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Background: The immune checkpoint blockade (ICB) with anti-programmed cell death
protein 1(PD-1) on HNSCC is not as effective as on other tumors. In this study, we try to
find out the key factors in the heterogeneous tumor-associated monocyte/macrophage
(TAMM) that could regulate immune responses and predict the validity of ICB on HNSCC.

Experimental Design: To explore the correlation of the TAMMheterogeneitywith the immune
properties and prognosis of HNSCC, we established the differentiation trajectory of TAMM by
analyzing the single-cell RNA-seq data of HNSCC, by which the HNSCC patients were divided
into different sub-populations. Then, we exploited the topology of the network to screen out the
genes critical for immune hot phenotype ofHNSCC, aswell as their roles in TAMMdifferentiation,
tumor immune cycle, and progression. Finally, these key genes were used to construct a neural
net model via deep-learning framework to predict the validity of treatment with anti-PD-1/PDL-1

Results: According to the differentiation trajectory, the genes involved in TAMM
differentiation were categorized into early and later groups. Then, the early group genes
divided the HNSCC patients into sub-populations with more detailed immune properties.
Through network topology, CXCL9, 10, 11, and CLL5 related to TAMM differentiation in the
TMEwere identified as the key genes initiating andmaintaining the immune hot phenotype in
HNSCC by remarkably strengthening immune responses and infiltration. Genome wide,
CASP8 mutations were found to be key to triggering immune responses in the immune hot
phenotype. On the other hand, in the immune cold phenotype, the evident changes in CNV
resulted in immune evasion by disrupting immune balance. Finally, based on the framework
of CXCL9-11, CLL5, CD8+, CD4+ T cells, and Macrophage M1, the neural network model
could predict the validity of PD-1/PDL-1 therapy with 75% of AUC in the test cohort.

Conclusion: We concluded that the CXCL9, 10,11, and CCL5 mediated TAMM
differentiation and constructed immune hot phenotype of HNSCC. Since they positively
regulated immune cells and immune cycle in HNSCC, the CXCL9-11 and CCL5 could be
used to predict the effects of anti-PD-1/PDL-1 therapy on HNSCC.
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INTRODUCTION

Application of immune checkpoint blockage (ICB) has
significantly improved the prognosis of multiple tumors, but
exerted limited effects on head and neck squamous cell
carcinoma (HNSCC) because less than 30% of the patients got
a better prognosis (Curran et al., 2010; Topalian et al., 2012;
Seiwert et al., 2016; Clarke et al., 2021; García Campelo et al.,
2021). To find out the HNSCC sub-populations susceptible to
ICB therapy, various criteria have been proposed for HNSCC
classification, by which HNSCC was classified into the enhanced
and decreased immune subtypes with the immune-related genes
(Cao et al., 2018), into the CD8+ high and CD8+ low subtypes
with the density of infiltrating CD8+ T cells (Saloura et al., 2019),
into the basal, mesenchymal, atypical, and classical subtypes with
the integrated genomic characteristics (Walter et al., 2013), and
even into the m6Ahigh and m6Alow subtypes with the N6-
methyladenosine (m6A) methylation levels on mRNAs (Yi
et al., 2020). Although these criteria explicated the clinical and
immune characteristics of HNSCC from different perspectives,
how these HNSCC subtypes formed and the roles of the genes
involved in it remained elusive.

When inflammation took place, the tumor-associated
monocyte/macrophages in circulating blood were motivated
into the inflammatory focus to maintain homeostasis,
eliminate pathogens, and balance immune responses (Shi &
Pamer, 2011). There were three types of tumor associated
monocyte/macrophages, namely, the classical (CD14+; CD16−),
the non-classical (CD16+), and the intermediate tumor associated
monocyte/macrophages (CD14+; CD16+) (Ziegler-Heitbrock
et al., 2010). During tumorigenesis, the tumor-associated
monocyte/macrophages in circulation (mainly the classical
type) were chemoattracted into tumor focus, and differentiated
gradually into dendritic cells (DC) and Tumor Associated
Macrophages (TAM) (Movahedi et al., 2010; Franklin et al.,
2014; Guilliams et al., 2014; Li B et al., 2020). More than 50%
of the immune cells in tumor micro-environment (TME) were
TAM that affected the migration, invasion, angiogenesis, and
drug-resistance of tumors (Watters et al., 2005; Kimura et al.,
2007; Zheng et al., 2018). The M1-like phenotype of TAM
exhibited the inhibitory effects on tumors, such as the
promoted inflammatory response and chemoattraction of
immune cells (Goswami et al., 2017). Reversely, M2-like
phenotype of TAM suppressed inflammatory response, and
enhanced immune evasion, angiogenesis, and metastasis,
which resulted in a poor prognosis (Hu et al., 2016; Seminerio
et al., 2018). However, recent studies reported that M1-like
phenotype of TAM was also related to the poor prognosis in
HNSCC and medulloblastoma by suppressing inflammatory
response and promoting metastasis (Lee et al., 2018; Xiao
et al., 2018). Previously, TAM was thought mainly to be
macrophage M2, while the increasing evidence indicated that
TAM also exhibited the phenotype of macrophageM1, suggesting
that TAM contained the third population of macrophages other
than macrophage M1 and M2. The third macrophage population
was supposed to co-express the M1 and M2 characteristics and
transform into M1 or M2 in certain instances (Estko et al., 2015;

L. ; Gao et al., 2016; Kloepper et al., 2016). All the above findings
indicated that the role of TAM in tumor progression could be
complicated and not simply attributed to macrophage M1 and
M2. Since the TAM was differentiated from the tumor-associated
monocyte/macrophages gradually, the differentiating and
differentiated TAM were termed as tumor-associated
monocyte/macrophages/Macrophages (TAMM) in recent
studies (Cassetta et al., 2019; Singhal et al., 2019). More and
more studies implicated the TAMM as the potential target of ICB
therapy. The relevance between TAMM responses and ICB
therapy has been established by bioinformatic methods. In
triple negative breast cancer, machine learning identified the
TAMM-expressed genes which were highly associated with the
prognosis and ICB therapy, and constructed a model predicting
the response to ICB therapy with the 100% validation queue AUC
(Bao et al., 2021). Moreover, WGCNA was used to find that the
marker genes expressed in TAMM of glioblastoma, which were
highly correlated with prognosis and ICB therapy, and were more
active in the patients susceptible to ICB therapy (Zhang et al.,
2021). Despite this, there are relatively few studies on HNSCC
concerning the role of TAMM in immune response and ICB
therapy. Since TAMM differentiation endowed TAMM with
heterogeneity dynamically, instead of statically, we proposed a
criterion that combined the genes involved in TAMM
differentiation with the immune cells to depict the immune
phenotype and prognosis of HNSCC in more detail.

MATERIALS AND METHODS

Data Collection
The single cell RNA-seq (scRNA-seq) data of GSE139324 (10X
genomics), including the tumor infiltrating immune cells from 16
HPV negative patients and the immune cells from the peripheral
blood of a healthy donor, and GSE103322 (Smart-seq2),
containing 5,902 single cells from 18 HNSCC patients, were
obtained from Gene Expression Omnibus (GEO). Multiomics
data and clinical data of 502 HNSCC patients obtained from The
Cancer Genome Atlas (TCGA) database (Supplementary Table
S1), including mRNA expression (level 3, Illumina RNA-Seq),
miRNA expression (level 3, Illumina miRNA-Seq), somatic copy
number variation (CNV level 3, Affymetrix SNP 6.0), and somatic
mutation (level 4, MAF files), were obtained from UCSC Xena
browser. The array data and clinical data of five HNSCC cohorts,
GSE65858 (n = 270), GSE40774 (n = 134), GSE39366 (n = 138),
GSE117973 (n = 77), and GSE41613 (N = 97), were obtained from
Gene Expression Omnibus (GEO) database (Supplementary
Table S1). The bulk transcriptome data and clinical data of six
cohorts accepted the PDL-1/PD-L1 antibody immunotherapy,
namely GSE93157 (n = 65, Non-Small Cell Lung Carcinoma,
HNSCC and Melanoma), GSE154538 (n = 8, gastrointestinal
cancer), GSE141119 (n = 12, melanoma), GSE91061 (n = 109,
melanoma and non-small cell lung cancer), GSE78220 (n = 28,
melanomas), GSE176307 (n = 88, Metastatic Urothelial Cancer),
and the IMvigor210 (n = 348, bladder cancer), were obtained
from Gene Expression Omnibus (GEO) and the IMvigor210
database (Supplementary Table S2). GSE93157 was array
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data, while GSE154538, GSE141119, GSE91061, GSE78220,
GSE176307, and the IMvigor210 were bulk transcriptome
data. The mRNA-seq data from the HNSCC cell line that
accepted the treatment of anti-tumor drugs were obtained
from Genomics of Drug Sensitivity in Cancer (GDSC).

