as follows:

Definition 1 ([32]). Given functions f1(x) and f»(x),d(f1, f») = fcclz | fi(x) = fo (x)|dx is the distance between
two functions, and also known as the function similarity distance or the curve similarity distance, where [Cq,
Cy1 is the function definition domain or the definition domain.

Definition 2 ([32]). For a given threshold ¢, if d(f1,f,) < €, then f1(x) and f,(x) are similar, otherwise they
are not.

As mentioned above in the definitions of curve similarity distance (CSD) and curve similarity,
the two functions have the same definition domains, that is to say, two curves must be aligned first,
which is very limited in practical application. In most cases, the definition domains of two functions
are different, and it is necessary to perform a truncation, translation, stretching, or even rotation
transformation on a function to calculate the similarity distance.

As shown in Figure 1, given a curve L, the curves L; to L3 are new curves obtained after applying
different transformations such as translation or stretching. If the above calculation method is adopted,
the distances between L to L3 and L are different. Similar problems are available in the calculation of
DTW and Fréchet distances of the curves.

h

Y

——————

Figure 1. Translation and stretching transformation of curves.

From the perspective of transformation, the above several curves are similar, and the distance is 0.
Therefore, when to measure the similarity between curves, the transformation of the curve should be
taken into consideration. Firstly, a curve similarity distance definition based on curve transformation
may be suggested.
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2.1.2. Improvement Definition

Definition 3. Given functions f1(x) defined on [R1, Rp] and f(x) defined on [Cy, C,], and make transform
T — f'1(x) =k fi((x—=b)/a) —h, then the minimum distance of all the matching distances between f'1(x)
and f,(x) with different transformation T is as follows:

dis(a,b,kh) = [y [T(A(x) = fao)ldx
= [ () - Al
= [y JeA((c=b)/a) == fo(x)|ax O
= fRRZ a-|k-f1(t)—h—fz(a-t+b)|dt t=(x-b)/a

= Jo, @lkfi(x) =h = falax+b)|dx

d(fi, f2) = d(f'y, f2) = min{dis(a, b, k, 1)} @

which is called the curve similarity distance of f»(x) to f1(x) under the transformation T, where f1(x) is called the
reference function or the reference curve, f,(x) is called the comparison function or the comparison curve, f'1(x)
is called the transform function or the transform curve, T is called a function similarity transformation or a
curve similarity transformation (CST), and dis(a,b,k,h) is called the distance of the two curves under the curve
similarity transformation T.

Obviously, the distance between the two curves is different under different similarity
transformations T, and the curve similarity distance (CSD) is the distance after the optimal matching
of the reference curve for the comparison curve. After the curve similarity transformation, the curve
similarity distance is denoted by min{dis(a,b,k,h)}.

Once the optimal matching of the curves is obtained, the corresponding curve similarity distance
can be obtained, as shown in Figure 2.

Y 4
4 [N
I’ \\
JC/SSD, ViRS— . Reference Curve
p fokH
, \ C ision C
P H omparision Curve
[/ ‘s
-
¢ ------ Transform Curve
A —W-
< a

«—phH—>

OcC, R, aR+b R aRotb G

Figure 2. The curve similarity transformation between the two curves.
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From Figure 2, a, k are translational transformations in the horizontal and vertical directions,
respectively, and b, h are scaling transformations in the horizontal and vertical directions, respectively.
Therefore, the similarity of curves based on curve similarity transformation is defined as follows:

Definition 4. Given a reference curve f1(x) and a comparison curve f>(x), for a given threshold ¢, if d(f1 ) < ¢,
then the curve f,(x) is called similar to curve f1(x), and vice versa.

2.1.3. Discrete Definition

In engineering applications, the expression of the curve is therefore difficult to obtain, and can
only be represented by an implicit function. By sampling, a continuous curve can be represented
by a set of discrete ordered points. In this way, it is a common problem to measure the similarity of
the two curves, which is to determine the similarity between two discrete ordered sets. As a result,
a discrete curve similarity definition is needed. Similarly, the definition of discrete curve similarity
transformation is given by reference to planar image transformation.

Definition 5. Given one discrete curve F4 = {(x1, y1), (x2, y2) ... (Xm, Ym)}, and

T =

SO

0 0
k 0 3)
ho1

is the curve similarity transformation matrix, where the meanings of a, b, k, h are the same as those described in
Formula (1), corresponding to the translation and scale transformation of the horizontal and translation directions,
respectively. F'y = T-Fp = { (1 ), (5 Ya), e, (6, y*m)} is called the similarity transformation curve of
F A, where:
{ X =axi+b @
vi=kyi+h

Without any doubt, the transformation matrix T can be more complicated, such as rotation,
mirroring and shearing transformation, and various combinations thereof. Moreover, the definition of
discrete curve similarity distance under the condition of curve similarity transformation can be given.

