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Abstract: Background: The aim of this retrospective study is to assess the incidence, localization,
and potential predictors of rapid early progression (REP) prior to initiation of radiotherapy in newly
diagnosed glioblastoma patients and to compare survival outcomes in cohorts with or without
REP in relation to the treatment. Methods: We assessed a consecutive cohort of 155 patients with
histologically confirmed irradiated glioblastoma from 1/2014 to 12/2017. A total of 90 patients
with preoperative, postoperative, and planning MRI were analyzed. Results: Median age 59 years,
59% men, and 39 patients (43%) underwent gross total tumor resection. The Stupp regimen was
indicated to 64 patients (71%); 26 patients (29%) underwent radiotherapy alone. REP on planning
MRI performed shortly prior to radiotherapy was found in 46 (51%) patients, most often within the
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surgical cavity wall, and the main predictor for REP was non-radical surgery (p < 0.001). The presence
of REP was confirmed as a strong negative prognostic factor; median overall survival (OS) in patients
with REP was 10.7 vs. 18.7 months and 2-year survival was 15.6% vs. 37.7% (hazard ratio HR 0.53
for those without REP; p = 0.007). Interestingly, the REP occurrence effect on survival outcome was
significantly different in younger patients (≤ 50 years) and older patients (> 50 years) for OS (p = 0.047)
and non-significantly for PFS (p = 0.341). In younger patients, REP was a stronger negative prognostic
factor, probably due to more aggressive behavior. Patients with REP who were indicated for the
Stupp regimen had longer OS compared to radiotherapy alone (median OS 16.0 vs 7.5; HR = 0.5, p =

0.022; 2-year survival 22.3% vs. 5.6%). The interval between surgery and the initiation of radiotherapy
were not prognostic in either the entire cohort or in patients with REP. Conclusion: Especially in the
subgroup of patients without radical resection, one may recommend as early initiation of radiotherapy
as possible. The phenomenon of REP should be recognized as an integral part of stratification factors
in future prospective clinical trials enrolling patients before initiation of radiotherapy.

Keywords: glioblastoma; chemotherapy; radiotherapy; rapid early progression; overall survival

1. Introduction

The Stupp regimen is still the standard of care for patients with newly diagnosed glioblastoma,
with only a few reports indicating possible improvement in the past decade [1,2]. Apart from the
possible role of tumor treating fields [3], the update in treatment guidelines was mainly related
to modifications of already known procedures (abbreviated chemoradiotherapy, or combination of
temozolomide and lomustine) [4,5]. Prognostic and predictive biomarkers guide the indication for
optimal treatment. Besides classical clinical prognosticators, biomarkers such as promoter methylation
of the O6-methylguanine-DNA-methyltransferase (MGMT) gene or isocitrate dehydrogenase (IDH)
1 and 2 mutations moved into daily practice and became an integral part of diagnosis [6–9]. With
the long-lasting lack of new effective therapeutics, further biomarkers for a suitable indication of the
currently used modifications of temozolomide-based chemoradiotherapy are one way to improve the
care of these patients.

The phenomenon of postoperative rapid early progression (REP) has only recently been
explored with increasingly available magnetic resonance imaging (MRI) for both postsurgery and
pre-radiotherapy (pre-RT) indication and is currently of high interest. REP diagnosis is based on a
comparison of early postoperative MRI findings (up to 72 h postoperatively) and planning pre-RT MRI.
Only a few studies retrospectively evaluated REP and indicated almost up to 50% risk of development
of REP, regardless of the waiting time until the start of radiotherapy (RT) [10–12]. Clearly, these patients
biased previous clinical trials, where no routine pre-RT MRI examination was performed. Currently,
the treatment of these patients is not different from patients without REP, and if so, it is a purely
individual approach.

The aim of this retrospective study is to evaluate the incidence and localization of REP in a
consecutive cohort of patients treated, out of the frame of clinical trials (real-world evidence data).
The aim is also to describe clinical factors associated with REP in glioblastoma and to describe the
effect of REP and treatment on survival.