Data Processing
In the scRNA-seq from GSE139324, with the exclusion of the
genes detected in fewer than three cells, the cells containing
mRNA more than 4,500 or less than 200, and the cells
expressing mitochondria genes more than 10% transcripts,
there were 19,718 genes from 39,711 qualified cells of total
39,994 cells (283 cells were screened out). Through SCT in
seurant package SCT, the data from the 18 patients in
GSE139324 cohort were integrated to screen out the non-
biological inferences, such as batch effect. Similarly, in the
scRNA-seq of GSE103322 (Smart2-seq without screen), there
were 21,519 genes and 5,844 qualified cells from 18 patients
integrated by SCT. The HNSCC RNA-seq counts
[log2(rawcounts+1)] obtained from USCS through exp
[log2(rawcounts+1)-1] were restored to raw counts, and
then the log2(fpkm-uq+1) from USCS was used to compare
them with the data from other databases. There were 501
HNSCC samples (one normal sample was excluded) for the
subsequent analyses. The GSE65858, GSE40774, GSE39366,
GSE117973, and GSE41613 were normalized prior to following
analyses. There were 501 samples in GSE93157, GSE154538,
GSE141119, GSE91061, GSE78220, GSE176307, and the
IMvigor210 for the following analyses except defective and
reiterated data. The data from the RNA-seq of GDSC2 cell line
were normalized with TPM for subsequent processing.

Analyses on Squamous Cell Carcinoma of
Head and Neck scRNA-Seq Data
For the GSE139324 cohort: 1) the data integrated with “SCT” Seurat
package was applied for PCA analysis to find out the first 50
principal component analysis (PCA); 2) Umap (Uniform
Manifold Approximation and Projection for Dimension
Reduction) dimension reduction was performed on the 50 PCAs.
In this unsupervised clustering, the function of FindNeighbors in
Seurat package was used to construct a KNN graph based on the
Euclidean distance in PCA space (top 50 PCAs, k = 20), and then, the
function of FindClusters (Louvain algorithm)was used to cluster the
cells with the resolution of 0.1. The K-NN clustering classified the
consequences undergoing the dimension reduction into four
clusters, which were annotated by SingleR as NK cells (n =
14,925), T cells (n = 14,073), B cells (n = 2,789), and tumor-
associated monocyte/macrophages cells (n = 7,924). 3) Tumor-
associated monocyte/macrophages cells were classified by K-NN
into seven further clusters. Cluster 0, 1, 2, and 4 were annotated by
SingleR as tumor-associated monocyte/macrophages (n = 6,875),
while the cluster3 (n = 312), 5 (n = 478), and 6 (n = 259) as T and
B cells. 4) The T cells were applied for Multimodal reference
mapping (Hao et al., 2021) and divided into eight clusters,
namely, the CD4 CTL, CD4 Navie cells, CD4 TCM, CD4 TEM,
CD8 Navie cells, CD8 TCM, CD8 TEM, and proliferating T cells

(Supplementary Table S3). 5) The tumor-associated monocyte/
macrophages were applied for GSVA analysis for function
enrichment. 6) The tumor-associated monocyte/macrophages
were applied for pseudotime analysis through Monocle2 package
andDestiny package, which adopted differentmanners to reduce the
dimensions of the high-dimensional data. The single cell was
separated and projected into low-dimensional space to form a
differentiation trajectory with knots. Each knot represented a
similar status of differentiation. (1) Through the data of single
cell lineage, Monocle 2 adopted the embedding converse
diagraph to learn the explicit principal graph (Packer et al.,
2019). 2) Destiny adopted the diffuse maps (differentiating cells
follow noisy diffusion-like dynamics) to mimic the division from
multipotent cells (Coifman et al., 2005). 7) The “InferCNV” R
package 1.10.1 (Patel et al., 2014) and CellPhoneDB (Python
edition) (Efremova et al., 2020) were performed on all clusters
for CNV analysis (normal blood cells as control) and cell

communication analysis. CNVk(i) � ∑
i+50

j�i−50
Ek(Oj)/101, where

CNV(i) was the estimated relative copy number, and Ek(Oj) was
mRNA level, of the ith gene in the cell k at the whole genomic scope.
8) The differentially expressed genes (DEG) between tumor-
associated monocyte/macrophages C1 and C0 were summarized
with the “Findmarker” Seurant package. Setting |log2fold Change|
>1.3 and FDR<0.05 as the cutoff criteria, the Log2Fold Change >1.3
was regarded as the characteristics of the genes for the early
differentiation of TAMM, while Log2FoldChange<-1.3 as the
characteristics of the genes for the late differentiation of TAMM
(Supplementary Table S4). For GSE103322 cohort: 1) PCA analysis
was performed on the data integrated by “SCT” Seurat package.
According to the specific markers, the cells were divided into the
malignant epithelial cells (KRT14, KRT6A, EPCAM, n = 1939),
Cancer associated fibroblasts (FAP, PDRN, n = 1,697), T cells (CD2,
CD3D, n = 1,633), B cells (SLAMF7, CD79A n = 354), endothelial
cells (PECAM1, VWF n = 75), and mono-macrophage cells (CD14,
CD163, CD68, n = 146). 2) T cells were further classified with
Multimodal referencemapping into eight clusters of CD4CTL, CD4
Navie cells, CD4 TCM, CD4 TEM, CD8 Navie cells, CD8
TCM, CD8 TEM, and proliferating T cells (Supplementary
Table S5).

CIBERSORT and ESTIMATE for Immune
Cell and Stromal Scores
For the one TCGA HNSCC and five GEO HNSCC cohorts,
“CIBERSORT” and “ESTIMATE” R package were applied to
calculate the contents of the 22 kinds of immune cells (1,000
permutations) and immune and stromal score.

The Unsupervised Clustering on TCGA
Squamous Cell Carcinoma of Head and
Neck and GSE65858 Cohorts
According to the scores of the genes in the early TAMM
differentiation and the 22 kinds of immune cells, the
unsupervised clustering (through “ConsensuClusterPlus” R
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package) was applied to the samples with Euclidean distance and
Ward (unsquared distances) linkage to get the sub-populations with
different immune phenotype and prognosis.

Associations of TCGA Squamous Cell
Carcinoma of Head and Neck Subtype With
DNA Methylation, CNVs and Mutations
The data of methylation probes were normalized with
“wateRmelon” R package, and the difference in methylation
probes were analyzed with “limma” R package. The evidently
altered regions in genome were screened with GISTIC2.0. The
numeric focal CNV values larger than 0.2 meant gain, while less
than 0.2 meant loss. Through Somatic mutation data, the TMB
(the number of non-synonymous mutations in every million
bases of somatic cells) of each patient in the TCGA HNSCC
subtype were calculated.

