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Simple Summary: Extranodal NK/T cell lymphoma (ENKTCL) is an aggressive lymphoma asso-
ciated with Epstein-Barr virus (EBV) infection that occurs mainly in Asian and Latin American
populations. In the last decade, the genetic landscape of ENKTCL has been characterized compre-
hensively using next-generation sequencing (NGS). This and similar high-throughput approaches
revealed that these lymphomas are distinguished by frequent gene mutations leading to activation of
the JAK-STAT pathway, and mutations in other genes such as BCOR, DDX3X and TP53. This review
aims to provide a comprehensive overview about the role of EBV infection and a comparison of
the EBV strains and LMP1 variants among different populations. Moreover, a brief summary of the
ENKTCL genetic landscape is presented, highlighting the main therapeutically targetable pathways
in ENKTCL oncogenesis: the JAK-STAT signaling pathway, the immune response evasion, MYC
overexpression, as well as epigenetic alterations.

Abstract: Epstein-Barr virus (EBV) is a ubiquitous gamma herpes virus with tropism for B cells. EBV
is linked to the pathogenesis of B cell, T cell and NK cell lymphoproliferations, with extranodal
NK/T cell lymphoma, nasal type (ENKTCL) being the prototype of an EBV-driven lymphoma.
ENKTCL is an aggressive neoplasm, particularly widespread in East Asia and the native population
of Latin America, which suggests a strong genetic predisposition. The link between ENKTCL and
different populations has been partially explored. EBV genome sequencing analysis recognized two
types of strains and identified variants of the latent membrane protein 1 (LMP1), which revealed
different oncogenic potential. In general, most ENKTCL patients carry EBV type A with LMP1
wild type, although the LMP1 variant with a 30 base pair deletion is also common, especially in the
EBV type B, where it is necessary for oncogenic transformation. Contemporary high-throughput
mutational analyses have discovered recurrent gene mutations leading to activation of the JAK-STAT
pathway, and mutations in other genes such as BCOR, DDX3X and TP53. The genomic landscape in
ENKTCL highlights mechanisms of lymphomagenesis, such as immune response evasion, secondary
to alterations in signaling pathways or epigenetics that directly or indirectly interfere with oncogenes
or tumor suppressor genes. This overview discusses the most important findings of EBV pathogenesis
and genetics in ENKTCL.

Keywords: Epstein-Barr virus; strain; pathogenesis; epidemiology; genetic landscape

1. Introduction

Extranodal NK/T cell lymphoma, nasal type (ENKTCL) is considered the prototype
of EBV-driven T and NK cell lymphoproliferative disorder (LPD). It has a predilection
for extranodal involvement, including the nasopharyngeal region, skin, gastrointestinal
tract, testis, and central nervous system (CNS). Morphologically, ENKTCL is characterized
by angioinvasion and angiodestruction with prominent coagulative necrosis and karyor-
rhexis [1]. Its pathogenesis is still unclear, but the characteristic geographical distribution
suggests that ethnicity plays an important role [1,2]. ENKTCL predominantly occurs in
East Asia and in the indigenous populations of Latin American countries, and it is rare
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in Europe and North America [3–8]. Other diseases with similar geographic distribution
and universal association with EBV are aggressive NK cell leukemia (ANKL) and the
provisional entity primary EBV-positive nodal T cell or NK cell lymphoma. There are some
clinical and morphological overlapping features among these entities, therefore differential
diagnosis is not always easy [9–13].

The contribution of EBV to the development of benign and malignant LPD has been
extensively investigated since the discovery of the virus over the last 60 years. The im-
portance of EBV in ENKTCL lymphomagenesis was first recognized in 1990, and since
then has been confirmed in various studies [14,15]. To investigate the role of EBV in the
pathogenesis of this lymphoma, further studies have focused on the viral proteins and their
genetic variants [16,17]. Moreover, the strong geographic distribution of ENKTCL affecting
specific populations suggests a genetic predisposition for ENKTCL. So far, common genetic
variants at HLA-DPB1 in patients from Asia (Hong Kong, Taiwan, Singapore, and South
Korea) are associated with an increased risk of ENKTCL [18], whereas the haplotype HLA-
A*0201 in the Japanese population seems to confer protection, probably by an effective
cellular immune response against the virus [19]. There has also been a great interest in the
mutational landscape of ENKTCL. Until now, most studies come from Asian countries,
where important variations in the distribution of gene mutations were observed, raising the
possibility that the genetic background or the geographic distribution might be responsible
for these differences [20–24]. This review summarizes the morphological, epidemiological,
biological, and genetic alterations implicated in ENKTCL, highlighting the role of EBV in
its pathogenesis. In addition, a comparison of the biological features of ENKTCL between
Asian and Latin American populations is described.