2. Materials and Methods

2.1. Patients and Treatment

A consecutive cohort of 155 histologically confirmed glioblastoma patients, who were indicated
via a multidisciplinary neuro-oncology board to adjuvant or palliative radiotherapy between 01/2014
and 12/2017, were screened for eligibility to this retrospective study (Figure 1). All patients were



Diagnostics 2020, 10, 676 3 of 13

treated outside of clinical trials. Those with available early postoperative MRI (up to 72 h) evaluating
the extent of surgery and those who had also performed pre-RT MRI were eligible for assessment of
REP. The subgroup of patients who were indicated for the treatment according to the Stupp regimen
was further analyzed in more detail. All patients signed standard informed consent to treatment
and consent to processing their data for scientific purposes in a pseudonymized form. The study
was approved by Institutional Review Board No. 2020/1206/MOU, JID: 315 453, approved on day
month year. Institutional Review Board No. 2020/1206/MOU, JID: 315 453, approved on 18 June 2019.
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Clinical and imaging data were retrieved from electronic medical records for further statistical
analysis. Radiotherapy was performed in all patients. Planning pre-RT MRI (including postcontrast T1
weighted scan with submillimeter slices) was rigidly registered to planning CT scan for proper RT target
and organs-at-risk definition. Individual prescription of RT dose and scheduling was guided mainly
by the patient’s performance status and by volume, size, shape, and location of the target volume.
Both standard of care approaches in target volume definitions were employed in patients eligible
for treatment by the Stupp regimen (60 Gy in 30 fractions), the Radiation Therapy Oncology Group
(RTOG contouring approach) that defines two clinical target volumes accommodating hyperintensity
at T2/FLAIR MRI in addition to T1 contrast-enhanced MRI [13], and the European Organization for
Research and Treatment of Cancer (EORTC single-phase contouring approach) that defines one target
utilizing mainly T1 post-contrast MRI [14]. In patients with REP, the single target EORTC approach was
preferably performed. The RT plan was prepared employing the treatment planning system EclipseTM
(Varian medical systems, Palo Alto, CA, USA) and delivered on linear accelerators Varian Clinac iX
or TrueBeam (Varian medical systems, Palo Alto, CA, USA). Abbreviated RT courses (for example,
15 × 2.7 or 10 × 3.4 Gy) were indicated according to the treating physician, reflecting the individual
patient’s performance status and disease.

Concurrent chemoradiotherapy and adjuvant chemotherapy were prescribed according to the
original Stupp protocol [1]. Temozolomide (75 mg/m2) was administered on days 1 through 42 with
concurrent RT (60 Gy). After 4 weeks, treatment was followed by the administration of temozolomide
alone (150 to 200 mg/m2) on days 1–5 in six consecutive 4-week cycles or to progression. The prophylaxis
against Pneumocystis jirovecii pneumonia was at the discretion of the treating physician. In patients with
an abbreviated course of RT, concurrent chemotherapy was usually not indicated and was initiated
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after the end of RT based on the patient’s actual performance status. Treatment at progression was
very individualized, with options for resurgery, reirradiation, temozolomide rechallenge, palliative
chemotherapy (mostly lomustine), or symptomatic treatment.

2.2. Imaging Evaluation

All diagnostic MRIs were evaluated by two independent radiologists as part of the standard
of care in our institution. In the case of discordance, patients were referred to the discussion on the
neuro-oncology tumor board as well. Response to treatment was evaluated based on regular follow
up MRI scanning. The first post (chemo) radiotherapy MRI was usually performed 4–6 weeks after
the last RT session, followed by regular MRI every 3 months unless clinically indicated for earlier
examination. No routine RANO criteria [15] were employed and MRI was visually evaluated by the
servicing radiologist. Unclear findings (as was suspected pseudoprogression) were reviewed by a
multidisciplinary neuro-oncology board, mostly with recommendations for earlier control exams with
or without the change of treatment or with suggestions for advanced MRI methods [16].

The pre-RT MRI was retrospectively evaluated by an experienced radiation oncologist (TK) and
doublechecked by a neuroradiologist (RB). Progression already presented on planning MRI was
considered only in patients who had available early postsurgery (within 72 h) control MRI enabling a
clear definition of eventual postsurgery residual disease. Criteria for REP were as follows: (1) increase
in postsurgery residual disease (T1 weighted post contrast MRI) for ≥25% in any dimension; (2)
occurrence of a new enhancing lesion; (3) unambiguous progression of enhancing lesion (in multifocal
glioblastomas where only some nodules were amenable to surgery). The localization of REP was
categorized as follows: (1) progression of postsurgery residuum; (2) new enhancing satellite; (3) new
enhancement in the wall of resection cavity; or (4) progression of tumor which was not operated on in
patients with multicentric tumors.

