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Abstract

Humans have a remarkable fidelity for visual long-term memory, and yet the composition of these memories is a longstanding
debate in cognitive psychology. While much of the work on long-term memory has focused on processes associated with
successful encoding and retrieval, more recent work on visual object recognition has developed a focus on the memorability
of specific visual stimuli. Such work is engendering a view of object representation as a hierarchical movement from low-level
visual representations to higher level categorical organization of conceptual representations. However, studies on object recog-
nition often fail to account for how these high- and low-level features interact to promote distinct forms of memory. Here, we use
both visual and semantic factors to investigate their relative contributions to two different forms of memory of everyday objects.
We first collected normative visual and semantic feature information on 1,000 object images. We then conducted a memory study
where we presented these same images during encoding (picture target) on Day 1, and then either a Lexical (lexical cue) or Visual
(picture cue) memory test on Day 2. Our findings indicate that: (1) higher level visual factors (via DNNs) and semantic factors
(via feature-based statistics) make independent contributions to object memory, (2) semantic information contributes to both true
and false memory performance, and (3) factors that predict object memory depend on the type of memory being tested. These
findings help to provide a more complete picture of what factors influence object memorability. These data are available online
upon publication as a public resource.
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Introduction

One of the most important issues in memory research is why we
remember some things but forget others. To address this issue, it
is critical to answer not only which processes lead to successful
encoding (e.g., depth of encoding effects; see Craik & Tulving,
1975) and/or retrieval (e.g., transfer-appropriate processing; see
Morris et al., 1977), but also what contents of these events are
more memorable than others. Although these two questions are
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closely related, their focus is different: the former concentrates on
the actions of the person remembering, and the latter on proper-
ties of the stimuli. While the processes question has been a con-
tinuous focus in memory research since its inception, the second
question has received much less attention. However, the question
of which stimulus properties are easier to remember has been
rapidly growing in popularity in recent years. Studies that fo-
cused on the concept of intrinsic memorability have typically
used a combination of visual factors to predict subsequent mem-
ory of scenes (Bainbridge et al., 2017; Isola et al., 2014), objects
(Jacgle et al., 2019), and unfamiliar faces (Bainbridge et al.,
2013). Very few such memorability studies have examined ver-
bal stimuli, and the semantic factors examined in such studies are
usually limited to category membership (Bainbridge & Rissman,
2018) or automatic labels generated by automated computer vi-
sion algorithms (Borkin et al., 2016; Isola et al., 2014). More
importantly, no study — to our knowledge — has simultaneously
examined both visual and semantic factors, which is essential to
understand memory for everyday scenes and objects. This was
our overarching aim.
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The current study relates two different but interconnected
literatures. First, we relate findings in the neuroscience (Grill-
Spector & Malach, 2004) and behavioral (Pylyshyn, 1999;
Rosch et al., 1976) visual perception literatures that are rele-
vant to explaining the memorability of visual stimuli. For
example, memorability studies have shown that, despite a
high human capacity to remember visual details (Brady
et al., 2008), simple image measures, such as pixel statistics,
image complexity, or the number of objects in an image, do
not predict how well individual objects are remembered (Isola
etal., 2014). One possible explanation for null findings is that
simple image measures do not match the way the visual cortex
processes visual information. To investigate this idea, the cur-
rent study examined how memory for objects is predicted by
measures of visual processing provided by a deep neural
network (DNN). DNNs model visual processing in primate
visual cortex using convolutional layers (Kriegeskorte,
2015). Although DNNs were originally designed for image
classification in computer vision, they have been shown to
be excellent neuroscience models for visual processing
(Rajalingham et al., 2018; Yamins et al., 2014), often surpass-
ing traditional theoretical models (e.g., HMAX, object-based
models; Cadieu et al., 2014; Groen et al., 2018). In the current
study, a DNN yielded measures of visual object processing
that were used to predict subsequent object memory.