2. Morphological and Immunophenotypical Features of ENKTCL

ENKTCL typically appears as ulceration in the mucosa of the upper aero-digestive
tract (nasal cavity, nasopharynx, paranasal sinuses, and palate). This ulceration is triggered
by a neoplastic lymphoid infiltration associated with variable degrees of inflammation;
some cases are advanced, showing large amounts of coagulative necrosis and destruction
of the adjacent epithelial structures [1,25,26]. The cytology of the malignant T and NK
cells displays a wide-spectrum, from small bland-looking cells to large and pleomorphic
cells with irregular folded nuclei and inconspicuous nucleoli [1]. The presence of “dirty”
coagulative necrosis, due to karyorrhexis, associated with inflammation and angiocentric-
ity/angiodestruction is a hallmark of this lymphoma and a hint for EBV infection that
should be confirmed using in situ hybridization for EBV-encoded small RNA (EBER) [1].
The neoplastic cells are CD56+, surface CD3− but cytoplasmic CD3+, and express cytotoxic
molecules such as TIA-1, granzyme B and perforin, demonstrating an NK cell phenotype.
In addition, the cells are positive for CD2, NKG2D and NKG2A; however, CD57 and CD16
remain mostly negative [27,28]. Other T cell markers such as CD4, CD5 and CD8 are
negative whereas CD7 is variable expressed [29,30]. A small proportion of cases (15–20%)
demonstrate a bona-fide T cell cytotoxic phenotype characterized by CD8+, cytotoxic gran-
ules+, CD3+, CD5+, CD56−/+ and TCRγδ+ or TCRαβ+ [29,30]. In addition, molecules
with immune response function are present in the neoplastic cells such as CD25, HLA-DR,
FAS (CD95) and FASL (CD95L) [31]. CD30 and the megakaryocyte associated tyrosine
kinase (MATK) are variably expressed and might be misleading, raising the diagnosis of
anaplastic large cell lymphoma (ALCL) or monomorphic epitheliotropic intestinal T cell
lymphoma (MEITL) and enteropathy associated T cell lymphoma (EITL) [32,33]. Other key
markers recognized as potential targets for therapy are survivin, as well as the platelet-
derived growth factor receptor alpha (PDGFRA) and the programmed cell death ligand 1
(PD-L1), the last two involved in immune evasion mechanisms [34,35].

3. ENKTCL Geographic Distribution

The geographic distribution of ENKTCL is characteristic with higher incidence among
Native Americans, Hispanic and Asian ethnic groups [36]. In Europe and North America
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ENKTCL accounts for less than 1% of all Non-Hodgkin Lymphomas (NHL), whereas in
Asian countries and Latin American countries it is more frequent representing 2 to 15% of
NHL [3–6]. A recent study from the T cell lymphoma project, an international cooperative
study, demonstrated NK cell malignant lymphoproliferations accounted for 2 to 5.1% of
all T and NK cell lymphomas in North America, 1 to 4.3% in Europeans, and higher rates
in Asian populations of 22.4 to 22.5% [37]. Aozasa et al. estimated that the frequency of
ENKTCL is 10-fold higher in Asian populations when compared to Europeans [38]. In East
Asia, ENKTCL is more common in Thailand (34%), followed by China (21%), Japan (12%),
and South Korea (9%) [39]. Moreover, ENKTCL is strongly associated with the genetic
background of the affected population, being more frequent in Chinese descendants than
those with Malay and Indian descent [40,41]. In Latin America, the incidence of ENKTCL
is higher in countries with a high proportion of native indigenous population such as
Guatemala, Mexico, Peru, Bolivia and Ecuador; it is less common in other countries with a
greater percentage of European descendants such as Argentina and Uruguay [8]. Fourteen
different series of ENKTCL are available from Latin American, accounting 449 cases: four
studies with cases from Peru (131 cases, 29.2%) [7,42–44], four studies from Brazil (114 cases,
25.4%) [7,45–47], two studies from Guatemala (125 cases, 27.8%) [7,48], two from Chile
(31 cases, 6.9%) [47,49], and two from Mexico (48 cases, 10.7%) [6,50].

An ENKTCL case series from Guatemala described the association of this lymphoma
with ethnicity and reported that 90% of the patients in the study were of Mayan origin and
low socioeconomic status [51]. In the United States, ENKTCL represents approximately
1–2% of all T and NK cell lymphomas and less than 0.2% of all NHL, with a higher
frequency among Hispanic and American Asians [52].