Definition 6. Given a discrete curve Fa = {(x1, y1), (x2, y2) ... (Xm, ym)} as a reference curve, another curve
Fp={(x"1,y'1), (X2, ¥'2) ... (X'n, y'u)}is considered as a comparison curve. F'y =T o F 4 is transformed by a
similarity transformation matrix T from F 4. Among all similarity transformation matrices T, the minimum
distance of all the matching distances between F’ 4 and Fp is as follows:

m

dis(t,a bk ) =1 ¥ |T(o) - (5 y))]
i=1,j=i+t
m
=1 Xy - (Y
h L - )
m
=1 ¥ |@xtbky+n) -y )
i=1,j=i+t
m
S
i=1,j=i+t
_ 1 - . )2 . 7 )2
= X (axi +b-x) +(k]/z+h_y]')
i=1,j=i+t
D(FA,FB) = D(F’A,FB) = min{dis(t,a,b,k,h)}, 6)

which is called the curve similarity distance of Fp to F 5 under the transformation T. The meanings of a, b,
k, h are the same as those described in Formula (1) and Figure 2, corresponding to the translation and scale
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transformation of the horizontal and translation directions, respectively. Meanwhile, t is the starting point
position of the optimal matching of the reference curve on the comparison curve.

Likewise, the definition of discrete curve similarity is as follows:

Definition 7. Given a discrete reference curve F 4 and a comparison curve Fg, for a given threshold €, if D(F4,
Fp) < ¢, then the curve Fp is called similar to curve F 4, and vice versa.

Finally, calculating the similarity distance of the comparison curve to the reference curve is
equivalent to calculating the optimal matching of the reference curve in the sense of the average
distance on the comparison curve after the transformation. Therefore, performing a similarity measure
between two curves requires two steps, one is to calculate the optimal matching, and the other is to
perform threshold discrimination.

In the classic curve matching algorithm DTW, once a curve of two curves is translated or stretched,
the distance measurement between them will be modified. In the curve similarity measure process,
the curve similarity distance calculation depends on a transformation matrix. The characteristics of
the transformation matrix can well prevent the deformation process of the translation, stretching and
rotation of the curve. However, the transformation matrix is sometimes difficult to solve directly.

Accordingly, an evolutionary computation (EC) [32] algorithm has been introduced to obtain
the transformation matrix and the optimal matching interval between two curves by minimizing the
matching distance. The specific search algorithm is introduced later.

2.1.4. Matching Calculation

It can be observed from the definition that the curve similarity distance is the optimal
matching of the reference curve with the comparison curve under different similarity transformations.
Therefore, the matching distance between two curves under different CSTs can be obtained by random
search algorithm. EC is a very effective algorithm for intelligent random search, where the similarity
transformation matrix T is the parameter space of random search.

The whole idea of EC is to generate S random populations POP = {POP(0), POP(1), ... , POP(S -1)},
each of which corresponds to a set of parameters of CST T and a fitness value fitness = D(F4, Fp) from
Formula (6), where the fitness is smaller, the population is better. At the same time in each iteration
search, each individual will generate new descendants near itself, and the best individuals can be
chosen to enter the next iteration search.

The above process is repeated until the iterative search reaches the maximum number of
iterations, at which point the optimal individual parameters and fitness will be regarded as CST and
CSD, respectively.

At the same time, the parameters (f, 4, b, k, h) should meet certain constraint conditions and adopt
real coding for the signature curve matching. The boundary condition of the following system is 0 < ¢
<21,090<a<1.10,090 <k <1.10, -100 < b < 100, and —100 < h < 100, where a and k are elastic scales
in the horizontal and vertical directions, and b and h are translations.

The Algorithm 1 process is as follows:
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Algorithm 1. Optimal matching calculation by EC
i=0
Forj=0:5S-1Do
//random generation of parameters t, a, b, k, h
initial a population POP;(j) = (t, a, b, k, h)
calculate fitness of each member in POP;(j)
End For
While i < Iterations Do
i=i+1
//sorting and classification
order POP;_; by fitness in ascending and divide them into 4 levels
//acceleration search
Forj=0:5-1Do
If POP;_;(j) is at level kind
/where, kind = 1, 2, 3, 4, indicating the classification level of each population
//random generation of new parameters £, a, b, k, h in the neighborhood
/fi.e., a = rand(POP;_1(j).a, kind)
generate new kind+1 subpopulations nPOP from POP;_(j)
calculate fitness of each member in nPOP
//sorting subpopulations
order nPOP by fitness in ascending
//select best subpopulation nPOP as POP;_1(j + S)
POP;_1(j + S) = nPOP(0)
End If
End For
//global selection
order POP;_; by fitness in ascending, where there are 25 populations
select the top S from POP;_q as POP;
End While

When generating new kind + 1 subpopulations from one population, each subpopulation has
different parameter generation range at different level. Generally speaking, the fitness is smaller,
the parameter generation range of each subpopulation is narrower.

