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SUMMARY – Aging interventions will be ineffective if we do not understand the basic principles 
of aging. Currently, there is no consensus on the issue whether aging is programmed or not. The hy-
pothesis presented in this article indicates that aging (at least graying of male hairs) is programmed. 
This hypothesis is supported by the symmetry of the graying of male beard hairs. According to sto-
chastic theories of aging, aging is a passive non-programmed process where random dispersion of 
graying hairs should result. On the contrary, programmed theories of aging would predict that there 
should be symmetry on the left and right parts of the face showing the same proportion, pattern and 
time of appearance of graying hairs.
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Introduction

What triggers the aging process? Why do living 
beings age? Could this process be slowed down or even 
reversed? Is aging programmed, is it under genetic 
control or not? Although significant advances in bio-
chemical and medical science have been made in the 
last 50 years, answers to these questions remain a mat-
ter of debate among different aging theorists1-3.

Several theories aimed to specify and define the ag-
ing process, each from a different perspective, but none 
was able to explain the whole complexity of senes-
cence. Traditional theories of aging oppose that aging 
is genetically programmed, or that it is the result of 
adaptation. In general, theories that explain aging have 
been classified into the programmed (or deterministic) 
and stochastic (random; damage/error) ones. The two 
main (and subdivided) categories of aging as explained 
by modern biological theories are: (a) programmed: (1) 
programmed longevity, (2) endocrine theory, (3) im-
munological theory, (4) theory of phenoptosis, (5) nu-
trient sensing theory, (6) theory of biological clocks 
(epigenetic theory) and (7) demographic theory of ag-
ing4; and (b) damage or error theories: (1) wear and 
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tear theory, (2) rate of living theory, (3) cross-linking 
theory, (4) free radical theory and (5) somatic DNA 
damage theory5.

Stochastic models explain aging process as a result 
of progressive accumulation of random molecular 
damage and see aging as an entirely passive process4,6. 
According to the most popular stochastic wear and 
tear theory of aging, first propounded by August Weis-
mann in 1882, the effects of aging are caused by pro-
gressive damage to cells and body systems over time. 
The consequences of aging are thus attributed to grad-
ual damage to cells and body systems over time, indi-
cating that deterioration is random and is not under 
active control by the genes or any other biological ‘pro-
gram’. Programmed theories, however, suggest that ag-
ing is genetically encoded and regulated by genes or 
other biological clocks operating throughout the lifes-
pan5. Aging thus follows a biological timetable which 
is programmed or regulated by changes in gene ex-
pression and/or deterioration of several diseases1,5,7-9.

Evidence indicating that aging  
is under a genetic program

Some gerontology researchers and evolutionary bi-
ologists try to explain aging as being programmed, al-
though this view is advocated only by the minority of 
aging researchers1,9-21.

There are several examples suggesting that aging 
might be programmed, for example, model organisms, 
being able to increase longevity under different stress-
ful life circumstances due to the phenomena of horme-
sis22-25. Other studies later confirmed the association 
between telomere shortening and longevity26-32. Short-
ening of telomeres contributes to aging by the follow-
ing two mechanisms33: if telomeres are too short in 
stem cell tissue, the cells cannot be regenerated, and 
cells with short telomeres are the cause of increased 
inflammation34. However, some animal species suffer 
deterioration with age although their telomeres do not 
become shorter with advanced age and human neu-
rons suffer aging although being post-mitotic. Aging 
could be explained as a process of adaptation to endog-
enous and/or exogenous factors, as a population turn-
over, evolution, prevention of demographic influences, 
and to stabilize the population20,35-38.

Recent studies focus attention on telomere short-
ening as a strong prognosticator of age-adjusted death 
rate26,27,30,32,39,40. Recently, highlights have been orient-

ed also towards thymus involution. During the evolu-
tion of the body, the thymus gland becomes smaller 
and loses functionality. This effect causes several errors 
in non-detection of microbes and/or tissues attacked 
and/or autoimmune response, etc.33. However, not ev-
ery organ is unified with the modes of aging. During 
the neuronal growth, the brain is not limited by the 
influence of telomere or by the thymus, but by the epi-
genetic programming41,42. Several authors suggested 
the existence of epigenetic aging clock43,44. Even Leon-
ard Hayflick’s discovery of limited replicative capabil-
ity indicates that cells are programmed to die (or enter 
senescence)45,46. If aging is programmed, what is the 
master clock regulating it? Up to now, no such clock 
has been discovered, but many possibilities have been 
proposed, e.g., thymic involution, the suprachiasmatic 
nucleus, telomere shortening, the hypothalamus, and 
replicative senescence47.