A bias in these studies is that Hispanic population comprises all Latin-American
immigrants, mainly Mexicans, which do not necessarily belong to the native indigenous
population, where the incidence of this neoplasia seems to be higher [51,52]. The peculiar
worldwide distribution of this lymphoma seems to be related with the genetic background
of the population (Figure 1), and not to endemic areas of EBV or EBV subtypes [53]. Never-
theless, evidence for the suspected genetic predisposition such as the HLA-DBP1 haplotype
remain elusive [18]. Homozygous deletion of RASGRPI, leading to defective activation
of the MAPK pathway and impaired immune response to EBV, is also documented as
an inherited susceptibility to EBV infection and EBV-driven LPD such as ENKTCL [54].
In addition, homozygous germline mutation in FAM160A1 leading to alterations in the
microenvironment is related to ENKTCL familiar susceptibility [55].
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Figure 1. Map illustrating the worldwide distribution of extranodal NK/T cell lymphoma (ENKTCL)
in countries with a population of east Asian genetic background. East Asian populations are depicted
in blue; countries with high prevalence of ENKTCL are illustrated in dark blue. This map was
elaborated using R version 3,6,2 with the package rworldmap [56].
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4. Epstein-Barr Virus Lymphomagenesis in ENKTCL

Although the universal association of EBV and ENKTCL is well recognized, the exact
role of EBV in ENKTCL remains elusive [2]. EBV is an oncogenic double-stranded DNA
herpesvirus encoding around 80–85 genes, infecting more than 90% of the population
worldwide [57]. In developing countries, EBV infection is more common during the first
years of life and is asymptomatic, whereas in developed countries, it is delayed until
adolescence, presenting as a self-limited B cell lymphoproliferative disease named by
Sprunt and Evans in 1920 as infectious mononucleosis (IM) [58–60]. IM is an acute disease
occurring in about 50% of adolescents with the characteristic symptoms of fever, fatigue,
sore throat, and lymphadenopathy [61,62]. During primary infection, EBV triggers an
EBV-specific cytotoxic cell and IgM response to EBV antigens such as EBV capsid antigen
(VCA) and EBV early antigen (EA) [63]. This response leads to a self-limited infection;
nevertheless, EBV remains in a lifelong carrier state mainly in memory B cells, allowing the
DNA virus to integrate into the host cells and reside there life-long. During this chronic
infection, various external or immune factors may incite the infected cells to enter the
viral lytic cycle, triggering their activation and the virus transmission to T cells or NK
cells and stimulating the development of different lymphoproliferative disorders [64–67].
EBV is detected in a small proportion of NK and T cells in patients with IM. During
primary infection, NK cells are infected using a virus–cell interaction distinct from the
CD21-mediated pathway known in B cells. One of the mechanisms proposed is related
to the use of the glycoprotein gp350, as well as the CD21 cellular protein gaining in order
to infect the NK and/or mature T cells via “trogocytosis”, a phenomenon described in
the interaction of mature T cells with malignant cells, where membrane patches can be
exchanged [68,69]. Another mechanism of T and NK cell infection can occur when NK or T
cells are attempting to kill an EBV infected target cell [69]. The expression of HLA class
II by NK cells has also been proposed to interact with viral glycoproteins gp42 and gp85
known to play an important role in EBV internalization into HLA class II positive cells [70].

EBV expresses various “latent genes”, comprising six Epstein-Barr nuclear antigens
(EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C and leader protein), three latent membrane
proteins (LMP1, 2A, 2B), two EBV-encoded noncoding RNAs (EBER 1 and 2), and many
miRNAs from two regions of the EBV genome: BART and BHRF, so-called BHRF1- and
BART-miR [71]. According to the pattern of the latent gene expression, three different
latency programs have been characterized in B cells from EBV healthy carriers [72–74]. EBV
characteristically spreads through saliva, infecting and replicating in epithelial cells of the
tonsils (lytic cycle), states in which the viral transcription factors BZLF1, BRLF1, BALF5 and
BCRF1 are expressed, resulting in the shedding of infectious virus into the oral cavity [75,76].
Infected naïve B cells migrate to the lymph node follicle to initiate the immune response
activating the latency III program, which involves the unrestricted expression of all nine
latent genes. In order to escape immune surveillance, and for the infected B cells to
be able to enter and survive the germinal center, there is a reduction in the latent gene
transcription machinery–latency II—with the expression of many proteins (LMP1+, LMP2+;
EBNA1+, EBERs+, BARTs+), except for EBNA2. Latency I is restricted to the expression
of EBNA1 and is responsible for the maintenance and replication of the episomal EBV
genome [72–74]. The so-called latency 0 is present in resting memory B cells that carry
the viral genome, but viral antigen expression is maximally suppressed and only EBERs
are demonstrated [73,77,78]. These latent EBV expression programs in B cells are reflected
in EBV-associated malignancies. Latency type I is usually present in Burkitt Lymphoma;
latency IIa, also referred to as latency II, is seen in nasopharyngeal carcinoma, classic
Hodgkin lymphoma (CHL) and ENKTCL [72,74,79]; latency IIb represents a transition
state between latency II and latency III, which is detected in vitro in cells from B cell chronic
lymphocytic leukemia (B-CLL) infected with EBV, characterized by EBNAs expression
but LMP1 absence [72], and latency III is typically observed in severely immunodeficient
individuals [80]. During latency II, the infected cells can acquire somatic mutations and
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create the best scenario to promote the development of EBV-associated lymphomas such
CHL and Burkitt lymphoma [72,78].