2.3. Statistical Analysis

Patient and treatment characteristics were described using standard summary statistics, i.e., median
and interquartile range (IQR) for continuous variables and frequency distributions for categorical
variables. The comparison of these characteristics in patients with and without the occurrence of REP
was performed using Fisher’s exact test, a chi-squared test, or a Mann–Whitney test, as appropriate.
Overall survival (OS) and progression-free survival (PFS) were considered as survival outcome. OS
was defined as the time from the date of neurosurgery resection to the date of death from tumor
cause. PFS was defined as the time from the date of initiation of RT until progression or death from
tumor cause. Survival probabilities were calculated by the Kaplan–Meier method. Survival curves
were compared using the log-rank test. The Cox proportional hazard model was used to perform the
univariable and multivariable analysis. The proportional hazard assumption was verified based on
scaled Schoenfeld residuals. Stepwise backward selection was performed to obtain characteristics
independently associated with OS and PFS. Stratified models were used for the assessment of the effect
of treatment or age in patients with and without the occurrence of REP. All statistical analyses were
performed employing R version 4.0.0 [17], and the significance level of 0.05 was considered.

3. Results

3.1. Patients Characteristics

A total of 155 patients who were indicated for postoperative oncology treatment were screened
for eligibility, and 90/155 (58%) met the inclusion criteria and had undergone both postsurgery as
well as pre-RT MRI (Figure 1). The median age was 59 years, with 23% of patients being younger
than 50 years. Gross total resection (GTR) was achieved in 39/90 (43%) patients, and 34/90 (38%) were
in excellent overall performance status with Eastern Cooperative Oncology Group (ECOG) status 0.
MGMT methylation was present in 26% and IDH mutation in 8% of patients (total of 53 evaluated
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patients). The subgroup of 64 patients (64/90; 71%) was indicated for concurrent chemoradiotherapy
and was further analyzed in detail. The other patients’ diagnostic and treatment characteristics are
summarized in Table 1; Table 2.

Table 1. Basic patients’ characteristics of cohort with REP and non-REP.

Study Cohort
(n = 90) All REP Non-REP p-Value

No. of patients 90 (100%) 46 (51%) 44 (49%)
Age (years)

median (IQR) 59.3
(51.1, 65.2)

60.0
(52.2, 67.8)

57.1
(50.6, 63.5) p = 0.180

≤50 21 (23%) 10 (22%) 11 (25%) p = 0.805
Men 53 (59%) 27 (59%) 26 (59)% p > 0.999

Performance status (ECOG)
and Karnofsky index
ECOG 0 (KI 90–100%) 34 (38%) 17 (37%) 17 (39%) p = 0.868
ECOG 1 (KI 70–80%) 49 (54%) 26 (57%) 23 (52%)
ECOG 2 (KI 50–60%) 7 (8%) 3 (7%) 4 (9%)

Tumor location
deep brain location 21 (23%) 14 (30%) 7 (16%) p = 0.136
Extent of resection

GTR 39 (43%) 10 (22%) 29 (66%) p < 0.001
STR 44 (49%) 31 (67%) 13 (30%)

Partial resection or biopsy 7 (8%) 5 (11%) 2 (5%)
Extent of resection

GTR 39 (43%) 10 (22%) 29 (66%) p < 0.001
Non-GTR 51 (57%) 36 (78%) 15 (34%)

IDH status
Mutated/evaluated 4/53 (8%) 1/24 (4%) 3/29 (10%)

MGMT status
Methylated/evaluated 14/53 (26%) 6/23 (26%) 8/30 (27%) p > 0.999
Localization of REP

Postsurgery residuum 31/46 (67%)
New enhancing satellite 6/46 (13%)

New enhancement in the wall
of resection cavity 22/46 (48%)

Not operated tumor in
multicentric tumors 10/46 (22%)

Abbreviations: REP—rapid early progression; ECOG—Eastern Cooperative Oncology Group; GTR—gross
total resection; non-GTR—non gross total resection; STR—subtotal resection; MGMT—O6-methylguanine-
DNA-methyltransferase; IDH—Isocitrate dehydrogenase; IQR—interquartile ratio.
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Table 2. Patients’ treatment.