Search for the DEGs in the Subtype of TCGA
HNSCS and GSE65858 Cohorts
The DEGs were obtained by comparing the A3 to A1 subtype,
and the A3 to B subtype in TCGA HNSCC and GSE65858
cohorts with “limma” in R package. The TCGA HNSCC
cohorts were produced by RNA-seq, while the GSE65858
resulted from micro-array. One criterion failed to satisfy the
cohorts from a different sequencing approach. If the threshold
of GSE65858 was identical to that for TCGA HNSC, the DEGs
would be rare. For the TCGA HNSCC cohort, |Log2Fold
Change|>1 and FDR<0.05 were set up as standard.
According to the DEGs in GSE65858 array, a threshold of |
Log2Fold Change|>0.2 and FDR<0.05 was selected to keep the
numbers of DEGs in the two cohorts from varying too much.
FDR was the p value calibrated using the Benjamini–Hochberg
method.

Confirmation of the Key Genes
In the two HNSCC cohorts, the comparison between A3 and B
subtypes gave rise to 181 overlapped candidate genes.
Centiscape was applied to the analysis on the protein
crosstalk network and was constructed with PPI database.
Each knot in the PPI network constructed with 181 DEGs
was evaluated with the centiscape of cytoscape for the topo-
characteristics, namely, Degree, Eigenvector Centrality, and
Betweennesss.

Degree was the most direct and classical index evaluating the
regulatory and importance of knot, which was defined as the
nodes directly connected to a given node.

Eccentricity Cecc(v) represent the reciprocal inverse of the
longest path between the knot v and all other knots. The
eccentricity of a node in a biological network can be
interpreted as easiness of a protein to be functionally
influenced by all other proteins in the same network.

Cecc(v) � 1
max{dist(v, w) : w ∈ V }, in which v and w were the nodes

in network (V)

S.-P. Betweenness Cspb(v) represents the ratio of the path
number connecting the knot s and t through v to the total number
of path. A high S.-P. Betweenness score meant that the node, for
certain paths, was crucial to maintain node connections.

Cspb(v) � ∑s≠v∈V ∑t≠v∈V
σst(v)
σst

, in which s, t and v were nodes in

network (V)

Our purpose was to find out the knot with the higher values on
the topo-characteristics, because the higher the value the more
significant it was. Since the relative significance of Degree was
higher than Eigenvector Centrality, and the Eigenvector
Centrality equaled Betweenness, we selected the first 40 knots
with the higher Degree. Then, we selected the first 20 DEGs with
the higher Eigenvector centrality and Betweenness, respectively.
The thresholds of 40 and 20 were set empirically, and had no
effect on the outcomes, because the key knots with the higher
values of the topo-characteristics would vary with the threshold.
According to the descending order of Degree, the first 40
candidate genes were selected. According to the descending
sequence of Eigenvector Centrality and Betweenness, the first
20 genes were selected from the 40 candidates (Supplementary
Table S6). Finally, 12 genes included in both above populations
were set up as the hub genes. KEGG database was applied for
pathway correlation, CluoGO for visulization, and all the
manipulations were based on Cytoscape. From the DEGs by
comparing the A3 to A1 subtype of the two HNSCC cohorts, 41
genes were selected for the protein crosstalk network constructed
with PPI database.

Pathway Enrichment Analysis
The DEGs from the comparison between the A3 and B subtype in
both the TCGAHNSCC and GEO65858 cohorts were applied for
GSEA enrichment. Then, the Enrichment map was visualized and
annotated. Sample Gene Set Enrichment analysis (ssGSEA) was
performed on the TCGA HNSCC, GSE65858, GSE39366,
GSE117973, GSE40774, and GSE41613 cohorts with “GSVA”
R package to grade the 29 immune signatures (He et al., 2018).

Fold − Change � 1
n1

∑
i∈immune hot

immune related scorei

− 1
n2

∑
i∈immune cold

immune related scorei

Where n1 and n2 were the number of immune hot and immune
cold samples, respectively. Immune related score was the sum of
22 immune cells scores obtained by Cibersort and 29 immune
signature scores obtained by GSVA.

The GSVA Scores of the Four Chemokines
and the Confirmation of the Immune Hot
and Immune Cold Subtype
According to the mRNA levels of the four chemokines, CXCL9,
CXCL10, CXCL11, and CCL5, TCGA HNSCC, GSE65858,
GSE39366, GSE117973, GSE40774, and GSE41613 cohorts
were applied for ssGSEA with GSVA in R package and
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divided by the median grade into the high- and low-graded
subtype, namely, the immune hot and immune cold subtype.

Survival Analysis
The survival curve was generated by “Survminer” R package. The
statistical differences among the immune subtype of TCGA
HNSCC and GSE65858 cohorts were obtained by log rank test.

Construction of Neural Network
By “neurnet” R package, a neural network containing an input
layer, two hiding layers (there were 20 neurons in the first layer,
and five neurons in the second layer. Both layers were in
dropout), and an output layer.

Activation Function:
1

1+e−x; Loss Function:
1
N ∑i −(yiplog(pi) + (1 − yi)plog(1 − pi))

Statistical Analysis
All the statistical analyses were performed with R software version
4.0.4. The t test and Wilcoxon test were applied for the comparison
between two subtypes, while ANOVA was used for comparison
among more than two subtype. Fisher exact test was applied for the
classified variations between and among subtypes. Pearson or
Spearman coefficients were applied for the relevance between two
variations. All statistical tests were two-sided and when p <0.05, the
difference was regarded as significant.

RESULTS

The Heterogeneity of Tumor-Associated
Monocyte/Macrophage in Squamous Cell
Carcinoma of Head and Neck
A schematic diagram of the study design and principal findings is
shown in Supplementary Figure S1. To classify the TAMM in
HNSCC according to their differentiation status, 19,718 genes were
selected from 39,711 leukocytes of HNSCC patients (Supplementary
Figures S2A, S2B) qualified for dimensionality reduction with PCA
and UMAP (Uniform Manifold Approximation and Projection for
Dimension Reduction). The cluster classification analysis with K-NN
gave rise to four clusters, which were annotated as NK cells (n =
14,925), T cells (n = 14,073), B cells (n = 2,789), and tumor-associated
monocyte/macrophages cells (TAMM; n = 7,924) by SingleR. The
7924 TAMMwere further classified with K-NN into seven clusters, in
which the cluster 0, 1, 2, and 4 were annotated by SingleR as tumor-
associated monocyte/macrophages cells (n = 6,875; Figure 1A), while
the cluster 3 (n = 312), 5 (n = 478), and 6 (n = 259) as T cells and
B cells (data not shown). In the TAMM clusters, TAMMC0,
TAMMC1, and TAMMC2 were regarded as TAMM because of
the higher CD68 expression, while the TAMMC4 with the lower
CD68 expression was considered as dendritic cells (Figure 1B).
Furthermore, the mature TAM-related genes, such as CD206,
CD81 (marker of macrophage M2), TSPO, HLA-DRA, IRF
(marker of macrophage M1), and METTL14 (C1q+), were mainly
expressed in TAMMC0 and TAMMC2 (the expression in TAMMC0
was higher than that in TAMMC2), but almost silenced in TAMMC1

(Figure 1C), indicating TAMMC0 as themature TAM, TAMMC1 as
the early tumor-associated monocytes (TAM-M0), and TAMMC2 as
the transforming TAM-M0 from monocytes to macrophages.
Differential gene expression analysis between TAMMC1 and
TAMMC0 classified 54 genes highly activated in TAMMC1,
including S100A12, S100A8, VCAN, PTGS2, and CD55, into the
early group of TAMMdifferentiation, and the other 51 genes robustly
expressed in TAMMC0, such as C1QB, C1QC, MMP12, and SPP1,
into the late group. Such a difference was also proven by pseudotime
clustering heat map (Figure 1D, Supplementary Figure S1C). By
analyzing the scRNA-seq data withGSVA andCIBERSORT, the gene
function in TAMMC1 was enriched in cellular toxicity and immune
inflammation, aswell as the stemness andmetabolism. In contrast, the
gene function in TAMMC0 was less enriched in stemness and
metabolism, but more highly enriched in cellular toxicity and
immune inflammation, as well as the pathways of hypoxia and
angiogenesis. The enriched gene function of TAMMC2 was
medially located between TAMMC0 and TAMMC1 (Figure 1D;
Supplementary Figure S3). Therefore, TAMMC1 was highly scored
as early tumor-associated monocyte/macrophages and TAMMC0 as
mature macrophages.