4.1. Epstein-Barr Virus Strains and Variations

The close association of EBV with oncogenesis in ENKTCL has been established by
demonstrating the presence of EBV in clonal and episomal forms in tumor cells (viral
genome arranged by nucleosomes and packaged into a chromosome structure), as well as
various EBV-encoded proteins. Infection by EBV induces the expression of several “latent
genes”, which may lead to malignant transformation of lymphoblastoid cells, including
EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C and 3 LMP1, 2A, 2B [71]. According to the
genetic polymorphisms contained in the EBNA proteins (EBNA2 and EBNA-3A, -3B and
-3C), two different strains of EBV are recognized worldwide (Table 1): type A (e.g., B95-8,
GD1, and Akata) and type B (e.g., AG876 and P3HR), also known as type 1 and type 2,
respectively [16,17].

Table 1. Geographical distribution of Epstein-Barr virus (EBV) strains in T cell non-Hodgkin lym-
phoma.

Country Entity n EBV Strain Reference

Type A Type B

China ENKTCL 31 cases 29 (93.5%) 2 (6.5%) [81]
Mexico ENKTCL 42 cases 39 (93%) 3 (7%) [82]

Peru ENKTCL 27 cases 15 (88%) 3 (12%) [82]
Argentina ENKTCL 12 cases 11 (92%) 1 (8%) [82]

Korea T cell NHL 15 cases 14 (93.3%) 1 (6.7%) [83]
China ENKTCL 16 cases 16 (100%) 0 [84]

Mexico ENKTCL 23 cases 21 (91%) 2 (9%) [6]

China/Taiwan Nasal and
extranasal PTCL 19 cases 19 (100%) 1 (5.3%) [85]

Malaysia PTCL 9 cases 9 (100%) 0 [86]
Denmark PTCL 18 cases 15 (83.3%) 3 (16.7%) [86]

ENKTCL: extranodal natural killer T cell lymphoma; n: number of cases reported; PTCL: peripheral T cell
lymphomas; NHL: non-Hodgkin lymphoma.

Sequencing studies have shown a 54% identity in amino acid sequence and 79% at
gene level between EBV strains type A and B. In addition, a single amino acid change
(S442D) in EBV type A seems to enhance the oncogenic ability of LMP1 [17], highlighting
that EBV strain type A has a higher oncogenic potential in comparison to type B EBV,
which shows lower transformation capacity in lymphoblastoid cells [87]. EBV type B is
widely distributed, regardless of the immunological status of the host [88–92]; however,
in the setting of non-immunocompromised patients, EBV type B seems to enhance its
oncogenic potential only when associated to the 30 bp LMP1 deletion (see below) [43,87,93].
Intriguingly, these strains demonstrate a characteristic geographical distribution that might
influence the ENKTCL prevalence among regions. Although type A EBV strain is more
widespread in Europe, Asia, and North and Latin America, type B EBV is recurrently seen
in Alaska, Papua New Guinea, and Central Africa [17].

Interestingly, studies in Mexican population have revealed the presence of EBV type B
with the 30 bp LMP1 deletion in about 9% of ENKTCL, 38% in diffuse large B cell lymphoma
(DLBCL), 50% of CHL, and 53% in healthy carriers in reactive lymph nodes [82,94,95].
This suggests that EBV type B with the 30 bp LMP1 deletion is endemic in the Mexican
population. However, larger ENKTCL series from Mexico and Latin America demonstrated
EBV strain type A as the most prevalent strain in this lymphoma [6,82]. In addition to
the classification of the EBV strain, other variants according to changes within the genetic
sequence of LMP1, EBNA1 and BamHI are also reported [96–101].