Second, the current study relates to findings in the semantic
cognition literature that are relevant to explaining object mem-
orability. Most memory studies examining the influence of
semantic factors rarely incorporate visual features as predic-
tors of memory strength and have centered on verbal stimuli
and simple lexical factors like word frequency or concreteness
(e.g., words that reflect more concrete concepts tend to be
remembered better; see Fliessbach et al., 2006). Research on
semantic factors in memory for objects is very scarce; includ-
ing a few studies with neuropsychological patients (Kraut
et al., 2002; Patterson, 2007), some studies on how labeling
enhances or distorts memory for objects (Koutstaal et al.,
2003; Richler et al., 2011; Richler et al., 2013) , and a limited
number of studies on basic conceptual properties, such as the
nameability (Richler et al., 2013) and typicality (Qin et al.,
2014). However, there is virtually no evidence on how com-
plex conceptual statistics determine object memorability. This
question can now be examined by taking advantage of the
conceptual structure account (CSA), which provides a com-
prehensive framework to quantify and formalize the relation-
ship between semantic and visual features of objects in terms
of their distinctiveness and interrelatedness (Devereux et al.,
2018; Moss et al., 2005; Taylor et al., 2012). In the current
study, the CSA provides measures of semantic properties of
objects and is used to predict subsequent memory for object
images.

In sum, the current object memory study investigated how
well visual and semantic properties predict the visual and

lexical memory of object concepts. Before this experimental
study, it was necessary to conduct a normative study of the
visual and semantic features of a large set of everyday object
images. Available published norms comprising semantic
properties for object concepts are only available for words
(Devereux et al., 2014; Ken McRae et al., 2005), but currently
there is no normative concept feature data on object images. In
the current semantic norming study, each participant provided
semantic features for a small set of different object images.
Creating these norms was a prerequisite step for the study, but
it was also a goal in itself, because norms of the visual and
semantic features of a large set of objects is critical for func-
tional magnetic resonance imaging (MRI) and memorability
studies with objects. Our norms are freely available online
(http://mariamh.shinyapps.io/dinolabobjects), along with
regularized copies of the images.

In the memory study, which consisted of two experiments,
visual and semantic variables were used to predict subsequent
memory for objects. Complex visual measures were obtained by
analyzing the object pictures using the layer-specific activation
information from a popular DNN, AlexNet (Krizhevsky et al.,
2012), and feature-based semantic metrics (mean distinctiveness
and correlational strength) were obtained by an analysis of con-
cept feature norms. We also examined more basic visual (e.g.,
basic pixel statistics) and semantic (e.g., word frequency) met-
rics. In each of the two memory experiments, every item in the
corpus was tested in a visual memory test (Day 1: picture target;
Day 2: picture cue) and a lexical memory test (Day 1: picture
target; Day 2: lexical cue). We use these two different memory
tasks to evaluate the conceptual and perceptual properties of the
object images. We conducted the visual memory test to investi-
gate the resiliency of memory across exemplars and the lexical
memory test to investigate the contribution of semantic informa-
tion to the memorability of object images. Both tests allow us to
examine the contribution of visual and semantic properties in
perceptual and conceptual memory. These tests are important
for understanding (1) why some properties might contribute
more to memory in one test than another, (2) if complex visual
and/or semantic information is important regardless of the mem-
ory test, and (3) whether semantic or visual information, either
simple or complex, contributes to memory when tested in the
same domain (e.g., semantic information contributing more to
memory in the lexico-semantic task than in the visual task).

Visuo-semantic object-norming study
Methods
Participants

Five hundred and sixty-six Amazon Mechanical Turk workers
all with a 95% approval rating or above (347 females, 19-75
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years of age, mean age = 34.6 years, all self-reported native
speakers of American English) participated in this study.
Participants had an average of 14.68 years of education, and
the racial demographic was balanced with national averages.
Participants could take part in repeat sessions and completed
between one and five sessions. Sessions lasted about an hour
with 40 concepts presented per session. Participants were paid
$3.00 for their participation in the property norming study.
Informed consent was obtained from all participants under a
protocol approved by the Duke Medical School Institutional
Review Board (IRB). All procedures and analyses were per-
formed in accordance with IRB guidelines and regulations for
experimental testing.

Materials

The two primary aims of this study were to (1) collect norma-
tive feature data on a large set of object concepts that can be
expanded and manipulated by a wide range of research do-
mains and 2) assess whether feature statistics can explain
memorability of objects. To date, the most extensive and
widely used set of property norms are the McCrae Norms
(Ken McRae et al., 2005) and the Centre for Speech,
Language and the Brain (CSLB) norms (Devereux et al.,
2014), both of which are considered to be the standard for
semantic feature representations of concepts. Both norms pro-
vide information on type of features and feature production
frequency for a large number of concrete objects. However,
both databases are based on responses to verbally presented
stimuli, and therefore may not directly inform the memory for
visual object stimuli. Nonetheless, throughout this paper, we
use both CLSB norms and the McCrae Norms as a guide to
characterize our dataset.