Study Cohort
(n = 90)

All
(n = 90)

REP
(n = 46)

Non-REP
(n = 44) p-Value

Time to RT initiation
Median (weeks; IQR) 6.7 (5.9, 7.3) 6.6 (5.9 7.1) 6.8 (5.8, 7.5) p = 0.981

>6 weeks 56 (62%) 28 (61%) 28 (64%) p = 0.830
Radiotherapy

RT technique IMRT 89 (99%) 46 (100%) 43 (98%)
RT technique other 1 (1%) 0 (0) 1 (2%)

median dose (Gy; IQR) 60 (50, 60) 60 (43, 60) 60 (60, 60) p = 0.024
pts. receiving ≥ 90% of

prescribed dose 82 (91%) 43 (93%) 39 (89%) p = 0.480

contouring approach EORTC 46 (51%) 30 (65%) 16 (36%) p = 0.011
contouring approach RTOG 43 (48%) 16 (35%) 27 (62%)

contouring unknown 1/90 (1%) 0/46 (0) 1/44 (2%)
Chemoradiotherapy (Stupp

regimen)
No. of patients 64 (71%) 28 (61%) 36 (82%) p = 0.037

median (days; IQR) 42 (30, 45) 41.5 (23, 43) 43 (39, 46) p = 0.095
corticosteroids use 62 (69%) 35 (76%) 27 (61%) p = 0.151

Adjuvant chemotherapy
No. of patients 43 (48%) 16 (35%) 27 (61%) p = 0.020

No. of cycles: median (IQR) 4.5 (2, 6) 3.5 (1, 6) 5 (3, 6) p = 0.242
No. of cycles: ≥ 3 32/43 (74%) 8/16 (50%) 24/27 (89%) p = 0.016
No. of cycles: ≥ 6 21/43 (49%) 7/16 (44%) 14/27 (52%) p = 0.761

Treatment after progression
No. of patients 42 22 20 p > 0.999

surgery 7 (17%) 4 (18%) 3 (15%)
surgery + chemoradiotherapy 1 (2%) 0 (0) 1 (5%)

surgery + chemotherapy 8 (19%) 2 (9%) 6 (30%)
chemotherapy 18 (43%) 13 (59%) 5 (25%)
reirradiation 6 (14%) 2 (9%) 4 (20%)

reirradiation + chemotherapy 2 (5%) 1 (5%) 1 (5%)

Abbreviations: IQR—interquartile ratio; IMRT—intensity modulated radiotherapy; EORTC—European Organization
for Research and Treatment of Cancer; RTOG—Radiation Therapy Oncology Group; GBM—glioblastoma;
CHT/RT—chemoradiotherapy; CHT—chemotherapy; RT—radiotherapy.

3.2. Rapid Early Progression

REP was presented in 46 out of 90 evaluated patients (51%). In the majority of patients, REP was
presented as a progression of postsurgery residuum (31/46; 67%) or as a new enhancement in the wall
of the resection cavity (22/46; 48%). Only 6/46 (13%) REP presented by a new enhancing lesion and
10/46 (22%) by the progression of the tumor, which was not operated on in patients with multicentric
tumors. The occurrence of REP was significantly associated with the extent of resection (78% of patients
with REP vs. 34% of patients without REP, after non-radical resection; p < 0.001). The other evaluated
pre-RT diagnostic variables (age, sex, performance status, etc.) were not significantly associated with
the development of REP (Table 1).

With a median follow up (measured from neurosurgery resection) of 34.1 months, the median
OS was significantly longer in patients without REP (18.7 vs. 10.7 months; HR 0.53; p = 0.007) with
corresponding 2-year survival 37.7% vs. 15.6%. A similar effect was observed for PFS (Figure 2).
Interestingly, the REP occurrence effect on survival outcome is significantly different in younger
patients (≤50 years) and older patients (>50 years) for OS (p = 0.047) and non-significantly for PFS
(p = 0.341). In younger patients (≤50 years), REP occurrence is a negative prognostic factor, probably
in relation to more aggressive glioblastoma behavior at a younger age (Figure 3).
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to age.

Indication to concurrent chemoradiotherapy (the Stupp regimen) was more common in the
subgroup without REP (82% vs. 61%; p = 0.037), as was summarized in Table 2. OS and PFS were
significantly better in patients indicated for the Stupp regimen in both subgroups with and without
REP (Figure 4). The median OS of patients with REP who were indicated for the Stupp regimen was
16.0 (2-year OS 22.3%). The median OS of patients treated by RT alone was 7.5 months (2-year OS
5.6%) (Table 3). The model stratified by REP showed a 50% lower risk of death, and a 37% lower risk
of progression in patients indicated concurrent chemoradiotherapy (OS: HR = 0.5, p = 0.007; PFS:
HR = 0.63, p = 0.060).