4.2. LMP1 Variants

The latent membrane protein 1 (LMP1) is a viral protein that is able to induce a
malignant transformation not only in B cells but also in epithelial cells [97,102,103]. LMP1



Cancers 2021, 13, 1414 6 of 19

favors oncogenesis by the induction of cell surface adhesion molecules (CD23, CD40
ICAM1, LAF1 and LFA3), activation of antigens, and the upregulation of antiapoptotic
molecules such as BCL2, MCL1, BFL1, A20 [75,103]. Moreover, LMP1 mimics CD40,
acting as a constitutively active member of the tumor necrosis factor (TNF) receptor
superfamily and activates downstream signaling pathways, including NF-κB and MAPK
pathways [104–106]. LMP1 is codified by BNLF1, a gene located within the BamHI-N region
of the virus genome [107]. The product of this gene is an integral protein which contains
386 amino acids comprising a short cytoplasmic amino terminus, six transmembrane
alpha-helical loops of hydrophobic nature, and a long cytoplasmic domain at the carboxyl
terminus [104,108]. Variations in the C-terminus of the LMP1 protein seem to be crucial for
its function, and for the classification of LMP1 variants, including: the presence of a 30 bp
deletion, 33 bp repeats, an insertion of 15 bp within one of the repeats, and other amino
acid substitutions [98,109–111]. Among the different LMP1 variants, the 30 bp deletion is
the most frequent worldwide [112]. The 30 bp deletion arises at the 3′ end of the C-terminal
tail and in relation to the functional domain CTAR2, resulting in increased oncogenesis
and a decrease in the immune response [113,114]. LMP1 deletion is present in healthy
populations, as well as associated to infectious mononucleosis, chronic tonsillar hyperplasia,
and various malignant neoplasias such as gastric carcinoma, nasopharyngeal carcinoma,
Burkitt lymphoma, DLBCL, and CHL peripheral T cell lymphomas, not otherwise specified
(PTCL, NOS) and ENKTCL (Table 2) [86,95,112,115–117].

Next-generation sequencing technology has also led to greater insights into EBV
classification and the increased recognition of new strains and sequence variations [17,90].
EBV sequencing profiling revealed frequent intragenic deletions affecting BART micro-
RNA clusters present in 10 of 23 ENKTCL cases studied. These deletions seem to be related
to the lytic cycle activation through the upregulation of BZLF1 and BRLF1 [118].

The latest genomic and transcriptomic studies in ENKTCL demonstrated focal EBV
genome deletions and integration of EBV fragments to the host genome. In addition, gene
expression profiling described a higher number of T cell epitope abnormalities but lower ac-
tivation of latent and lytic viral genes, in comparison to other EBV-associated cancers [119].
Likewise, by phylogenetic analysis, EBV sequences of ENKCTL cases clustered together
in two independent Chinese studies, revealing similarities between EBV sequences in
ENKTCL and those of Asia, and differed significantly from other EBV-associated diseases.
These results suggest that the geographic prevalence of ENKTCL in Asian populations is
related to the particular sequence of the EBV strain [81,119]. These broad genetic analyses
have revealed a better understanding of EBV pathogenesis in ENKTCL and are providing
new hypotheses about EBV mechanisms of oncogenesis. However, the majority of cases
are from Asian origins, and larger series are required to corroborate these findings among
other populations [119].

Table 2. Geographical distribution of LMP1 variants in T cell non-Hodgkin lymphoma.

Country Entity n LMP1 Variant Reference

30 bp del WT

Mexico ENKTCL 42 cases 10 (23.8%) 32 (76.2%) [82]
Peru ENKTCL 27 cases 0 12 (100%) [78]

Argentina ENKTCL 12 cases 5 (41.7%) 7 (58.3%) [82]
China ENKTCL 13 cases 10 (76.9%) 3 (23.1%) [120]
China ENKTCL 23 cases 21 (91.3%) 2 (8.7%) [84]

Mexico ENKTCL 23 cases 6 (26%) 17 (73.9%) [6]
Malaysia PTCL 9 cases 9 (100%) 0 [86]
Denmark PTCL 18 cases 11 (61.1%) 7 (38.9%) [86]

ENKTCL: extranodal natural killer T cell lymphoma; 30 bp del: 30 base pair deletion variant; WT: wild type;
PTCL: peripheral T cell lymphoma. In addition to the LMP1 del variant, the loss of the restriction site Xho I in
LMP1 has been shown in nasopharyngeal carcinoma in Asian pop-ulation [97,121–123].
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5. ENKTCL Genetic Features

Although EBV plays an essential role in the pathogenesis of ENKTCL, other factors
might be equally important. During the last decade, several sequencing studies based
on various platforms (whole genome sequencing, whole exome sequencing and targeted
sequencing) have been published, analyzing different populations. This has led to a better
understanding of the molecular pathogenesis of this entity, the discovery of new targeted
therapies, and more recently, to the proposal of a classification according to the molecular
changes associated with clinical prognosis. In Table 3, the main genetic features reported in
ENKTCL so far are summarized [81,124,125].