Stimuli A total of 995 object concepts were used for the online
object norming via Amazon Mechanical Turk (AMT). Image
concepts were selected from a wide range of standard object
categories (e.g., birds, buildings, mammals, tools, vehicles), as
well as object categories present in everyday life, but not well
represented in typical object databases (food, holiday items,
street items). 237 of the objects were living and 758 were non-
living. The relative size of each of the 29 categories in our
database is depicted in Fig. 1. In selecting these concepts, we
included concepts from CSLB norms that were familiar to
English speakers, as well as additional object concepts to help
balance the number of items across categories. We aimed to
avoid ambiguous concepts and only included concepts in our
analyses that had three or more features. We organized our
995 object concepts under a range of standard categories (Fig.
1); as is typical of such naturalistic object datasets, non-living
categories outnumber living categories by about 2 to 1, and
tools constitute the largest category of items.
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Suitable images for each concept were selected from the
image search engines Google Images, Bing Images, and
Flickr. Images were selected based on the following criteria:
(1) minimum size of 300 x 300 pixels; (2) either whitespace
background, a background easily removable with image-
editing software, or a background not otherwise integrated
into the foreground or target object; (3) standard framing/
positioning of the object, i.e., we avoided image orientations
that obscured the identity of the object; (4) all images were in
color, with no obvious chromatic or morphological filter; (5)
no visible watermarks; and (6) no text printed on the object
concept identifying it as such (e.g., “Fire Station No. 97). After
assembling two image exemplars for each concept, back-
grounds were removed with photo-editing software and im-
ages were cropped to square dimensions and resized to 300 x
300 pixels.

Image attributes

Image attributes in the current analysis are characterized both
as intrinsic properties of object identity and as potential pre-
dictors of object memorability. Attribute definitions, charac-
teristics, and distributions within the current dataset are sum-
marized in Fig. 2 (Visual features) and Fig. 4 (Semantic fea-
tures). Visual measures comprised basic pixel and image sta-
tistics, as well as more complex statistics defined by the en-
tropy of individual layers of a popular convolutional deep
neural network (i.e., AlexNet). Semantic measures comprised
frequency, as defined by the Corpus of Contemporary
American English (COCA), name agreement, and the number
of constituent features, as well as more complex statistics de-
fined by the relation between features of items including mean
distinctiveness (MD), correlational strength (CS), and a cor-
relation x distinctiveness measure (CSxD). We describe these
measures, including descriptive statistics of the underlying
distribution of these measures, in more detail below.

Visual features The first question addressed by the current
article is whether simple image features are predictive of
memory in the visual and lexical memory task. Visual mea-
sures are summarized in Fig. 2, including descriptive statistics
on the underlying distribution and, when necessary, correction
of the distribution to improve normality. We first calculated a
number of low-level image features that describe item-wise
values for a given image. Many of these properties have been
shown to not be predictive of image memorability (Dubey
et al., 2015; Isola et al., 2014), but underlying questions re-
main about the capacity for these basic visual features to pre-
dict conceptual memory. Basic pixel statistics such as Hue,
Saturation, and color Value (commonly referred to as “HSV”)
were calculated on each image in our database, as well as the
proportion of non-white space in the normalized image. Image
energy, a measure of the localized change of the image, and
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Fig. 1 Distribution of Item Frequencies across different Categories. The bar chart represents the number of items in each category in our dataset, split by

living (pink) and nonliving (dark pink) categories

JPEQG size, an indirect measure for image complexity based on
image compression (Torralba & Oliva, 2003), were also in-
cluded in the analysis.

Deep convolutional neural network similarity Next, we
assessed complex visual properties of object images by
assessing the similarity of visual features derived from a
DNN, which carries inherently relational information giv-
en that (1) a DNN optimizes based on all images within a
training set, and (2) individual layers represent distinct but
still dependent information between layers as image vec-
tors change through the progression across layers (DNNs;
Krizhevsky et al., 2012; LeCun et al., 2015). DNNs con-
sist of layers of convolutional filters and can be trained to
classify images into categories with a high level of accu-
racy. During training, DNNs “learn” convolutional filters
in the service of classification, where filters from early
layers predominately detect lower-level visual features
and from late layers, higher-level visual features (Zeiler
& Fergus, 2014). Therefore, a DNN is an ideal model to
investigate multi-level visual feature distinction. Here, we
used AlexNet, which was successfully trained to classify
1.2 million high-resolution images into 1,000 different cat-
egories (Krizhevsky et al., 2012). AlexNet consists of
eight layers including five convolutional and three fully
connected layers. We extracted the activation values for
three representative layers (Layers 3, 6, and 8 for early,