The median time to initiation of radiotherapy was 6.7 weeks and was similar in both groups of
patients (6.6 vs. 6.8 weeks in patients with and without REP, respectively). In the REP subgroup, both
OS and PFS were similar in patients undergoing RT within six weeks after resection as in patients with
a longer initiation time (Figure 5). Target definition for radiotherapy planning according to EORTC
(the one same target for the whole course of RT) was more commonly employed in the subgroup of
patients with REP (65%) vs. in patients without REP (36%; p = 0.011). Nevertheless, the OS of patients
with REP did not differ with respect to contouring strategy (HR 0.9 for RTOG vs. EORTC; p = 0.824).
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Table 3. Survival outcomes in patients with REP and non-REP in relation to the treatment.

REP
(n = 46)

Non-REP
(n = 44)

Median follow up31.9 (28.7, NA) Median follow up 34.1 (32.9, NA)

Stupp regimen
(n = 28)

RT
(n = 18)

Stupp regimen
(n = 36)

RT
(n = 8)

Overall survival
Median (months) 16.0 (10.2, 21.6) 7.5 (4.8, 11.0) 20.1 (13.6, 29.8) 12.6 (8.0, NA)

1-year 59.3 (43.4, 81.1) 16.7 (5.9, 46.8) 72.2 (59.0, 88.4) 50.0 (25.0, 100.0)
2-year 22.3 (11.0, 45.1) 5.6 (0.8, 37.3) 40.8 (27.3, 60.9) 25.0 (7.5, 83.0)
3-year 9.3 (1.9, 45.7) 5.6 (0.8, 37.3) 22.9 (11.9, 44.1) 0.0 (NA, NA)

Progression-free
survival

Median (months) 4.1 (3.2, 7.1) 2.8 (2.4, 4.3) 8.8 (5.8, 11.5) 5.0 (4.2, NA)
1-year 11.2 (3.8, 32.4) 5.6 (0.8, 37.3) 27.8 (16.4, 47.0) 37.5 (15.3, 91.7)
2-year 7.4 (2.0, 28.2) 0.0 (NA, NA) 5.6 (1.4, 21.4) 12.5 (2.0, 78.2)

Abbreviations: REP—rapid early progression; Stupp regimen—concomitant chemoradiotherapy and adjuvant
chemotherapy with temozolomide; RT—radiotherapy; NA—Not Available.Diagnostics 2020, 10, x FOR PEER REVIEW 9 of 14 
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Based on univariable analysis of 46 patients with REP, the lower overall performance status
(the median OS 16.8 vs. 11.0 vs. 5.8 months in patients with ECOG 0 vs. 1 vs. 2; p = 0.011), and
indication to concurrent chemoradiotherapy (HR 0.50; p = 0.022 for OS) was positively associated
with OS and PFS (Figure 6). REP presented as a progression of postsurgery residuum was a negative
prognostic factor of OS with the borderline level of statistical significance (HR 1.9; p = 0.068). Deep
brain tumor location was a significant negative prognostic factor for PFS (HR 2.4; p = 0.014), but not
for OS (HR 1.0; p = 0.948). The other prognostic variables (age, sex, the extent of resection, MGMT
status, the location of REP) were not significant in the univariable analysis (Figure 6). IDH mutation
was not evaluated in a univariable analysis due to low numbers of positive patients. According to
the multivariable analysis of patients with REP (Table 4), the extent of resection and Stupp regimen
are independently associated with OS, and performance status and deep brain tumor location are
independently associated with PFS.
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Table 4. Multivariable analysis in patients with REP.

OS PFS
HR (95% CI) p-Value HR (95% CI) p-Value

Performance
status (ECOG)

1/0 2.3 (1.1,4.5) 0.033
2/0 16.6 (3.9,70) < 0.001

Extent of resection non-GTR/GTR 2.2 (0.9,5.2) 0.088
Stupp regimen yes/no 0.3 (0.1,0.7) 0.003

deep brain
location yes/no 3.1 (1.5,6.7) 0.003

Abbreviations: OS—overall survival; HR—hazard ratio; CI—confidence interval; PFS—progression free survival;
ECOG—Eastern Cooperative Oncology Group; GTR—Gross total resection.