Suppose that the j-th population POP(j) is at the kind-th level, on which parameter generation
range is GRyjnq = kind ® GRyax/4, kind + 1 subpopulations nPOP can be randomly generated, here:

nPOP = {nPOP(k)|[POP(k) - POP(j)| < GRying, k = 0 ~ kind } )

For example, for parameter a, GRy;ax = max(a) — min(a). When kind = 1 and a new random number
r=—1or 1is generated, 2% = 2% 4+ 1 e GRyjng = 2% + 7 @ GRypay/4. At the same time, check whether
a™? satisfies the boundary condition.

The other parameters t, b, k, h all perform similar operations. Therefore, from the new
subpopulation process generated by the parameters represented by each original population,
the parameters of the generated subpopulations are determined according to the classification level of
the original population. Although this parameter is also random, it varies randomly to the original
population by its classification level.

2.2. Proposed System

Online signature verification system can be discriminated by the similarity distance of two
signature curves, where one signature can be called as the reference signature and the other can be
called as the comparison signature. For instance, two signature trajectories can be considered as plane
curves which can be also divided into X curves and Y curves, as shown in Figure 3.
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Figure 3. Two signature curves and their corresponding X and Y curves.

For a reference signature curve and a comparison signature curve, if the similarity distance
between them is sufficiently small, it can be considered that the comparison signature is genuine one,
otherwise it is a forged signature. A block diagram of the proposed system is illustrated in Figure 4.

‘ Enrolled signatures ‘ ‘ Test signature ‘

v v

‘ Reference curve ‘ ‘ Comparison curve ‘
v v

‘ Preprocessing ‘ ‘ Preprocessing ‘
v v

‘ Segmentation ‘ ‘ Segmentation ‘
v v

‘ Segment Matching ‘

v

‘ Feature extraction and similarity measure ‘

< Desion -

‘ Accept/Reject ‘

Figure 4. Block diagram of the proposed system.

Given SignR = {(x1, 1), (x2, ¥2) ... (xpr, ym)} and SignC = {(x"1, y'1), (2, ¥'2) ... (XN, ¥'N)} as
the reference curve and the comparison curve, respectively. For the calculation of the similarity
distance of the signature curves, if the reference curve is calculated as a whole with the comparison
signature, it will lead to greater errors. Segmentation curve matching can be used to better measure
local differences between curves, which could be common in complex curve similarity measures.
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2.2.1. Preprocessing

As the variations in different signatures have different dynamic ranges, min—-max normalization is
implemented in their X and Y coordinates. One signature should be reprocessed as follows:

x —min(x) o y —min(y)
/Yi = 1000 max(y) — min(y)

x; = 2000 X 8)

max(x) — min(x)
where x and y are the original coordinates, and x; and y; are the normalized coordinates.
The normalization scales of horizontal and vertical directions are different, and 2000 and 1000 are taken
respectively to keep the original scale of the signature curve as much as possible.

2.2.2. Segmentation

SignR is divided into K sections and there are m data points of each the reference segmentation
curve. Each the reference segmentation curve can be defined as

(SignR); = {(xt, yo)|t € [Ri, R/], Ry = R; = m}
m = INT(M/K)

Ro = (M-mK)/2

R; =Ry + (i— 1)‘111

R/ =Ry +im

ie[1,K]

)

where, INT(x) is the integral function.
Likewise for the comparison curve, each possible matching interval corresponding to the reference
segmentation curve can be defined as

(SignC); = {(x't, v/ |t € [C;, €], C'i = Ci = 2n + m)
n = INT(N/K)

Co= (N-nK)/2

Ci=Co+(i-1)n-n/2-m/2
Ci=Co+(i+1)n-n/2+m/2
0<Ci<C;<N,ie[1,K|

(10)

Here, considering the positional correlation and the deviation between the signature curves, when
the reference signature length of each segmentation is m, the interval to be matched of the comparison
signature is at least m in length, and is offset by n before and after the corresponding segmentation
position. Equivalently, the reference curve swims within the interval to be matched on the comparison
curve to obtain the optimal matching position.

2.2.3. Segmentation Matching
The process of the optimal segmentation matching is as follows:

Step 1: Take the reference signature curve as a template, and divide it into K segments according
to Equation (9).

Step 2: The comparison curve should be divided into K segmentations according to Equation (10).