The most common recurrent cytogenetic alteration in ENKTCL is the loss of 6q21
in about 20 to 43% of cases, resulting in the loss of genes related to tumor suppression
such as POPDC3, PREP, PRDM1, ATG5, AIM1 and HACE1 [126–128]. Other recurrent
chromosomal alterations are losses in chromosomes 1p4, 5p13, 12q3, 14q21, 15q24, 17p4
and 19q13 and gains in 2q5, 3q26, 7q34, 8q24, 13q4 and 10q3. Intriguingly, 8q24.3 gain is
related to poor clinical outcome [129,130].

Further analyses have shown important differences between ENKTCL and ANKL,
such as the gain of 2q and the losses in chromosomes 6q16-q27, 11q22-q23, 5p14-p14,
5q34-q35, 1p36-p36, 2p16, 4q12, and 4q31-q32 characteristic in ENKTCL [131,132]. Studies
have demonstrated that primary EBV-positive nodal T/NK cell lymphoma, a provisional entity
in the WHO classification, is a distinct entity characterized by the loss of 14q11, where the
TCR alfa locus is located and is indirect evidence of TCR rearrangement; therefore, it is a
lymphoma of T cell origin. These lymphomas present in older patients and lack nasal or
extranodal involvement [133].

Table 3. Main genetic alterations in ENKTCL.

Genetic Alteration Reference

Chromosomal
abnormalities

Losses of 6q21–6q25
(40–50%) POPDC3, PREP, PRDM1, ATG5, AIM1 and HACE1 [126,127]

Other chromosomal
alterations

Losses in 5p13, 11q22-q23,11q24-25, 12q3, 13q14, 14q21,
15q24, 17p13, 17p4 and 19q13
Gains in 1q21-q44, 2q13-14, 2q31-q32, 2q5, 3q26,
6p25-p11, 7q34, 7q35-q36, 8q24, 10q3, 13q14, 13q4 and
20q11.

[129,130,134]

Recurrent mutations

JAK-STAT signaling
pathway STAT3, STAT5b, JAK3, [21,135,136]

RNA helicase family DDX3X [22]
Tumor suppressors TP53, MGA [22,23,50]
RAS-MAPK signaling
pathway NOTCH3, EPHA1, PTPRQ, PTPRK, GNAQ [81,137]

Apoptosis FAS [138,139]
Epigenetic modifiers ARID1A, ASXL1, BCOR, KMT2D, MLL2, EP300 [23,124,125]

Epigenetic alterations

Hyper methylation
Cell cycle regulators: CDKN2A, CDKN2B, CDKN1A
Tumor suppressors: BCL2L11 (BIM), DAPK1, PTPN6
(SHP1), TET2, SOCS6, and ASNS.

[140]
[141]

Histone modifications
EZH2: histone methyltransferase, aberrant
overexpressed in ENKTCL, leading to activation of
NF-kB signaling pathway.

[142–144]

mi-RNAs
Downregulated

miR-26a, miR-26b,
miR-28-5, miR-101 and
miR-363.
De-regulated miR-146a:
leading to inhibition of
TRAF6, downregulating
NF-kB signaling.

[144,145]

Upregulated miR-155 and miR21 [137,146]
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Table 3. Cont.

Genetic Alteration Reference

Gene
Overexpression

Survivin: Induced by LMP1, EBV latent viral proteins [147]

MYC: Upregulation possibly through LMP1 latent viral protein. [81,148,149]

PD-L1: Overexpression of the cell death ligand favoring immune
evasion [150–152]

RUNX3: Mediated by MYC, resulting in decreased apoptosis and
increase cell proliferation [148]

AURKA: Increased cell proliferation [153]

PDGFRA: Overexpression of PDGFRα but absence of genomic
alteration [154]

Other CD38 Transmembrane protein associated with poor outcome [155]