Graying of the hair

The hair follicle pigmentary unit is also strongly 
responsive to changes associated with age. The precise 
mechanisms which account for the decrease of mela-
nogenically active melanocytes from anagen adult hair 
follicles with aging, are still unsubstantiated. Gray hair 
follicles have noticeably lowered the number of dif-
ferentiated and functioning melanocytes found in the 
hair bulb. On the other hand, hair follicles known as 
‘senile white’ follicles may have no melanocytes in the 
hair bulb region of the hair follicle48. It has been estab-
lished that the loss of hair shaft melanin is related to 
reduction of the bulb melanin content, as well as of the 
bulb melanocyte population. Hair graying is presum-
ably an aftermath of the entire and specific emptying 
of the bulb and in the outer root sheath melanocytes of 
human hair49. When the reservoir of stem cells is de-
pleted, the production of pigment ceases and the hairs 
turn gray. Does the hair follicle have a ‘melanogenetic 
clock’, which decelerates or ceases melanocyte activity, 
resulting in graying of the hair?

Hypothesis

If graying of the beard is not programmed, then a 
random distribution of gray (hairs) parts should be ob-
served (Fig. 1b). On the other hand, if graying is pro-
grammed, the symmetrical areas on the left and on the 
right side of the face should appear, as presented in 
Figure 1a.
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Methods

Two different commercially available programs 
(Facial Symmetry and PicHacks-The Symmetrical 
Face Generator) were applied for preparation of face 
mirror pictures. Fifteen pictures of male adults with 
different degree of gray beard areas were chosen and 
facial symmetry/mirror pics were prepared. Pictures in 
Figures 2 and 3 were taken with a color 16-megapixel 
camera, showing frontal and two lateral face pictures 
of a 38-year-old male adult, who gave a written con-

sent for participation. Pictures in Figures 4-14 were 
downloaded from publicly accessible web pages and 
belong to known celebrity persons.

Results

The pictures in Figure 2 indicate a symmetrical dis-
tribution pattern of graying hairs, as it can be observed 
when a mirror picture of the left and the right side of 
the face is composed with a computer program.

Fig. 1. Symmetrical pattern of graying zones of the face (a) and random pattern  
of graying zones of the face (b).

Fig. 2. Picture of a male, 38 years, with graying beard.  
Picture shows a symmetrical pattern of graying area, taken from the right and left 
parts of the face.
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Fig. 3. Original face picture (A) and simulation of the symmetry of the left (B) and right (C) side of the face 
with a computer program using two computer programs, Facial Symmetry and PicHacks-The Symmetrical 
Face Generator.

Fig. 4. Original face picture (A) and simulation of the symmetry of the left (B) and right side (C)  
of the face with the PicHacks-The Symmetrical Face Generator computer program.

Fig. 5. Original face picture (A) and simulation of the symmetry of the left (B) and right side (C)  
of the face with the PicHacks-The Symmetrical Face Generator computer program.
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Fig. 6. Original face picture (A) and simulation of the symmetry of the left (B) and right side (C)  
of the face with the PicHacks-The Symmetrical Face Generator computer program.

Fig. 7. Original face picture (A) and simulation of the symmetry of the left (B) and right side (C)  
of the face with the PicHacks-The Symmetrical Face Generator computer program.

Fig. 8. Original face picture (A) and simulation of the symmetry of the left (B) and right side (C)  
of the face with the PicHacks-The Symmetrical Face Generator computer program.

Figures 3-13 indicate a symmetrical distribution 
pattern of graying hairs, as it can be observed when a 
mirror picture of the left (B) and the right part (C) of 
the face is composed with a computer program.

Discussion
The aging process is similar in all humans and oth-

er living organisms. If mutations in the nuclear and 
mitochondrial DNA, cellular proteins and lipids ac-
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Fig. 9. Original face picture (A) and simulation of the symmetry of the left (B) and right side (C)  
of the face with the PicHacks-The Symmetrical Face Generator computer program.

Fig. 10. Original face picture (A) and simulation of the symmetry of the left (B) and right side 
(C) of the face with the PicHacks-The Symmetrical Face Generator computer program.

Fig. 11. Original face picture (A) and simulation of the symmetry of the left (B) and right side 
(C) of the face with the PicHacks-The Symmetrical Face Generator computer program.
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Fig. 12. Original face picture (A) and simulation of the symmetry of the left (B) and right side (C)  
of the face with the PicHacks-The Symmetrical Face Generator computer program.

Fig. 14. Identical twins becoming gray at approximately the same age,  
rate and pattern.

Fig. 13. Original face picture (A) and simulation of the symmetry of the left (B) and right side (C)  
of the face with the PicHacks-The Symmetrical Face Generator computer program.

cumulate randomly as we age, we should then age in 
many different rates and ways as we do. Methylation, 
histone alterations, inflammation and other causes of 
DNA alteration would result in random modification 
of epigenome and in nonsymmetrical variation of the 
random graying patterns.

Additionally, there are syndromes which can accel-
erate aging. Early graying can be observed in prema-

ture aging syndromes, e.g., Hutchinson progeria and 
Werner syndrome, where aging process is intensified. 
Premature graying can also be experienced by people 
suffering from pernicious anemia, autoimmune thy-
roid disease or Down syndrome50-52.