Step 3: For the i-th segmentation of the comparison curve, search the optimal matching with the
corresponding the i-th segmentation of the reference curve by EC algorithm, and get the similarity
distance d; Meanwhile, the matching distance dx; and dy; of the corresponding X, Y curves can be
calculated based on the current matching result.
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Step 4: Set ox;, oy; which are the standard deviation of X, Y data points in i-th segmentation of the
reference curve, compare it with the matching distance dx; and dy;, and calculate the similarity score
sx; and sy; of this segmentation, respectively, as in Equations (11) and (12).

{ sx; = h(dx;, 0x;, ) + h(dx;, ox;, ) + h(dx;, ox;,7) a1
sy; = h(dyi, oy, @) + h(dy;, oy;, B) + h(dyi, 0y, )
h(d,o,6) = 100 exp(—0.56-d%/ (0 /4 + 10)?) 12)
a=025~058=1~2y=2~5

Step 5: Repeat step 3 until all segmentation curves parameters are calculated.

Step 6: Calculate the average of sx, sy as the result outputs of X, Y curves’ similarity measure,
and use the weighted average as the result output of the similarity measure Score of the two curves,
as shown in later Formula (14).

It should be noted that when performing the optimal matching segmentation calculation,
the similarity distance between the two curves can be obtained, which are considered as 2D curves.
Next, the matching distances of the corresponding 1D curves X and Y can be separately calculated.
Obviously, the calculated matching distances are absolute values, and if a similarity evaluation is to be
performed, one threshold is needed to discriminate. For this reason, the similarity average is calculated
using Gaussian functions of three different widths and the absolute distance measure is converted to
a relative measure between 0 and 100. Thus, the discrimination threshold can be unified to a value
between 0 and 100.

A pair of genuine signature curves is adopted for the optimal segmentation matching as seen in
Figure 5. The matching results of X, Y curves are shown in Figure 6, respectively.

A pair of genuine and forged signature curves is adopted for the segmentation matching as seen
in Figure 7. The matching results of X, Y curves are shown in Figure 8, respectively.

Y
1200 T T T T T T T T T
‘ Refrence curve — Comparison curve — — Matching connection segments‘

1000
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200

8 |
800 1400 1600 1800 &)

Figure 5. The matching results of two genuine signatures.
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Figure 6. The matching result of X and Y curves between two genuine signatures.
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Figure 7. The matching results of the genuine and the forged signatures.

2500 T T T T T T

‘—Refrence Curve X — Comparison curve X‘

2000

1500

1000

500

Y
1200 T T T T T

1000

800

600

400

Figure 8. The matching result of X, Y curve between the genuine and forged signatures.

The optimal segmentation matching results between three curves are shown in Tables 1 and 2.
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Table 1. Results of segmentation matching between a pair of genuine signature curves (K = 10).

No. [R;, R;’l  Matching ¢ a b k h d dx dy ox oy sx sy

1 (3,17] [0,14] 0 103 36 093 10 446 224 278 705 923 779 692
2 [17,31] [1529] 15 099 9 092 95 616 117 424 797 2201 941 816
3 [31,45] 2741 25 105 -23 090 29 554 207 343 547 1079 738 658
4 [45,59] [4256] 27 099 -11 090 61 554 139 479 235 1302 678 57.8
5 [59,73] [5569] 27 090 6 090 61 263 39 218 669 2343 991 950
6 [73,87] [7084] 29 106 -8 090 68 185 66 86 209 1121 895 97.1
7 [87,101] [82,96] 28 106 —61 109 17 663 247 404 1515 2518 913 863
8  [101,115] [96,110] 29 1.02 31 091 62 663 166 474 772 1084 882 509
9  [115129] [108122] 28 099 8 101 37 326 248 147 353 1377 522 942
10 [129,143] [119,133] 26 092 66 092 100 447 110 438 425 1542 87.6 686

Average 821 76.7

Table 2. Results of segmentation matching between a pair of genuine and forged signature curves (K = 10).

No. [R;, R;/l  Matching ¢ a b k h d dx dy ox oy sx sy

1 [3,17] [2,16] 2 096 32 094 -95 564 151 302 705 923 886 656
2 [17,31] [2640] 26 091 53 09 94 1120 967 1722 79.7 2201 209 236
3 [31,45] [4761] 31 104 30 093 -63 383 90 166 547 1079 938 89.2
4 [45,59] [6680] 30 107 13 091 53 970 266 769 235 1302 383 364
5 [59,73] [8296] 26 094 8 09 -40 502 107 593 669 2343 935 718
6 [73,87]  [106120] 30 1.00 8 09 -12 286 79 187 209 1121 853 874
7 [87,101] [119,133] 23 090 76 109 -20 617 164 399 1515 2518 960 86.6
8  [101,115] [135149] 19 095 96 091 -30 371 123 291 772 1084 932 729
9  [115129] [160,174] 24 095 40 09 41 196 45 104 353 1377 971 97.0
10 [129,143] [179,193] 23 1.00 3 09 24 396 173 166 425 1542 739 939