middle, and late DNN layers, respectively) for each image
and converted them into one activation value per object.
Multidimensional scaling provides a qualitative illustra-
tion of the possible image dimensions. For example, the
early visual MDS plot (Layer 3, Fig. 3A) organizes con-
cepts largely by shape (thin, vertically oriented objects are
distributed on the left side, with horizontally shaped ob-
jects towards the left, and circular objects on the right
side). The middle visual MDS plot (Layer 6, Fig. 3B), in
contrast, suggests more complex frequency and orientation
information, with high visual frequency (items with thin
parts or changes in color or luminance) towards the top of
the image, and items with low visual frequency informa-
tion (unitary color and luminance across the item) towards
the bottom. The late visual MDS plot (Layer 8, Fig. 3C)
retains some of this complex configural information, but
also begins to group items of similar categories together in
loose categorical clusters (e.g., fruit towards the bottom
left, animals towards the top right). Lastly, the MDS plot
for semantic feature information groups items in a config-
uration roughly consistent with their categorical organiza-
tion. In Fig. 3D, living things are mostly organized on the
right side, for example, animals are distributed in the bot-
tom right corner and foods in the top right corner, while
non-living things are largely organized on the left side
with clothing items distributed towards the top and tools
and furniture distributed towards the middle bottom side.

@ Springer
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Fig.2 Visual measures used in the current study. Note that original scores (pink line) have been adjusted with log transformations (dark line) if and only
if they did not meet standards for normality. If a measure lacks a dark line such a transformation was not needed

Semantic attributes

Next, we describe the semantic attributes in the current anal-
ysis, as summarized in Fig. 4. First, a number of basic concept
features were assessed. Concept (or lemma) frequency was
assessed in our sample using the word frequency provided in
the Corpus of Contemporary American English (Davies,
2008), which contains 425 million entries sampled from a
broad range of written sources.

Name agreement, which reflects the agreement for a verbal
label to an object photograph, was assessed with a standard
picture-name agreement task (Snodgrass & Vanderwart,
1980). For every image, 25 Duke University undergraduates
from introductory psychology courses identified each picture
as briefly and unambiguously as possible by writing only one
name for each image. Participants were instructed to respond
“don’t know” if the picture was an object unknown to them, or
if they didn’t know the name. Name agreement was then cal-
culated as the proportion of participants identifying the modal
name for a given object photograph. The number of features
(NoF) for each object was also calculated and included in our
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analysis. This metric is a general semantic property that ig-
nores the semantic content of those features; only non-
taxonomic features were included when calculating the total
number of features for an item. A taxonomic feature indicates
superordinate category information to which a concept be-
longs (Ken McRae et al., 2005).

Semantic property norms The principal approach of the
current analysis is the application of a new and large
set of property norms designed to characterize the se-
mantic features associated with a broad range of object
concepts. While many of the concepts overlap with the
McRae (Ken McRae et al., 2005) and CSLB (Devereux
et al., 2014) norms, the aim of the current corpus is to
offer semantic norms associated not with verbal descrip-
tors, but instead specific object photographs associated
with those object concepts. We make these data available
on our GitHub site (https://github.com/ElectricDinoLab),
allowing researchers to estimate their own cutoff points
for production frequencies associated with each object
feature or concept.
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¢ Late DNN

Fig. 3 Multidimensional scaling plots for object stimuli. (a—¢) MDS
visualization of DNN layers in the current analysis, based on early,
middle and late layers of AlexNet; (d) MDS of Semantic features,

Feature-based statistics The feature-statistics used in this
study are based on the conceptual structure account (CSA), a
neurocognitively motivated theory of conceptual knowledge
that captures information of conceptual representations
(Taylor et al., 2011; Tyler & Moss, 2001). Feature statistics
quantify the smaller elements of a concept, the semantic fea-
tures, which provides a useful metric to assess behavior. Here,
we use feature statistics to (1) assess the relational structure
between features of items in our dataset and (2) use this struc-
ture to assess the dimensionality of memory scores from the
memory task. In the current study, feature-based statistics
from the CSA are used to characterize the relational structure
between semantic features of items.