Differentiation Trajectory and Copy Number
Variation Verified the Heterogeneity of
Tumor-Associated Monocyte/Macrophage
According to the above differential gene expression, the
differentiation trajectory of TAMM was established, in which
TAMMC1 was located in the early stage, TAMMC0 in the late
stage, and TAMMC2 diffusely distributed in the early and late
stages (Figure 2A). Along with the time progression, TAMMC1
was decreased with the increase of TAMMC0, while TAMMC2
was increased and then decreased in the diffusion maps (Figures
2B,C). In the cell communication network, the centrally located
TAMMC2 exhibited a strong connection with both TAMMC0
and TAMMC1 (Figure 2D), which coincided with the finding
that TAMMC2 was located medially between TAMMC0 and
TAMMC1 in the differentiation trajectory. Similarly, CNV assay
revealed that the copy number and deficiency in TAMMC1
genome were relatively lower compared to those in TAMMC0
and TAMMC2 (Figure 2E). Therefore, in the heterogeneous
TAMM subpopulations of HNSCC, both the gene expression
profile and genomic properties indicated that TAMMC0
represented the mature TAM, TAMMC1 stood for the early
differentiating monocytes, and TAMMC2 was the monocytes
transforming into macrophages.

A Criterion Classifying Squamous Cell
Carcinoma of Head and Neck With Different
Immune Phenotypes and Prognosis by
Combining Tumor-Associated Monocyte/
Macrophage Differentiation and Immune
cells
As mentioned above, to explore the heterogeneity of TAMM in
HNSCC patients, we identified 54 genes as the signature of early
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TAMM differentiation, and another 51 genes as the signature of
late TAMM differentiation. To disclose the correlation of
TAMM differentiation with the immune phenotypes of
HNSCC, we combined the differentiation signatures with 22
immune cells to form a two-step classifier. First, the scores of 22
immune cells estimated by CIBERSORT were applied for the
unsupervised clustering. Both the TCGA HNSCC and the
GSE65858 cohorts were classified into A and B subtypes
(TCGA HNSCC A = 265, B = 138; GSE56858 A = 175, B =
95) (Supplementary Figures S4A, S4D). The PD-1L and IFNG
expression was higher in the A subtype than those in B subtype
in both cohorts (p < 0.001, GSE65858: PD-1L p < 0.1). Second,
unsupervised clustering was performed in the A subtype with
the 54 genes as the early TAMM differentiation signatures and
the 51 genes as the late TAMM differentiation signatures. The
unsupervised clustering with the early TAMM differentiation
signatures could divide A subtype into three subtypes (TCGA
HNSCC A1 = 40, A2 = 96, A3 = 127; GSE65858 A1 = 32, A2 =
74, A3 = 69) with different clinical outcomes and immune
signatures (Supplementary Figures S4B, S4C, S4E, S4F).
Interestingly, the three subtypes from A subtype also showed
the distinct immune infiltration and immune excluded
signatures. Both the immune and stromal scores of the A1
and A3 subtypes were significantly increased compared to
those in A2 and B subtypes (Supplementary Figure S5A).
Moreover, the A1 subtype exhibited the stronger immune
infiltration and immune excluded signatures, the A2 subtypes

in both cohorts displayed the weaker immune infiltration and
immune excluded signatures, while both the A3 subtypes
possessed the stronger immune infiltration signatures and the
weaker immune excluded signatures. In contrast to A subtype,
the B subtype were weaker in immune infiltration signatures and
stronger in immune excluded signatures (Figures 3A,B,F,G).
The PCA with the 54 early TAMM differentiation signatures
also supported this notion (Figures 3C,H). On the other hand,
the unsupervised clustering with the late TAMM differentiation
signatures failed to distinguish the immune phenotypes of
HNSCC (data not shown). Thus, the A3 subtypes were
defined as the high immune infiltration type, and the B
subtype as the high immune evasion type. The following
survival assay revealed the different prognoses among the
subtypes, especially between A3 and B subtype (p < 0.05;
Figures 3D,I). According to TMN staging, the A3 subtypes
of both cohorts exhibited a lower ratio of IV stage patients
compared to other subtypes (Figures 3E,J). To further verify the
correlation between TAMM differentiation and immune
phenotypes, we performed GSEA analysis on the
differentially expressed genes between the A3 subtype and B
subtype. The genes highly expressed in the A3 subtype were
enriched in immune-associated pathways, such as activation of
immune cells, adherence, proliferation, immune response, and
regulation, while the genes highly expressed in the B subtype
were enriched in cellular development and ECM-related
pathways, for instance, mesenchymal development, pattern

FIGURE 1 | Cellular heterogeneity of tumor-associated monocyte/macrophages/macrophages at the single cell level. (A) Umap plots of all clusters annotated by
SingleR. (B) CD68 expressions levels of TAMM sub-clusters (C0, C1, C2, C4). (C) CD14, CD16, ITGAX, CD201, CD81, TSPO, HLA-DRA, IRF5, SPP1, and METT14
expressions levels of TAMM sub-clusters (C0, C1, C2). (D) GSVA revealed the enrichment scores of TAMM sub-clusters in the pathways of tumor invasion, immunity,
stemness, and metabolism.
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formation, and cytodifferentiation (Figures 3K,L). These results
suggested that the early differentiation signatures of TAMM
were associated with the HNSCC immune phenotypes and
prognosis.

Multiomic Characteristics Associated With
the Immune Phenotypes of the Different
Squamous Cell Carcinoma of Head and
Neck Subtypes
Finally, CNV, SNP, and methylation levels were examined to
further explore the immune phenotype in the subtype of
TCGA HNSCC cohort. It was found that the mutation
frequency of tumor mutation loading and tumor driver

genes (TP53, TTN, etc.) in the A2 subtype was noticeably
higher than that in other subtypes (Supplementary Figures
S5B, S5C). CNV analysis found that the focal copy numbers
in 3p, 11q, and 2p were significantly distinguishable between
the A3 subtype and B subtype (Supplementary Figures
S5D–E). The methylation assay revealed that there were 96
genes highly expressed in B subtype overlapped with the
methylation probe highly expressed in A3 subtype, while
only 13 genes highly expressed in A3 subtype were
detected by the methylation probes highly expressed in B
subtype (Supplementary Figures S5F–G). These findings
implicated that CNV, SNP, and methylation levels also
contributed to the different immune phenotypes in the
HNSCC subtypes.

FIGURE 2 | Differentiation trajectory and CNV changes of TAMM. (A)Monocle2 reveals the differentiation trajectory of TAMM. (B) Three-dimensional diffusion map
embedding of macrophages reveals the different differentiation states of TAMM sub-clusters. (C) Density diffusion maps model revealed the content of sub-clusters of
TAMM at pseudo-time. (D) Cell-Cell interaction network of different TAMM sub-clusters, node represent TAMM sub-cluster, and the number of lines represent ligand
interactions between two sub-clusters. (E) Heatmap of the inferred CNV in which genes were sorted by genomic location.
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Construction of Gene Regulatory Network
Based on Differential Genes Between
Squamous Cell Carcinoma of Head and
Neck Subtype
To explore the mechanisms regulating the formation of different
subtypes, we compared the differential expressed genes (DEGs)
between A3 and B subtypes, and between A3 and A1 subtypes.
There were 451 highly DEGs in the A3 subtype compared to the B
subtype in the TCGA HNSCC cohort (Figure 4A), and 567 highly
DEGs in the A3 subtype compared to the B subtype in GSE65858
cohort (Figure 4B). There were 181 overlapped genes in the two
groups of the highly DEGs (Figure 4C), which represented the high

immune infiltration associated genes in HNSCC. On the other hand,
we obtained 659 lowlyDEGs in the A3 subtype from the comparison
to the A1 subtype of TCGA HNSCC cohort (Figure 4D), and 596
lowly DEGs in the A3 subtype from the comparison to the A1
subtype of GSE65858 cohort (Figure 4E). In the two groups of lowly
DEGs, 41 genes were overlapped (Figure 4F). Thus, the high
immune infiltration-associated genes overlapped evidently
between different cohorts, while the immune evasion-related
genes showed diversity between different cohorts even in the
instance of high immune infiltration. By exploiting STRING
database, the 181 highly and 41 lowly DEGs were constructed
into a protein crosstalk net (Figure 4G). Moreover, in the 41
immune evasion-related genes, those correlated with the genes