The mutational landscape of ENKTCL was first described in different cohorts from
China, Korea and Japan, showing the same mutational profile but with different frequencies.
The most recurrently mutated genes include members of the Janus kinase-signal trans-
ducer and activator of transcription (JAK-STAT) signaling pathway, mainly STAT3 (JAK3,
STAT5B), followed by epigenetic modifiers (KMT2D, ARID1A, EP300), tumor suppressor
genes (TP53, BCOR, MGA) and the RNA helicase gene DDX3X [20–24,135]. Targeted
sequencing in ENKTCL from Latin America including cases from Mexico, Peru and Ar-
gentina showed, not surprisingly, comparable results to Asian populations (Figure 2) [82].
STAT3 was the most frequently mutated gene similar to the Korean cohorts. [20,125,135]. In
previous studies, recurrent mutations in TP53 were reported with relatively high frequen-
cies in ENKTCL from Latin America [50] and in Asian populations [156,157], (24 to 62%,
respectively); however, new sequencing data demonstrated a lower prevalence of TP53 mu-
tations in the Chinese [21] and in the Latin American studies [82]. DDX3X, another tumor
suppressor, is also frequently mutated in the Chinese population and strongly associated
with poor outcome [21], not confirmed in other studies [20–24]. The different frequencies
reported in the different populations might be the result of the various analytic methods
used (whole-exome sequencing, targeted sequencing, RNA-sequencing) in the different
studies more than representing real differences in the genetic background or geographic
distribution.
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Epigenetic alterations such as methylation in cell cycle regulators, histone modifi-
cations, and de-regulated miRNAs are also described. Aberrant promoter methylation
is a common oncogenic mechanism in ENKTCL, which induces the silencing of various
tumor suppressor genes such as BCL2L11 (BIM), DAPK1, PTPN6 (SHP1), TET2, SOCS6,
and ASNS [141], as well as in regulators of the cell cycle such as CDKN2A, CDKN2B,
and CDKN1A [140]. EZH2 is a histone methyltransferase, a member of the polycomb
repressor complex 2 (PCR2) which controls the DNA methylation of oncogenes and tumor
suppressor genes acting as a transcriptional repressor. In ENKTCL, EZH2 not only acts as
a repressor, but also acts as an oncogene, promoting proliferation, invasion and survival
through the NF-kB signaling pathway [142–144]. Further key epigenetic regulators are
miRNA, small non-coding RNAs capable of inducing post-transcriptional gene regula-
tion acting as oncogenes or as tumor suppressor genes [158–160]. Numerous deregulated
miRNA have been identified in ENKTCL, including the downregulated miR-146a, miR-
26a, miR-26b, miR-28-5, miR-101 and miR-363 [144,145], whereas miR21 and miR155 are
upregulated probably acting as oncogenes, stimulating proliferation through the AKT and
MAPK signaling pathways [137,146]. On the other hand, overexpression of the tumor
suppressor miR-146a in vitro leads to downregulation of the NF-kB signaling pathway
by the inhibition of its target TRAF6, resulting in repressed cell proliferation, induced
apoptosis, and enhanced chemosensitivity [145]. The profiling and biogenesis of miRNAs
has been studied in various disorders and not only in ENKTCL, because they can be
exploited and used as biomarkers, but also as new therapeutic target by inhibiting miRNA
oncogenes or by the miRNA replacement of tumor suppressor miRNAs [161]. In the last
decade, miRNA therapies for cancer, metabolic and infectious diseases have reached the
preclinical phase of commercial development, representing a new therapy approach in
these disorders [161–163].

Gene expression profiling has also enabled the distinguishing of upregulated genes,
with an important role in the pathogenesis of ENKTCL including BIRC5 encoding for
survivin, MYC, PD-L1, RUNX3, AURKA, and PDGFRA. MYC is a well-known oncogene
related to aggressive clinical behavior in mature B cell lymphomas [164], and is associated
with NOTCH1 mutations in T cell lymphomas [165]. Overexpression of MYC in ENKTCL
seems to be related to alterations in the MAPK signaling pathway and the EBV patho-
genesis because MYC is a transcriptional target of EBNA1 and LMP1 viral proteins [144].
Interestingly, MGA mutations and 1p22.1 loss of heterozygosity are similarly related to
MYC expression promoting the disturbance of the MAPK signaling pathway [81].