In addition to the simpler feature statistics described above,
the current analysis sought to test the utility of object features
in predicting memorability of items in either the lexical or
visual memory test. We used three key measures that are ca-
pable of differentiating between similar objects. First, mean
distinctiveness describes whether concepts have more distinct
versus shared features. For each feature, a distinctiveness

-
4re 21,15’%
.v -
d Semantic Features

based on normative feature collection. MDS plots presented above are
for a subset of the stimuli for easy viewing. The online Shinny App is
available for users to zoom in on each figure

value is calculated by taking 1/number of concepts in which
the feature occurred, with mean distinctiveness being the av-
erage value across the features in the concept. Non-living
things tend to have more distinctive features than living
things, owing generally to the fact that living things have more
shared features (e.g., eyes, nose, legs) than do non-living
things (e.g., tools & vehicles). Concepts that have more dis-
tinct features will have fewer semantic neighbors, thus acti-
vating a unique conceptual representation (Clarke & Tyler,
2015). Second, correlational strength describes how features
of a concept co-occur; in other words, correlational strength
for a concept is greater for objects composed of highly co-
occurring features (e.g., has legs and has feet are often found
in the same concept) that will mutually coactivate, facilitating
feature integration and activation of the concept (Clarke &
Tyler, 2015; K. McRae et al., 1997). While both mean distinc-
tiveness and correlational strength are measures common to a
number of feature-based accounts (e.g., Cree & McRae, 2003;
K. McRae et al., 1997; Mirman & Magnuson, 2009; Rogers
et al., 2004; Devereux et al., 2016), our third measure,
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Fig. 4 Semantic measures used in the current study. Note that original scores (pink line) have been adjusted with log transformations (dark line) if and
only if they did not meet standards for normality. If a measure lacks a dark line such a transformation was not needed

correlational strength and sharedness (Correlational Strength
x Distinctiveness or CSxD) is specific to the CSA. CSxD de-
scribes the relationship between the correlational strength and
distinctiveness of the features for each concept (Taylor et al.,
2012). This measure is defined as the unstandardized slope of
the regression line that describes the interaction of these two
statistics (Taylor et al., 2012).

Procedure

The current feature-norming dataset comprises 995 objects
from 29 different categories and includes 5,520 features, each
of which was present at least three times in the data.
Taxonomic features (e.g., is a dog or is a mammal, for the
example object dalmatian) are not typically considered true
semantic features and thus were not used in the analysis of this
dataset (Devereux et al., 2014; Ken McRae et al., 2005).
Participants were shown an object (e.g., a porcupine) and
were given a space to add five unique features; similar to
previous feature-norming paradigms (Devereux et al., 2014;
Ken McRae et al., 2005), participants were limited to five
features, and were prevented from proceeding through the task
if all features were not completed. The participants were asked
to select a relation word from a drop-down menu, with presets
for <is>, <has>, <does>, <is made of>, and “...” (participants
were instructed to use the blank space as they wished to spec-
ify some other relationship). The default pull-down option for
the five feature-response cues was set to one of each of the
above five options, as presented in Fig. 5. Participants could
use any of the pulldown verb options, they were not required
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to use all of them, but were required to provide five features
for each concept. Concepts were randomized so that two con-
cepts from the same category did not appear consecutively
and that each concept was presented to at least 20 participants.

Describe the properties of...

A porcupine is i
A porcupine has k3
A porcupine does k2

A porcupine s made of [

A porcupine ... B

Fig. 5 Feature-norming example. Example stimuli and prompt that
participants saw during the feature-norming task
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Each participant was presented with a series of 40 objects,
presented pseudorandomly across participants, with an even
distribution of objects per category. Participants were allowed
to complete between one and five Human Intelligence Tests
(HITs) of the feature norming task. AMT workers were
prevented from performing the same HIT twice, and each set
of 40 items comprised a unique subset of objects; thus, no
objects were repeated for participants who completed more
than one feature-norming HIT. In order to receive full credit
for their participation, workers needed to complete all five
spaces. Data from 566 total participants (with an average of
30.5 participants contributing to each concept) were eventual-
ly used to create a feature x concept production frequency
matrix.