FIGURE 3 | A two-stepmolecular classification combining the early differentiation features of TAMMand 22 immune cell scores. (A,F)Heatmaps of immune-related
components, stromal score, and tumor purity score of the HNSCC subtypes in TCGA HNSCC (A) and GSE65858 cohorts (F). (B,G) IFNG, PD-L1 expression level of
subtype of TCGAHNSCC (B) and GSE65858 (G). (C,H) PCA of the mRNA expression of 54 early differentiation feature genes from the HNSCC patients in the TCGA (C)
and GSE65858 cohorts (H). (D,I) Kaplan-Meier curves for overall survival (OS) of all HNSCC patients in TCGA (D) and GSE65858 (I) within A3 and B subtypes.
(E,J) The pie chart showed the proportion of TMN stages with four different immunophenotypes in TCGA (E) andGSE65858 cohorts (J). (K,L)GSEA network of DEGs in
A3 vs B subtypes using Enrichment map in TCGA (K) and GSE65858 cohorts (L).
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encoding extracellular matrix (POSTN, COL6A3, COL1A2, etc.)
resided in the core of the network.

Tumor-Associated Monocyte/
Macrophage-Associated
Chemokines-CXCL9, CXCL10, and
CXCL11-and Inflammatory Chemokine-
CCLL5 Were Key Nodes in Gene Regulatory
Network
To screen out the key nodes in the gene regulatory network of the
high immune infiltration we assumed three criteria: at the center of

the regulatory network, belong to the same pathway, and highly
correlated expression. In the network constituted by the 181 highly
DEGs, we screened out 40 highly regulated genes with the Degree
more than 30. Although the correlation matrix also verified the high
association among the 40 highly regulated genes (Supplementary
Figure S6A), the Degree and correlation are insufficient for the
identity of the key genes. Thus, the 40 candidate genes were arranged
in the order of Betweenness which represented the center value of the
node (Figure 5A) and Eigenvector according to the importance of
integrating adjacent nodes (Figure 5B), respectively. Then, by
comparing the first 20 genes arranged with Betweenness to the
first 20 genes arranged with Eigenvector, 12 overlapped genes were

FIGURE 4 | Differential genes between subtypes and protein regulatory network. (A,B,C) Volcano plot and Venn diagram show DEGs of A3 vs B in TCGA HNSCC
and GSE65858 cohorts. (D,E,G) Volcano plot and Venn diagram showed the DEGs of A3 vs A1 in TCGA HNSCC and GSE65858 cohorts. (F) PPI protein regulatory
network of 181 overlapping DEGs up in A3 (A3 vs (B) and the 40 overlapping DEGs down in A3 (A3 vs A1).
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chosen as the hub genes (Figure 5C). Finally, the function of these 12
hub genes were applied for KEGGpathway correlationwithCluoGO
(Figure 5D) through which four chemokines (CCL5, CXCL9,
CXCL10, and CXCL11) were screened out. Although not
included in the 12 hub genes, CXCL11 shared the same family
with CXCL9 and CXCL10, and was highly correlated with their
expression levels. So CXCL11 was also identified as one of the driver
genes. These four chemokines were regarded as the key node in gene
regulatory network of the high immune infiltration, because of these
characteristics: 1) the core genes with the higher Degree,
Betweenness, and Eigenvector in the network; 2) robust relevance
at the transcription level (Supplementary Figures S6B–D), and the
remarkably higher difference in CXCL9, CXCL10, and CXCL11 (A3
vs B) than the other eight genes (Supplementary Figure S6E); and 3)
belong to the same pathway and share the higher topological signs.
Moreover, during TAMM differentiation, CXCL9, CXCL10, and
CXCL11 were increased with the time progression in Pseudotime
analysis (Figure 5E). Taken together, the four chemokines with the
strongest functional co-regulation and co-expression could be
regarded as the pivotal genes screening the high immune evasion
of HNSCC.

The Transcription of the four
Chemokines-CXCL9, CXCL10, CXCL11,
and CCLL5-Was Influenced by Epigenetic
and Health Factors
To further explore the endogenous (epigenetic) and exogenous
(health manner) factors impacting the expression of the four
chemokines-CXCL9, CXCL10, CXCL11, and CCL5--the
chromatin accessibility and the methylation status at the
transcription initiation regions of CXCL9, CXCL10, CXCL11, and
CCL5 were analyzed in the whole genome with TCGA HNSCC
ATAC and methylation database. The enriched reads were evidently
concentrated at the transcription initiation regions of CXCL9,
CXCL10, CXCL11, and CCL5 in the A3 subtype, compared to
the A1 and A2 subtypes (Figure 5F), implicating a more active
transcription of CXCL9, CXCL10, CXCL11, and CCL5 in the A3
subtype. In contrast, the methylation levels of CXCL9, CXCL10,
CXCL11, and CCL5 showed insignificant difference among the
subtype, implying that the four chemokines were epigenetically
regulated by the manners rather than DNA methylation.
However, the methylation of CXCL9, CXCL10, CXCL11, and
CCL5 in the control patients were higher (Figure 5G), suggesting
de-methylation of the four chemokines was crucial for HNSCC
genesis. We also found that the transcription and methylation levels
of CXCL9, CXCL10, CXCL11, and CCL5 were correlated with age,
smoking, alcohol consumption, and HPV infection. The higher
mRNA levels of the four chemokines were detected in the
HNSCC population with older age and lower consumption of
tobacco and alcohol (Supplementary Figure S7A, S7C, S7E;
t test, p < 0.05). The HPV positive HNSCC group exhibited a
higher CXCL10 mRNA level and an increased methylation of
CXCL9 and CXCL11 compared with the HPV negative HNSCC
group (Supplementary Figures S7B, S7D; t test, p < 0.05). Thus, it
was concluded that, although not associated with the immune
phenotypes of HNSCC, the transcription of the four chemokines

regulated by DNA methylation and health factors were critical for
HNSCC genesis.

The Four Chemokines-CXCL9, CXCL10,
CXCL11, and CCL5-Positively Regulated
Immune Responses and Were Associated
With the Low CNV and CASP8 Mutations in
the Squamous Cell Carcinoma of Head and
Neck Genome
According to the mRNA levels of the four chemokines, six
HNSCC cohorts (one TCGA cohort and five GEO cohorts)
were graded with GSVA, and then divided into the high- and
low-graded groups with the median grade to evaluate the
correlation of the four chemokines with immune response.
There was a remarkable difference between the high- and low-
graded groups in the immune signature and genome. The
TCGA and most high-graded cohorts showed a higher
enrichment of immune cells (Macrophages M1, CD4 T cells
memory activated, and CD8 T cell) in the infiltration grading
of the 22 kinds of the immune cells, got higher scores in the
enrichment of antigen present during tumor immune circle,
immune cell infiltration, and the recognizing and killing of
tumor cells by effector T cells in the 29 immune signatures
assay (Figure 6A), and was given the lower scores in the TIDE
assay. All of the results suggested a better response to immune
therapy and was verified by the cohorts of immune therapy, in
which the GSVA grades of the four chemokines in the CR
group were higher than those in PR, SD, and PD groups
(Figure 6B). Based on these findings, we classified HNSCC
into the immune hot and immune cold phenotype according to
the GSVA grades of the four chemokines. Then, we estimated
the distribution of the mutations from the first 30 HNSCC
driver genes with the highest frequency of mutation (TP53,
TTN, CSMD3, SYNE1, etc.,) in the hot and cold immune
groups, and found that except for CASP8, all other driver genes
had an elevated frequency of mutation in the low-graded group
(Figure 6C; Supplementary Table S7), implying that the
mutations of CASP8 endowed HNSCC with a stronger
immunity. Moreover, CNV analysis revealed that in the
immune cold group, an active CNV was detected in several
hot spot regions (gain: 3p, 8q, 17q, 18p. loss: 2q, 7q, 13q)
(Figure 6D). In combination with Kech classification, we
found that the most immune hot was BA type, while the
most immune cold was CL type (Figure 6E). All the above
results suggested that the four chemokines could not only act
as the markers identifying the HNSCC with high
concentration of immune cells (CD8 T cell, Macrophage
M1, etc.), but also reflect the HNSCC characteristics
comprehensively. It was also suggested that the immune hot
subtype of HNSCC could enhance the immune responses
through CASP8 mutations, and the immune cold subtype
also circumvented immune responses through gene
mutations. Further exploration on the crosstalk among the
four chemokines, TME, and immune cells in the immune circle
by analyzing the relevance in TCGA cohort disclosed that
CXCL9, CXCL10, CXCL11, and CCL5 showed a strongly
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positive association with immune cells (Macrophages M1,
CD4 T cells memory activate and CD8 T cells), and the
three stages of tumor immune circle (Figure 6F). Since the
similar association was also detected in other HNSCC cohorts,
the four chemokines were proven to enhance the anti-tumor
immune capability. Moreover, we also found that macrophages
M1 was strongly positively associated with the activation of
dormant CD8 and CD4 T cells (Figure 6G).