Average 781 724

It can be seen from Tables 1 and 2 that for the similarity of X, Y curves is calculated by the same
template signature and segmentations, the similarity between two genuine signatures is usually higher
than that between the genuine and forged signatures. On each segmentation, the similarity calculation
of the X, Y curves depends on the standard deviations of the respective segmentations in the template
signature, as shown in Equation (11). To accurately estimate this deviation, a large number of genuine
and forged signatures are needed for matching calculations and statistics. Obviously, this is difficult
to obtain in practical applications. Here we use the intra-segmentation standard deviation of the
signature segmentation itself and a deviation as the empirical value. In addition, the three control
parameters a, §, and y are equivalent to controlling the width of the Gaussian function, and are also an
empirical value. Here, & = 0.4, = 1.6, y = 3.2 are selected. The changes in these parameters are not
sensitive to the correct rate of the final evaluation results. Due to space limitations, this article will not
discuss them.

2.2.4. Feature Extraction

In the i-th matching interval [R;, R;;1], the interval velocity ratio (IVR) of corresponding points is
calculated as follows:

vj = \/(xj —xj1)’ + (¥~ yj)?

2 2
vj= \/ =)+ (¥~ ¥ ) (13)
R/ ,
_ __100 : R
IVRi = grr71. L mm(v'/ﬂf 011 )

j=R;+1
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2.2.5. Similarity Measure

The similarity measure Score of two signature curves is calculated as follows:

Score = w,-LSC + wy,-GSC
K

LSC = £ ¥ (0.2sx; + 0.3sy; + 0.5IVR;)
i=1

GSC = g(M/N)
wy+wp,=1,w, >20,w, >0

(14)

where LSC and GSC are local similarity score and global similarity score, respectively, while w, and wy,
are the corresponding weights. M and N are the lengths of the reference signature and the comparison
signature, respectively.

Here:
0 x<05
g(x) ={ 100xexp(-2(x—1)?) 05<x<?2 (15)
0 x>2

is used to calculate score of the writing time ratio of two origin signatures.

The calculation of the weight is calculated by enumeration, where w, = 0.85 and wy, = 0.15, and the
detailed process is shown in the next Section 3.4.

It is considered that threshold ¢ of the signature verification system is 60 in many cases, and when
Score is greater than 60, it may be distinguished into a genuine signature, and below 60 may be
considered as a forged signature.

This is similar to the 100 point test. Passing more than 60 points is a pass, and below 60 is a failure.
Of course, accurately determining the threshold is also a problem that needs to be studied in depth.
For each user’s signature threshold determination, some other real registration signatures or even
skilled forged signatures are needed. As a single template signature authentication system, only a
reasonable threshold is given here, which is one of the key issues that need to be studied in the future.

3. Experiments

In this section, experiments to evaluate the efficacy of the four datasets are described and signature
verification performances are reported.

3.1. Dataset and Evaluation Protocol

The efficacy of the proposal is demonstrated on the publicly available SUSIG,
SVC2004 Taskl&Task2 and MCYT datasets. The main differences among the four datasets are
the acquisition protocol, device, and signer. In the following, the datasets used in this paper are
briefly described:

(1)  SUSIG Visual Subcorpus [34]: This dataset consists of 2820 western signatures from 94 signers with
20 genuine signatures collected in two sessions and 10 skilled forgery signatures (half are highly
skilled) with an LCD touch device. For convenience, this subcorpus is called SUSIG for short in this
paper. The data in SUSIG consists of X, Y, pressure, and timestamp, collected at 100 Hz.

(2) SVC2004 Taskl Subcorpus [35]: This datasets are acquired with a Wacom graphic tablet. It consists
of 800 English and Chinese signatures from 40 signers with 20 genuine signatures collected in two
sessions and 20 skilled forgeries per signer. For convenience, this subcorpus is called SVC1 for
short in this paper. The data in SVC1 consists of X, Y and timestamp, collected at 100 Hz.

(3) SVC2004 Task2 Subcorpus [35]: It is also composed of 40 signers with the same number of genuine
and forged signatures as in Task1. For convenience, this subcorpus is called SVC2 for short in
this paper. The data in SVC2 consists of X, Y, pressure, azimuth, altitude, timestamp, and button
status, collected at 100 Hz.
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(4) MCYT-100 Subcorpus [36]: It is also composed of 100 signers with 25 genuine and 25 forged signatures.
For convenience, this subcorpus is called MCYT for short in this paper. The data in MCYT consists of
X, Y, pressure, azimuth, altitude, timestamp, and button status, collected at 100 Hz.