Conceding that the genes control exhaustion of the 
pigmentary potential of every hair follicle, this phe-
nomenon will thus occur synchronously in individual 
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hair follicles and the pattern of graying hair should be 
symmetrical on both sides of the face. The results pre-
sented with aging of the hair follicles of the male beard 
indicate a symmetrical pattern of the graying parts on 
the left and right sides, as can be observed in Figures 
2-13. These findings suggest that graying areas are not 
formed as random distribution.

Genetic factors seem to be decisive in hair greying, 
as identical twins apparently become grey at approxi-
mately the same age, rate and pattern (Fig. 14). The 
controlling program/clock/, however, has not yet been 
identified. Even though several aging genes have been 
discovered, the interferon regulatory factor (IRF4) and 
B-cell lymphoma 2 have been identified to have a sig-
nificant impact on hair graying. It has recently been 
discovered that IRF4 gene may play a significant role 
in hair graying. The IRF4 gene, when expressed, is im-
portant in melanin production, which governs hair 
pigmentation53,54. Wood et al.55 have ascertained that 
hair follicles develop small quantities of hydrogen per-
oxide. This reactive species builds on the hair shafts, 
potentially leading to a progressive loss of hair color. 
Free radical theory of aging additionally supports the 
theory of programmed aging. Reactive oxygen species 
contribute to the accumulation of oxidative damage to 
the hair follicle stem cell niche, which leads to selective 
apoptosis and diminution of melanocyte stem cells, 
 reducing repopulation of the newly formed anagen 
follicles56,57.

By manipulation of a single gene or by affecting 
signaling pathways with a single molecule, longevity 
could be significantly extended. Different mutations in 
various organisms, from microorganisms to mice, can 
extend life expectancy. For example, a mutation in the 
age-1 gene of the nematode Caenorhabditis elegans sig-
nificantly prolongs both the maximum and the average 
lifespan58,59. Functioning of the SERPINE1 gene that 
encodes PAI-1 to be mutated and non-functional has 
also been recently reported in humans, i.e. in Berne 
Amish families with prolonged life span60. In all spe-
cies including mammals, mutations that deactivate 
specific signaling pathways (e.g., insulin/IGF-1, 
mTOR, AMPK signaling) impede the aging process 
and promote longevity61-67. These mutations display 
evolutionarily preserved pathways for aging, some of 
which supposedly enhance longevity as a reaction to 
sensory cues, caloric restriction, or stress68.

By comparison, the symptoms of human senes-
cence are unvarying, and include skin wrinkles and 
male baldness, insulin-resistance and osteoporosis, 
high blood pressure and atherosclerosis, obesity and 
diabetes, cancer and Alzheimer’s disease68. What is 
more, in certain species (e.g., Pacific salmon), all mem-
bers die at the same specific time and from the same 
cause, which indicates that many aspects of the aging 
process are programmed.

Limitations of the study

The main limitation of the present study was a 
small sample consisting of only 12 bearded persons. 
Another limitation was that only indirect correlation 
between graying of the beard parts and programmed 
aging was presented, which does not necessarily reflect 
the causal link between them. Further biochemical 
and genetic research is needed to confirm the causality.

Conclusions

Many of the presented aging theories correlate in a 
complex manner. In order to promote successful aging 
and to enhance the lifespan of the humankind, it is 
necessary to delve into and to test the recognized and 
emerging aging theories. It seems that aging is con-
trolled also by our genes, as indicated in the references 
presented and, as in our case, by the graying patterns of 
the hairs. On the other hand, it should be emphasized 
that aging can be modulated to a certain degree by diet 
and healthy lifestyle.
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Sažetak

(A)SIMETRIJA MUŠKIH SIJEDIH BRADA KAO INDIKACIJA PROGRAMIRANOG  
PROCESA STARENJA

B. Poljsak, R. Dahmane, M. Adamič, R. Sotler, T. Levec, D. Pavan Jukić, C. Rotim, T. Jukić i A. Starc

Intervencije starenja bit će neučinkovite ako ne razumijemo osnovne principe starenja. Trenutno ne postoji konsenzus o 
tome je li starenje programirano ili ne. Hipoteza postavljena u ovom članku ukazuje na to da je starenje (barem posijeđivanje 
muških dlaka) programirano. Tu hipotezu potkrepljuje simetrija posijeđivanja dlaka muške brade. Stohastička teorija starenja 
tvrdi da je starenje pasivni neprogramirani proces u kojem bi se trebala dogoditi slučajna disperzija sijedih vlasi. Suprotno 
tome, programirane teorije starenja predviđaju da na lijevom i desnom dijelu lica treba postojati simetrija koja pokazuje jed-
nak omjer, uzorak i vrijeme pojave sijedih dlačica.

Ključne riječi: Sijeda dlaka na bradi; Sijede vlasi; Starenje; Programirana teorija starenja; Stohastička teorija starenja