The Relationship Between the Four
Chemokines and the Sub-Populations in the
Squamous Cell Carcinoma of Head and
Neck Tumor Micro-Environment at Single
Cell Level
The cohorts of GSE10332 and GSE139324 (the GSE10332 cohort
contained all kinds of cells in TME, while the GSE139324 cohort

FIGURE 5 | The topological feature of the network composed of 181 genes. (A) Dotplot of -log2(Degree+1) and log2(Betweenness+1) in selected 181 nodes. (B)
Dotplot of log2(Degree+1) and log2(Eigenvector+1) in selected 181 nodes. (C) Venn diagram of top 20 genes in A or (B) (D) KEGG pathway association network of 12
hub genes. (E) Trend of mRNA expression levels of the four chemokines (CXCL9,10,11, and CCL5) following the differentiation trajectory of TAMM. (F) Aggregation of
ATAC-seq peaks of the four chemokines of nine patients in the transcription initiation region. (G) Methylation levels of the four chemokines in different HNSCC
subtypes.
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only contained infiltrative leukocytes) were applied for the
relationship assay at the single cell level to disclose the effects
of CXCL9, CXCL10, CXCL11, and CCL5 on the HNSCC sub-
populations in TME. Cell communication assay with
CellPhoneDB found that TAM, DC, tumor-associated
fibroblasts (CAF), and malignant epithelium cells

communicated with themselves and other cells intensively
(Figures 6H,J). Interestingly, CXCL9, CXCL10, and CXCL11
were expressed robustly in TAM, malignant epithelium cells,
and CAFs, but weakly in CD4 and CD8 T cells. However,
CXCR3, the common receptor for CXCL9, CXCL10, and
CXCL11, was expressed in CD4 and CD8 T cells

FIGURE 6 | The roles of the four chemokines (CXCL9,10,11, and CCL5) in HNSCC TME and their association with tumor genomic changes. (A) Dotplot
summarized the scores of 22 immune cells estimated by GIBESORTRT and GSVA scoring on the fold change and p.adjust of 29 immune signature between the
immune hot and cold group classified by the median GSVA of the four chemokines (only p < 0.05 was given). (B) Vilionplot summarized the GSVA scores of CXCL9,
CXCL10, CXCL11, and CCL5 of four outcomes (CR, PR, PD, SD) in the cohort receiving anti-PD-1/PD-L1 immunotherapy. (C) The OncoPrint was constructed
between high and low scores of the top 30 genes with the highest mutation frequency. (D) CNV plot showed the frequency of copy-number gains (red) and deletions
(blue) among immune hot and cold groups of the TCGA-HNSC cohort. (E) The stacking histogram showed the distribution of Keck classification in the immune hot
and cold groups of TCGA HNSCC and gse65858 cohorts. (F) Correlation between the four chemokines and GIBESORTRT score of 22 immune cells in HNSCC-
TCGA and 29 immune signature GSVA score. The cell charts in the upper-right triangular exhibited the correlation among the 22 immune cell scores, and the cell
charts in the -lower triangular showed the correlation among the 17 immune signature scores (Red stood for positive and green for negative, the darkness and
lightness of the colors for the high and low of the coefficients, and the size of the cell for p value). The lines between two cell charts represent the correlation of the
mRNA of the four chemokines with the bilateral immune scores (Red stood for positive and green for negative, and the thickness of the lines for the high and low of the
coefficients). (G) Dotplot summarized the correlation coefficients between the scores of 21 immune cells estimated by GIBESORTRT and the scores of Macrophage
M1 estimated by GIBESORTRT (only p < 0.05 was given). (H,J) Heatmap of average expression level of ligand–receptor interactions in all clusters in GSE103322 and
GSE139324. (I,K) Histogram of expression levels of CCL5, CXCL9, CXCL10, CXCL11, CXCR3, and CCR5 in each cell in GSE103322 and GSE139324 cohorts. (L)
Dotplot summarized the correlation coefficients between the expression level of CXCL9, CXCL10, CXCL11, and CCL5, and the GSVA of 10 immune signatures in
each cells classified as TAMM.
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(Figure 6I), indicating that CD4 and CD8 T cells were chemo-
attracted to immune focus by the CXCL9, CXCL10, and
CXCL11 emanated from TAM, malignant epithelium cells,
and CAF. Moreover, CCL5 and its receptor, CCR5, were
mainly expressed in CD4, CD8 T cells, and NK cells
(especially CD8 T cells; Figure 5K), suggesting that CCL5
influenced T cells through autocrine or paracrine. Worthy of
note, the mRNA peaks of CXCL9, CXCL10, CXCL11, and
CCL5 in TAM were distributed in multiple sub-populations
(Figure 6K), suggesting that although the four chemokines
were highly correlated at the bulk RNA-seq level, such
correlation could be inconsistent at the single cell level due
to the heterogeneity of TAMM. Finally, the relevance assay on
TAM clusters at the single cell level disclosed that the mRNA
levels of the four chemokines were positively correlated to the
pathways involved in immune infiltration and immune
inflammation response (Figure 6L). Therefore, the
expression of the four chemokines were associated with the
immune sub-populations in TAMM.

The Immune Hot Subtype of Squamous Cell
Carcinoma of Head and Neck
Characterized by the High Expression of the
Four Chemokines was Sensitive to
Anti-Cancer Drug Targeting ERK1-MARK
and RAS Pathway
The GSEA assay on the DEGs between the high- and low-graded
groups of the six HNSCC cohorts revealed that the pathways
enriched in the high-graded groups were mainly involved in
chemoattraction and immune response of immune cells, as well
as cell proliferation and differentiation, which were consistent in
different cohorts. In contrast, the pathways enriched in the low-
graded groups were relatively sparse in different cohorts, though
mainly concentrated in tumorigenesis and progression, such as
stemness, metastasis, metabolism, and hypoxia (Figure 7A). The
relevance assay on the IC50 of the HNSCC cell lines treated with
anti-tumor drugs in GDSC database disclosed that the GSVA
scores of CXCL9, CXCL10, CXCL11, and CCL5 were negatively
correlated to ERK1-MARK (Figures 7B–H) and RAS pathway
(Figures 7I,J) targeted by anti-HNSCC drugs, implicating that
the susceptibility of the immune hot subtype of HNSCC to the
drug originated from the influence on ERK1-MARK and RAS
pathway.