4. Discussion

A high proportion of glioblastoma patients indicated for adjuvant oncology treatment developed
rapid early progression in this retrospective analysis of an unselected cohort of consecutive patients
treated outside of clinical trials. About half of the patients (46/90; 51%) progressed between surgery and
initiation of adjuvant RT, regardless of waiting time to RT initiation. High incidence of REP and reports
of overall survival are in accordance with other retrospective published studies [10–12]. The only one
clinical negative predictive factor for the development of REP in our cohort was non-radical surgery,
confirming the overall prognostic value of surgical radicality in glioblastoma [1]. Further studies
evaluating potential biomarkers of REP are highly warranted.

The question of optimal timing of RT initiation, the first logical argument for the risk of REP in a
specific patient, is still unanswered. Published studies that evaluated this issue are inconclusive with
different waiting times, ranging from 37 to 56 days after surgery [18–23]. Some reported no effect of
waiting time on the OS. In the broad analysis of 2855 patients enrolled in 16 RTOG trials, Blumenthal
et al. described even better outcomes in patients with the mild postponement of RT (4–6 weeks)
comparing to early initiation of RT within 2 weeks after surgery [24]. One may assume the need
for recovery from secondary edema and hypoxia to be a prerequisite for RT effect on radioresistant
glioblastoma. However, considering glioblastoma aggressivity with doubling time reported about
24 days, it is recommended to avoid unnecessary delay in RT initiation [25–28].

Development of REP represents an important, and not yet described in detail, negative prognostic
factor (median OS 10.7 vs. 18.7 months in our cohort). We confirmed other well-known prognostic
factors, such as performance status and the ability to undergo the Stupp regimen. The question of
eventual administration of chemotherapy for over 6 months remains to be answered. As expected,
worse OS was in the subgroup of patients with REP who were treated by RT alone (OS 7.5 months).

The majority of patients with REP develop central progression within the initial lesion of the
cavity. Modification of RT targeting and techniques including employment of planning PET may
be another way how to improve the outcomes of this unfavorable group of patients [29,30]. Precise
knowledge of tumor biology may also add to the guidance of optimal treatment (prediction for more
invasive forms of glioblastoma and risk of distant satellites). MGMT promoter methylation is both a
prognostic and predictive marker in an REP group of patients, as described by Palmer et al.: patients
with both REP and MGMT methylation reached significantly longer survival compared to those with
REP and MGMT intact (16.5 vs. 10.2 months, p = 0.033) [12]. In our cohort, we did not observe any
role of MGMT (p = 0.830). However, only 23/46 (50%) patients with REP were examined, which could
significantly affect our analysis. Palmer’s study evaluated MGMT promoter methylation, however,
there may be many different genetic mutations and molecular characteristics specific to a subset of
patients that predispose to REP and poor treatment response. It can be assumed that other important
molecular markers such as IDH and pTERT (Telomerase reverse transcriptase gene promoter) also
influence the prognosis and rapid progression in patients with glioblastomas [31–33].

In our clinical practice, MGMT is more likely to be investigated in elderly patients and in patients
unable to undergo intensive postoperative treatment. For all others, we indicate the Stupp regimen
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regardless of MGMT methylation. It may be hypothesized that tumors with REP represent more
aggressive disease, which may be associated with higher tumor mutation burden and neoantigens,
relevant biomarkers for immunotherapy. On the other hand, unlike in other tumors, immunotherapy in
glioblastoma did not prove clear effectivity so far, including immune checkpoint inhibitors or dendritic
cell vaccines [34–36]. Analysis of REP patients may provide new insights into the biology of this
aggressive tumor and potentially reveal new targets for cancer therapy.

An inherent limitation of our study is its retrospective nature, related also to limited possibility
for molecular analyses. Ongoing work may provide more information, especially with the analysis
of molecular biomarkers of REP. In future prospective studies, advanced MRI techniques such as
MRI spectroscopy or diffusion-weighted MRI may play a role in the differential diagnosis of REP and
postoperative changes, as does ischemia, for example.

5. Conclusions

The extent of surgery remains one of the most important prognostic factors in glioblastoma,
affecting not only general OS but also the risk of REP development. Especially in the subgroup of
patients without radical resection, one may recommend as early initiation of radiotherapy as possible.
The phenomenon of REP should be recognized as an integral part of stratification factors in future
prospective clinical trials enrolling patients before the initiation of RT.
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19. Gliński, B.; Urbański, J.; Hetnał, M.; Małecki, K.; Jarosz, M.; Mucha-Małecka, A.; Chrostowska, A.;
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