Out of these, one genuine signature is selected randomly to be used as reference sample (template),
and the other genuine signatures and all skilled forgeries are used as test samples. Thus, in our work
there are 9480 reference and test signatures from 274 signers to be verified in total.

We adopt EER, i.e., the error rate at which false acceptance rate (FAR) and false rejection rate (FRR)
are equal, as a measure for characterizing verification performance. In order to obtain reliable results
for independent test data, this process of random selection of reference signatures and performance
evaluation is repeated ten repetitions.

3.2. Parameter Determination for EC

Taking the template signature of Figure 5 as an example, the signature is from SVC2004 Task1 signer
#1, with 147 data points. The total number of segmentations K of different data points of the reference
signature is shown in Table 3.

Table 3. Proposal parameter K with different data points of the reference signature.

Order 1 2 3 4 5 6 7 8 9 10
Data Points Count M <100 <150 <200 <250 <300 <350 <400 <500 <600 Other
Proposal K 8 10 12 14 16 18 20 22 24 30

The optimal segmentation matching calculation between the template signature and itself
was executed. The theoretically similarity distance of each segmentation is theoretically zero.
The parameters S and Iterations of the EC are determined by enumeration calculation as seen in
Figure 9, where S = 4, 8, 12, 16, 20 and Iterations = 100, 200, 400, 800. In the abovementioned
optimal segmentation matching calculation, although the global optimal parameters are not obtained,
the different S and Iterations can quickly reach the local minimum. Comprehensive calculation of speed
and accuracy requirements, choose S = 20 and Iferations = 400 as the control parameters for EC.

The optimal segmentation matching calculation with different EC parameters
T T T T

200

T T T T T
—S=4—5=85=12—S=16—S5=20|

100

f

0 10 20 30 40 50 60 70 80 90 100
200 - T T T 1 1 T T T T
—S=4—8=8— 8=12—8=16—S=20|
100 b
0 "~ L n I
0 20 40 60 80 100 120 140 160 180 200
200 T 1 1 1 1 T T
—S=4—5=8$=12—S=16—S=20|
100 b
. ‘ ‘ ‘ ‘ . ‘
0 50 100 150 200 250 300 350 400
200 T T 1 1 T T T
—S=4—5=85=12—S=16—S=20|
100 b
0 100 200 300 400 500 600 700 800
Iterations

Figure 9. The optimal segmentation matching calculation with different EC parameters.
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3.3. Feature Validity Test

Select 20 genuine signatures and 20 skilled forged signatures of the first signer on SVCl1, take one
of the first 10 genuine signatures as a template in turn, and the remaining 19 genuine signatures and
20 skilled forged signatures respectively perform matching calculation, and then calculate sx, sy, IVR,
GSC, LSC, and final Score.

Figure 10a—d show the distribution of similarity differences between genuine and skilled forged
signatures. Signature verification can be regarded as a two-category problem. It can be seen from the
distribution process of the comparison results of the signatures in Figure 10a that only the similarity
of X and Y curves are used, and it is difficult to distinguish the authenticity of each test signature.
From Figure 10b, it can be seen that the IVR has a certain degree of discrimination, but there are
many indistinguishable confusing signatures. However it can be clearly seen in Figure 10c that the
fusion feature LSC and the global feature GSC have a high degree of discrimination. Only a very
small number of test signatures are misidentified. In the Formula (11), the above several features are
merged, and the similarity of the two curves can be used as a one-dimensional index. The discriminant
threshold can be used to directly identify or classify the signature authenticity.

(a) (b)

100 " 100 i
* Genuine O Skilled forged‘ * * Genuine O Skilled forged‘ X
90 90
80 [ 80 -
70 s 701
> ]
[} X
5 60f ® 60
» 3
50 @ 50t
40 401
30 301
20" : ‘ ‘ . 20" : ‘ .
20 40 60 80 100 20 40 60 80 100
Score X Score IVR
c (d)
100 [ : @ ‘ 100 —————F——————
* Genuine O Skilled forged ‘ * Genuine O Skilled forged‘
90 90 * ok
% *
80 80 * §
70 70| §
o e
(@] fust
@ 60f 3 60¢ g g é
— %) é
501
O g 9
O
4t g 2
o O @
o o
301 8 o
20 : : 20— —
0 20 40 60 80 100 o 1 2 3 4 5 6 7 8 9
GSC Template ID

Figure 10. One of the first 10 genuine signatures is used as the template signature in turn, and the
remaining genuine and skilled forged signatures are used as the comparison result of the test signatures.
(a) Score X and score Y distribution; (b) Score IVR distribution; (¢) GSC and LSC distribution; (d)
10 templates in turn Score distribution.