ANeural Network PredictingModelWith the
Four Chemokines and Three Immune Cells
Through the above studies, we found out a strongly positive
correlation between four chemokines (CXCL9, CXCL10,
CXCL11, and CCL5) and three kinds of immune cells
(Macrophage M1, CD8, and CD4 T cells) in the immune
phenotypes of HNSCC. Since the above seven factors were
located in the core of the immune response in HNSCC, we
designed a 4-layer neural network to predict the response
(response: CR, PR. not response: SD, PD) to the treatment with

auti-PD-1/PD-L1 (Figure 8A), in which GSE154538, GSE141119,
GSE91061, GSE78220, GSE176307, and the IMvigor210 acted as the
training set (n = 501), and GSE93157 as the test set (n = 65). The
AUC of the training set and the test set in the prediction model
reached 95% and 74.6%, respectively (Figure 8B). The confusion
matrix of the training and test sets was displayed in Figures 8C,D.

DISCUSSION

Despite the great progress made by ICB inmultiple tumors, only a
minority of HNSCC patients have benefited from ICB therapy. It
is of major importance to characterize the HNSCC sub-
population susceptible to ICB therapy, and the key genes
maintaining the sub-population (Curran et al., 2010).
Although a variety of criteria were proposed previously, few of
them concern the association of TAMM with the immune
responses in HNSCC. Since TAMM in TME contributed
greatly to tumorigenesis and progression (Estko et al., 2015;
Gao et al., 2016), a lot of researchers focused on the potentials
of TAMM in immune therapy (Coifman et al., 2005). However,
most previous studies and strategies ignored the heterogeneity of
TAMM, but treated the TAMMas a static entity, whichmeant the
immune therapy was challenged by TAMM heterogeneity. In the
present study, we applied bioinformatical methods from multiple
dimensions to explore the heterogeneity of the TAMM during
differentiation, as well as its correlation with the immune
responses in HNSCC. Although CIBEOSORT was not
reported to be applied in the matrix of single-cell RNA-Seq,
we think that, according to the resolve of non-negative matrix in
the algorithm theory of CIBEOSORT, the bulk RNA-seq could be
resolved into the matrix of single-cell RNA-Seq timing the matrix
of cell type clusters. In our study, the single-cell RNA-Seq matrix,
namely, the Leukocyte signature matrix (LM22), was set as the
decision variable, and the single sample in the bulk RNA-seq as
response variable for SVM linear deconvolution. The outcome
weighted vector was regarded as the cell type abundance of each
sample. Therefore, it is sound to transform the bulk RNA-seq
matrix into Single-cell RNA-Seq matrix by treating each cell as a
sample in the bulk RNA-seq. By treating the Single-cell RNA-Seq
data with the above algorithm theory, we found that combining
the genes characterizing early TAMM differentiation with the
immune cells in HNSCC could provide a criterion classifying the
immune subtypes of HNSCC more precisely. Furthermore, the
four chemokines-CXCL9, CXCL10, CXCL11, and CCL5-were
identified not only as the driver genes initiating and maintaining
the immune hot subtype of HNSCC, but also the nodes
connecting TAM (macrophage M1), CD4, and CD8 T cells
together.

The heterogeneity of TAMM in HNSCC was found to result
from not only the different subpopulations, but also the different
stages during differentiation. Molecularly, the gene expression
and genomic constitution of TAMM underwent remarkable
alterations during the differentiation from tumor-associated
monocyte to tumor-associated macrophages, which was also
supported by the in vitro assay (Singhal et al., 2019).
Previously, a criterion exploiting 22 kinds of immune cells was
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once proposed to classify HNSCC into the high and low immune
enrichment subtype (Feng et al., 2020; Zhang et al., 2020),
however, it was too broad to characterize the immune subtype
and prognosis. To establish a practical and accurate criterion, we
divided the gene expression profile during TAMM differentiation
into the early and later groups, and found out the DEGs between
the early and later groups. By using multiple bioinformatical
methods, the DEGs in the early TAMM differentiation were
found, indicating a better prognosis in the subtype with high
immune infiltration and low immune evasion (Sanmamed and
Chen., 2018). Thus, the DEGs in early TAMM differentiation
could reflect more details in the immune infiltration, evasion
(which could estimate the immune phenotype more
comprehensively) (Turan et al., 2021), and prognosis of HNSCC.

Previous studies reported a correlation of the better prognosis
with the elevated tumor mutation burden (TMB) (Chan et al., 2015;
Spencer et al., 2016; Büttner et al., 2019). However, in our study, the
A2 subtype which had the highest TMB in the TCGA HNSCC
cohort displayed the lower immune infiltration and evasion,
implicating the insusceptibility to ICB therapy. Since similar
characteristics were also detected in another HNSCC clinical
cohort (Kim et al., 2020), it was still unclear whether the HNSCC
subtype with a higher TMB was susceptible to PD-1/PD-L1 therapy.

The DEGs between A3 and B subtype (high immune
infiltration vs high immune evasion) were applied to construct
the protein crosstalk network from which the genes highly
correlated in expression at the nodes of regulatory network
and sharing the same pathway were identified as the driver

FIGURE 7 | Enriched tumorigenesis pathways in immune hot and cold phenotypes determined by the four chemokines (CXCL9,10,11, and CCL5) and immune hot
sensitive drugs. (A)Dotplot summarized the GSEANES scores of signal pathways related to tumor immunity and tumorigenesis between immune hot and cold groups in
the six HNSCC cohorts (only p.adjust<0.05 were given). (B–J) Scatter diagram summarized the correlation coefficients between GSVA score of CXCL9, CXCL10,
CXCL11, and CCL5, and the log2(IC50) in seven drugs targeting ERK-MAPK pathway (B–I) and two drugs targeting RAS pathway (I, J).
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genes initiating and maintaining the immune subtype. The DEGs
between the high immune infiltration and high immune evasion
(A3 subtype vs B subtype) showed a high similarity in different
cohorts. In contrast, the DEGs between high immune infiltration
subtype (A1 vs A3 subtype) were different from one another in
different cohorts. Therefore, we concentrated on the DEGs
between the high immune infiltration and high immune
evasion (A3 subtype vs B subtype) to explore the key genes
regulating the immune hot phenotype. Since both the A3 and A1
subtypes stood for the high immune infiltration subtypes in the
two cohorts, the difference between A3 and A1 subtypes
represented the discrepancy between the high immune
infiltration subtypes. From Figure 5G, it can be seen that such
discrepancy could be partially attributed to the various extents of
the immune evasion. However, because the number of the
intersected DEGs in the A3 and A1 subtypes was too low to
contribute to the difference, the factors resulting in the difference
were implicated varying dramatically in different cohorts. Since
the A3 and B subtypes in the two cohorts exhibited the converse
immune signatures, their comparison was supposed to get the
core genes associating immune infiltration with the HNSCC. The
numerous overlapped DEGs from the two cohorts reflecting the
similarity in the high immune infiltration between the two
cohorts allowed the following exploration of the pivotal genes
in the HNSCC with immune infiltration phenotype. Taking all
above findings into account, we concluded that the TAMM
differentiation related chemokines-CXCL9, CXCL10, and
CXCL11, and inflammatory chemokine CCL5-were the driver

genes initiating and maintaining the high immune infiltration
phenotype of HNSCC. A series of previous reports supported that
the four chemokines could work as the potential targets of
immune therapy. During tumorigenesis and progression, the
CXCL9-11/CXCR3 axis regulated the differentiation and
chemoattraction of T cells (Tokunaga et al., 2018), and the
CCL5/CCR5 axis influenced growth and metastasis (Aldinucci
et al., 2020). Previous reports showed that CXCL9, CXCL10, and
CCL5 could mark T cell–inflamed phenotype of pancreatic
cancer (Romero et al., 2020). CXCL9 and CCL5 activated
immune responses and enhanced ICB therapy in mouse model
of ovary cancer (Dangaj et al., 2019), and the melanoma in
CXCR3 knock-out mice exhibited decreased immune
infiltration and poor prognosis (Korniejewska et al., 2011).
However, we have to acknowledge that there was subjective
opinion in the criteria of the pivotal genes. Actually, besides
the four chemokines, the other eight candidate hub genes were
also verified to act as the pivotal genes establishing and
maintaining the high immune infiltration to some extent.
However, we think that CXCL9, CXCL10, CXCL11, and CCL5
were the optimal combination, because they satisfied the three
criteria: 1). they shared multiple pathways, implicating that they
could collectively reflect the activity of immune pathway, instead
of independently. Other genes were located in different pathways,
which raised the uncertainty for their function, though they
possessed the higher network topology; and 2). CXCL9,
CXCL10, CXCL11, and CCL5 were highly correlated in
expression. We tested the correlated expression of the 181