6. ENKTCL Proposed Molecular Classification

Based on molecular integrated analysis of ENKTCL, a new molecular classification
has been proposed, distinguishing three different ENKCTL subtypes defined according
to their genetic characteristics [81]. The first group—TSIM subtype (alteration in Tumor
Suppressors and Immune Modulators)—consists of cases with JAK-STAT signaling path-
way activation, TP53 mutations, del6q21, and mechanisms associated with the immune
response such as antigen presentation, NK cell-mediated cytotoxicity, immune surveillance,
PD-L1 overexpression, and genomic instability. This group predominates and presents
higher NK cell gene expression than the other groups (Figure 3). The second group—MB
subtype (MGA mutations and LOH at the BRDT locus)—is characterized by MGA muta-
tions, a tumor suppressor gene, related to MYC overexpression and associated with MAPK,
NOTCH3/4 and WNT signaling pathway activation (Figure 4). BRDT enhances oncogenic
functions of cancer drivers, including MYC. These findings provided evidence that MYC is
critically involved in this subtype. The third group—HEA subtype (mutations in HDAC1,
EP300 and ARID1A)—is linked to epigenetic changes, mainly aberrant histone acetylation
leading to activation of the NF-kB and TCR signaling pathways (CD3D/G, CD8A/B, CD28,
ICOS, and VAV2/3) (Figure 5). These cases show higher T cell gene expression compared
to the other groups. These data suggested that the molecular subtypes correlate well
with cells of origin (NK vs T cell). Furthermore, it also showed correlation with the pre-
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dicted three-year overall survival (79%, 39% and 92%, respectively). The worse prognosis
observed in the MB subtype confirmed previous observations that MYC overexpression
correlates with disease progression and dismal prognosis in ENKTCL [166]. Interestingly,
EBV gene transcript levels were differentially expressed in these three molecular subtypes.
The TSMI subtype was associated with the expression of EBV lytic genes such as BALF3,
which increases genomic instability, regulates TP53 targeted genes, and leads to malignant
transformation. The MB subtype showed low expression of EBV genes, particularly LMP1,
suggesting that this group could have BL-like EBV infection (latency type I). The HEA
subtype was characterized by increased lytic gene BNFR1, a partner of the histone chaperon
complex, which interacts with DAXX to promote viral latency and cellular immortalization.
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Figure 3. JAK-STAT signaling pathway and immune response evasion disturbances in ENKTCL.
NKTCL biopsy carrying STAT3 activating mutation (c.1919A>T, p. Y640F) belonging to the tumor
suppressors and immune modulators (TSIM) molecular group. Large-size tumor cells in a necrosis
background are depicted (H&E) positive for pSTAT 3 and PD-L1. ENKTCL biopsy revealing STAT3
wild type. Neoplastic cells lacking an inflammatory background (H&E). In addition, P-STAT3
is negative in the tumor cells but positive in the vessels as an internal control, whereas PD-L1
is similarly negative in most of tumor cells but positive in some reactive histiocytes (H&E stain
and Immunohistochemistry 400×). Abbreviations: H&E, hematoxylin and eosin; EBER, in situ
hybridization for EBV-encoded small RNA.
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Figure 4. ENKTCL harboring MGA frameshift mutation (c.7586 G > A, p.H533*) associated with MYC
overexpression belonging to the MB molecular group. ENKTCL with large cell morphology, cells are
pleomorphic with pale cytoplasm, and irregular nuclei (H&E stain, 400×); all lymphoma cells show
EBER positivity (in situ hybridization 200×) and MYC nuclear expression (immunohistochemistry
400×). Abbreviations: H&E, hematoxylin and eosin; EBER, in situ hybridization for EBV-encoded
small RNA.
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Figure 5. ENKTCL harboring ARID1A mutation probably belonging to the HEA molecular group.
The morphological hallmark features of ENKTCL are present: coagulative necrosis and large-size
pleomorphic neoplastic cells leading to angioinvasion (H&E stain, 200× and 400×). All lymphoma
cells show EBER positivity (in situ hybridization, 400×). This case carried also a DDX3X mis-
sense mutation (c.1537G>C, p. V513L). Abbreviations: H&E, hematoxylin and eosin; EBER, in situ
hybridization for EBV-encoded small RNA.

7. Conclusions

The contemporary understanding of ENKTCL pathogenesis has been enhanced. The
use of high-throughput technologies has allowed the genetic analysis of large series of
ENKTCL in different populations around the world. These studies have been conducted
to investigate the pathogenesis of ENKTCL and the role of EBV in its oncogenesis. EBV
strain distribution in ENKTCL shows EBV type A in Asian and Latin American population,
whereas type B is identified in Latin American only in Peru and Mexico in comparison
to other Western countries. Interestingly, LMP1 30 bp del variant, which promotes EBV
oncogenic mechanisms, has been frequently demonstrated in the Chinese population and
less commonly in Latin American countries, where its detection is mostly restricted to
patients carrying EBV strain type B.

As has been proposed in diffuse large B cell lymphoma, the integration of genomic
structural alterations in ENKTCL has identified three molecular subgroups related to the
cell of origin (NK vs T cell), pathogenic alterations, EBV sequences and clinical outcome.
The model suggests that EBV infection is the earliest event, leading to the susceptibility
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of NK and T cells to genomic alterations that together will result in the pathogenesis
of ENKTCL. Consequently, these alterations will influence the prognosis and therapy
response. The understanding of the genetic alterations and their altered mechanisms
should guide novel therapeutic interventions such as immune checkpoint inhibitors, MYC
inhibitors, and histone deacetylase inhibitors. Nevertheless, these studies have only been
conducted in Chinese populations, and new comprehensive genomics studies are needed
to confirm these results.
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