In Figure 10d, it can also be clearly seen that different template signatures have different
discriminating thresholds, and the degree of discrimination between genuine and forged signatures
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is also different. Using the #4, #5, and #7 signatures as templates, the signature authenticity can be
completely distinguished, and the #7 template has the largest degree of discrimination.

3.4. Feature Weight Calculation

Let the number of signatures of the template equal one and the weight value w, is increments
from 0 to 1 with the interval 0.05. The signatures of the first four signers on SVC1 dataset are selected
for training to find the optimal w,. On the four signature datasets, the respective EERs under different
weights are calculated. The results are shown in Table 4.

Table 4. EERs under different weights on four datasets.

Average EER (in %)

Weight
# Train Test
Wy wy, SvVC1* SUSIG SvCi SvVC2 MCYT *

1 0.00 1.00 17.34 4.49 24.20 23.73

2 0.05 0.95 16.56 4.32 22.06 21.66

3 0.10 0.90 15.75 413 20.04 19.13

4 0.15 0.85 15.19 3.98 18.47 18.13

5 0.20 0.80 14.63 3.83 17.07 16.66

6 0.25 0.75 14.00 3.68 16.05 15.54

7 0.30 0.70 13.38 3.54 15.16 14.65

8 0.35 0.65 12.50 3.41 14.46 13.97

9 0.40 0.60 12.06 3.26 14.01 13.38

10 0.45 0.55 11.44 3.15 13.53 12.93

11 0.50 0.50 11.06 3.06 13.05 12.59 7.50
12 0.55 0.45 10.50 2.99 12.79 12.43 7.08
13 0.60 0.40 10.25 2.98 12.64 12.25 6.74
14 0.65 0.35 9.81 2.99 12.49 12.22 6.51
15 0.70 0.30 9.31 3.03 12.40 12.16 6.33
16 0.75 0.25 8.94 3.08 12.32 12.13 6.13
17 0.80 0.20 8.75 3.21 12.32 12.15 6.10
18 0.85 0.15 8.63 3.47 12.30 12.25 6.07
19 0.90 0.10 8.64 3.74 12.32 12.42 6.14
20 0.95 0.05 8.81 4.09 12.47 12.66 6.34
21 1.00 0.00 9.88 4.84 12.67 12.91 6.85

* Only choose w, = 0.5~1.0 as there is a long computation time with the most signatures.

From Table 4, it can be seen on the training samples that the minimum EER is obtained when w, =
0.85, and the EERs on the other datasets are 3.47%, 12.30%, 12.25%, and 6.07%, respectively. At this
point, the same minimums are obtained on SVC1 and MCYT datasets. In Figure 11, we can see that
when w, is incremented, the EER value changes to a convex function, and the EER on different datasets
has only a minimum value.

In fact, we can also see that the EER is not much different when w, € [0.6, 0.95], which means that
our weight selection has better robustness, and when w, < 0.3, The EER has increased dramatically.
At the same time, when w, = 0, signature verification actually only depends on GSC the signature
writing time ratio. On the SVC1 and SVC2 datasets, the EER of each is over 20%, and on the SUSIG
dataset, the EER is still less than 5%. It can be seen that the writing time ratio is a better feature
distinguishing the test signature. In addition, SVC1&SVC2 is much higher than the SUSIG dataset in
the difficulty of signature verification of four signature datasets. This can also be obtained from the
whole experimental results.
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Figure 11. EERs and the mean on four signature datasets with different weight w,.
3.5. Experimental Results

Performance of the system with the maximum EER, the minimum EER, the average EER and
the standard deviation of EERs measured in percentage for different number reference signatures of
similarity metrics are shown in Table 5.

Table 5. Performances of the system with different dataset.

EER (in %)
DataSet # of Samples
Average Minimum Maximum
SUSIG 1 3.47 2.27% 4.32%
SVC1 1 12.30 9.62% 14.94%
svC2 1 12.25 9.53% 14.58%
MCYT 1 6.07 3.98% 7.92%

From the results described above, when experiments are implemented on SUSIG, EER = 3.47%
can be the best result based on CSM with five reference samples. As for SVC1&SVC2&MCYT, it can be
provided EER = 12.30%, EER = 12.25% and EER = 6.07%, respectively. For four different datasets and
different number of reference samples, the EERs of test results with #1 template repeated 10 times are
arranged in ascending order, as shown in Figure 12.

20% T 1 1
|-*+-SUSIG *+-SVC1 -+ SVC2 *MCYT]
15% - 1
4&—/“
. Y
‘0% W |
/I‘
Y " - .
o
0% 1 1 L 1 1 1 L
1 2 3 4 5 6 7 8 9 10

Figure 12. EERs of test results with #1 template repeated 10 times for SUSIG, SVC1, SVC2 and
MCYT, respectively.
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At the same time, it should be emphasized that the deviation of the maximum and minimum values
of EER is more than double almost when #1 sample is randomly selected as templates in ten repetitions
as seen in Table 5 and Figure 12. It demonstrates that the selection of template samples is also essential
and representative template samples can effectively improve the accuracy of signature verification.