FIGURE 8 | The four chemokines and three immune cells were used to construct a neural network model to predict the response to anti-PD-1/PD-L1
immunotherapy. (A) Schematic diagram of the neural network. (B) ROC plot of train cohort and test cohort. (C,D) The confusion matrix in test cohort and train cohort.
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overlapped DEGs in TCGA cohorts and confirmed a higher
correlation among CXCL9, CXCL10, and CXCL11 than
among other DEGs. Although CXCL11 was excluded from the
12 candidate genes with the highest topological signatures, it had
the higher correlated expression, belonged to the same family and
shared multiple pathways with the other three chemokines.
Therefore, we selected CXCL9, CXCL10, CXCL11, and CCL5
as the pivotal genes in the high immune infiltration of HNSCC for
the following study.

Because the roles of the four chemokines in HNSCC have
been little studied, to explore their pivotal effects in the
immune responses to HNSCC, we divided the immune
circle into infiltration and evasion stages. The immune
infiltration included: 1) the release and convey of tumor cell
antigen, 2) chemoattraction and infiltration of immune cells
into TME by the cytokines and inflammation, and 3)
recognition and elimination of HNSCC cells by CTL. With
the exhaustion of CTL and the expression of immune
suppression factors (TGF-beta, PD-L1, etc.) by HNSCC, the
immune evasion commenced. The bulk RNA-seq data revealed
that CXCL9, CXCL10, CXCL11, and CCL5 were positively
correlated to all three steps of immune infiltration, but
negatively to immune evasion. The scRNA-seq data further
disclosed that the four chemokines and their receptors were
highly expressed in DCs, enhancing the antigen presentation
in TME; the high CCL5 expression in CD8 T cells, NK cells,
and certain TAM promoted inflammation; the tumor cells
highly expressing CXCL9, CXCL10, and CXCL11 attracted the
CD8 T cells, NK cells, and TAM, which eliminated tumor cells
by perforating cell membrane, digesting through serine
proteases and apoptosis via ligand binding (Lee et al.,
2018). All of these results supported the role of the four
chemokines in initiating and maintaining the immune hot
phenotype of HNSCC.

According to the GSVA scores of the four chemokines, the
HNSCC cohorts were divided into the subtypes of immune hot
and immune cold. The immune cold subtype was characterized
by the evident alteration on CNV, which was correlated to tumor
invasion and decreased immune responses (Davoli et al., 2017).
This finding also implied that the decreased immune responses in
immune cold subtype resulted from the imbalanced immune gene
expression caused by CNV alteration, as opposed to the
dysfunction of single immune gene. The other sign of immune
cold subtype was the higher mutation frequency, including the
tumor driver genes of TP53, TTN, etc. Reversely, the frequency of
CASP8 in immune hot subtype was noticeably higher than that in
immune cold subtype. Since several studies demonstrated that the
CASP8 mutations characterized the local activation of immune
cells and inflammation (Rooney et al., 2015; Tummers and
Green., 2017), it suggested that CASP8 mutation was capable
of activating immune responses in the immune hot subtype.

Worthy of note, the inflammation resulting from the four
chemokines could also increase the tumor invasion. As shown
in previous studies, the VEGF-PIK3/AKT pathway activated
by CCL5 promoted tumor metastasis by stimulating
angiogenesis and ECM remodeling (Karnoub et al., 2007;
Wang et al., 2012), and the robust expression of CXCL10

also enhanced gastric cancer invasion and metastasis by
binding the receptor CXCR3A (Yang et al., 2016). Thus,
further exploration was still required to elucidate the
relationship between the four chemokines and HNSCC
prognosis. Additionally, the four chemokines were strongly
associated with the check points on HNSCC surface,
implicating that HNSCC cells could circumvent immune
attacks by conveying the signal of “Don’t eat me” to CTL
through the check point molecules (PD-L1, PD-1, etc.). Thus,
the four chemokines might also indirectly enhance the tumor
invasion and metastasis even when directly attacked by tumor
cells. Since CCL5 was reported to rapidly induce cyclin D1,
c-Myc, Ha-Ras through MARK-ERK, and Jak/STAT signaling,
as well as glucose in-take and ATP production to stimulate
tumor growth (Ding et al., 2016; D. ; Gao & Fish, 2018;
Murooka, Rahbar, & Fish, 2009), the HNSCC cell lines with
the high expression of the four chemokines were sensitive to
the anti-tumor drug targeting MARK-ERK and RAS pathways.

The four chemokines were associated positively with
Macrophages M1, activated CD4, and CD8 T cells, but
negatively with Macrophages M0 (in TCGA HNSCC cohort)
and tumor-associated monocyte/macrophages (GEO cohort),
suggesting the lower expression of the four chemokines in the
early tumor-associated monocyte/macrophages or macrophages
M0, and the gradually elevated expression in differentiating
TAMM. Moreover, the higher expression of the four
chemokines were intensively detected in macrophage M1,
instead of M2, also implicating their association with the
polarization of macrophages, which was supported by the
recent studies that found that the lack of CCL5 promoted the
polarization in macrophages M2 (M. Li M et al., 2020), and
CXCL9 and CXCL10 induced the polarization in macrophages
M1 (Kohler et al., 2019). The scRNA-seq revealed that the mRNA
peaks of the four chemokines in TAM were distributed in
different subpopulations of TAMM, suggesting that the strong
and exclusive co-regulation of the four chemokines disclosed by
the bulk RNA-seq were inconsistent with the single cell level,
which required further investigation.

In the immunotherapy cohort receiving anti-PD-L1/PD-1,
the mRNA levels of the four chemokines were elevated
significantly in CR group, verifying their positive roles in
immune responses. It also encouraged us to establish a
criterion predicting the patients’ responses to ICB therapy.
In the premise of the substantial immune capacity of resisting
tumors, ICB therapy facilitated T cells to eliminate tumor cells
by blocking immune evasion, namely, the validity of ICB
therapy depended on the patients’ immunity. Considering
the crucial roles of the four chemokines (CXCL9, CXCL10,
CXCL11, and CCL5) and the three pivotal immune cells
(Macrophages M1, CD 4, and CD8 T cells) in tumor
immunity, we established a criterion predicting the validity
of ICB therapy through neural network, in which the AUC in
training and test sets achieved 100% and 74%, respectively.

We have to acknowledge the shortcomings in this study. First,
although they have been verified in other tumors, work is still
required to verify the roles of the four chemokines in HNSCC
found by the bioinformatical analyses. Second, the exploration on
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the mechanisms resulting in the immune evasion in the high
immune infiltration subtype was insufficient. Third, the
predicting and verifying cohorts were not HNSCC cohorts,
which might weaken the prediction accuracy in HNSCC
cohorts because of the variations among tumors. Fourth,
despite the impressive promotion in tumor immunity, the
roles of the four chemokines-CXCL9, CXCL10, CXCL11, and
CCL5-in tumorigenesis and progression were still in debates.

CONCLUSION

In summary, we indeed established the core roles of the four
chemokines-CXCL9, CXCL10, CXCL11, and CLL5-in HNSCC
immunity by combining TAMM differentiation and HNSCC
TME. From the perspective of the four chemokines associating
TAMM with HNSCC immunity, we found the limitation of
treating TAM as a static entity and the potential values of the
four chemokines in tumor immunity. Considering the few studies
on HNSCC immunity, our present study provided bio-
informatics support for future explorations.
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