In order to demonstrate the effectiveness of our proposed method, we compare the results of our
proposed method with other state-of-the-art methods. It is to be mentioned that each of these methods
have different features and classifiers, and it is difficult to make comparisons between them based
on different datasets. Hence, we just compare the performance of methods which are carried out on
SUSIG, SVC1, SVC2 and MCYT datasets. Nevertheless, the best results methods carried out both on
them are taken for comparative studies, which use five genuine reference signature of a signer for
enrollment. The best EERs reported from the reference works on SUSIG, SVC1, SVC2 and MCYT are
given in Tables 6-9 with one and five genuine reference signatures.

Table 6. Comparative studies of state-of-the-art methods implemented on SUSIG.

Method # of Samples Average EER (in %)
Fuzzy modeling [37] 5 5.38
Histogram + Manhattan [38] 5 4.37
FFT + DTW [25] 5 3.03
DTW_Linear C [34] 5 2.10
35 global feature + FLD [39] 5 1.59
Parzen window + DCT [23] 5 1.49
TASS + RLCSS [26] 5 0.52
Target-wise [28] 1 6.67
Proposed method 1 3.47

Table 7. Comparative studies of state-of-the-art methods implemented on SVCI.

Method # of Samples Average EER (in %)
DTW [40] 5 6.96
DTW + HMM [18] 5 6.91
LCSS + SVM [22] 5 6.84
Wavelet Packet [41] 5 6.65
TASS + RLCSS [26] 5 5.33
SVC-competition [35] 5 2.84
Target-wise [28] 1 17.25
Proposed method 1 12.30

Table 8. Comparative studies of state-of-the-art methods implemented on SVC2.

Method # of Samples Average EER (in %)
Fuzzy modeling [37] 5 7.57
Function-based + HMM [42] 5 7.14
LCCS-SVM [22] 5 6.84
DTW + HMM [18] 5 6.91
LCSS [26] 5 5.33
Feature selection + DTW [43] 5 3.38
SVC-competition [35] 5 2.89
5 features DTW + VQ [15] 5 2.73
DTW with SCC [17] 5 2.63
Target-wise [28] 1 18.25
Proposed method 1 12.25
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Table 9. Comparative studies of state-of-the-art methods implemented on MCYT.

Method # of Samples Average EER (in %)
DTW + Fourier descriptors [25] 5 7.22
Symbolic Representation [4] 5 6.12
HMM-+Parzen Window [44] 5 5.29
Time function_LDP [45] 5 5.20
Histogram + Manhattan [38] 5 4.02
Neuro-fuzzy system [46] 5 4.02
Fusion matchers [47] 5 3.81
Dynamic programming [48] 5 3.52
HMM + Viterbi Path [49] 5 3.37
Wavelet coefficients [28] 5 3.21
GMM + DTW [16] 5 3.05
Velocity and pressure partition [50] 5 1.09
Target-wise [28] 1 13.56
Proposed method 1 6.07

Furthermore, it should be pointed out that the performance of a signature verification system
is related to the number of samples used to build the model. Even in some statistical models, true
and false signatures need to be trained. However, in many cases, it is difficult to register a large
number of signatures in the actual system, which also limits the practical applications of many excellent
methods, but for our signature verification system, the requirement for the number of reference
signatures or templates is minimal and even only one signature can be used. Moreover, among the
already known single signature systems, our performance is the best, and is very close to that of
multi-signature systems.

4. Conclusions

The similarity measurement of curves is an old problem. A lot of pattern recognition problems can
be converted into curve similarity problems to study. In this research, we presented a novel signature
verification based on the curve similarity model, which is equally competitive when compared to
other approaches and leads to much simpler and easier matching procedures. Considering internal
and external writing environments being always varied, signatures were effectively aligned to
the reference signature curve by CSM and a curve similarity distance was proposed to make an
assessment the similarity between test signatures and references. Open access signature datasets
SUSIG, SVC2004 Task1&Task2, and MCYT-100 were used in our work, and several experiments were
implemented. Experimental results illustrated that the best matching could be obtained by our proposed
CSM method with one signature template. The error rates EERgysig = 3.47%, EERgycy = 12.30%,
EERgycy = 12.25% and EERpcyr = 6.07% were provided, respectively, which demonstrated the
effectiveness and robustness of our proposed method. The most important thing is the case that our
method can use one signature to authenticate, and the performance of our method is not much different
from that of multi-signature verification systems. Finally, this innovative method opens the door to
new competitions on signature verification using a single signature as reference template.
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