Before the construction of the production frequency matrix,
feature responses underwent various stages of processing, fol-
lowing the procedures used by McRae et al. (2005) and
Devereux et al. (2014). These steps, done by hand, included:
(1) removal of adverbs, such as really and very, (2) feature-
splitting, for example a feature such as “has a round face” was
rewritten as “has a round face” and “has a face,” (3) synonym
mapping, which involves identifying synonyms both within
and across each concept; for example “does travel in groups”
and “does travel in packs” and “does travel in a flock” were
collapsed to “does travel in groups,” (4) correction of spelling
mistakes and when incorrect relation words were used (e.g.
“has a luxury item”) were also changed when the meaning
was clear (“is a luxury item”) , (5) morphological mapping,
for example “is used in cooking” and “is used by cooks” were
collapsed together as “is used in cooking,” (6) removal of
plural forms, and (7) removal of features not present in at least
two concepts. Relation words were not changed. At all stages
of processing the data, results were checked manually and
were corrected if necessary to prevent from excessively mod-
ifying the features and to maintain inter-rater reliability. After
preprocessing, a feature x concept production frequency ma-
trix was created to describe the normalized frequency of a

given feature for a given concept. The resulting preprocessed
features were then collected into various feature-label groups,
and summary statistics were calculated on all features. An
example for a subset of features, their relation word, and pro-
duction frequency for the object bee, are found in Table 1,
which depicts both the individual features as well as the pro-
duction frequency (i.e., the number of times that feature was
mentioned across all raters) of each feature. We used a pro-
duction frequency cut-off of three, such that only features that
occurred at least three times were used in the analysis of the
dataset.

Memory studies
Methods
Participants

A group of 200 Amazon Mechanical Turk workers (>95%
approval rating in AMT, all self-reported speaker of native
English) participated in the lexical memory task and a differ-
ent group of 303 workers participated in the visual memory
task. Both groups of participants were different than the group
of participants who completed the normative study. Forty peo-
ple were excluded from the visual memory task and seven
people from the lexical memory task, because of a computer
error that did not collect their responses.

A total of 456 Amazon Mechanical Turk workers complet-
ed either the visual (n =263) or lexical (n = 193) memory task.
In the lexical memory task, participant ages ranged from 19 to
87 years, mean age = 39.7 years, with 108 females and 85
males, and in the visual memory task ages ranged from 18 to
76 years, mean age = 37.1 years, with 137 females and 126
males. The demographics in the two memory tasks are com-
parable, such that there are no significant differences in sex
t(454) =-0.93, p = 0.35, years of education t(399) =-1.10, p =

Table 1 Example concept properties

Object Relation word Feature Production frequency
Has wings 21
Is an insect 13

bee Does make honey 12

Does sting 11
Has a stinger 11
Does fly 10
Is black 8
Is yellow 8
Has legs 7
Does pollinate flowers 6
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Visual Memory Retrieval

Lexical Memory Retrieval

cardinal

O/N

Fig.6 Memory study paradigm. Example stimuli during the visual and lexical memory task. Both tasks comprinsed of an Encoding session where visual
object stimuli were presented; subsequent Retrieval Sessions presented old and new objects (visual memory task) or word stimuli (lexical memory task)

0.27, race t(445) = 0.18, p = 0.86, and lag, which is the dif-
ference between the time when the participant completed
encoding and retrieval, t(245) = 1.10, p = 0.27. There is a
significant difference in age, t(406) =2.11, p = 0.04, between
visual and lexical memory groups, but this factor was not a
significant predictor of either visual (r = 0.07, p = 0.32) or
lexical memory (r = 0.07, p=0.31).

Procedure

AMT workers were presented with either a visual or a lexical
memory test (Fig. 6). Materials used in both Visual and
Lexical memory studies were the 995 object concepts from
the normative study. In both tasks, AMT workers were pre-
sented with the same encoding task, and not informed of the
subsequent retrieval session to be completed afterwards (i.e.,
incidental encoding). Participants were presented with a series
of object images during the Day 1 HIT, during which they
identified whether the object was living or non-living; each of
168 objects was presented for 2 s with a 1-s inter-trial interval.
On the Day 2 Retrieval session, 24 h (=4 h; mean lag between
Encoding and Retrieval = 29.34 h) after the Encoding HIT,

@ Springer

participants were presented with either a Visual task (shown
object images) or a Lexical task (shown words representing
objects), with 168 old stimuli intermixed with 168 new stim-
uli. In both Encoding and Retrieval HITs, objects (old and
new) were balanced across object categories and balanced
for COCA frequency across all image sets. In both retrieval
sessions, participants made a 2-alternative forced-choice
oldness decision. Total run time for these Encoding and
Retrieval HITs were approximately 15/30 min, respectively.
Workers were paid $0.50 for completing the Day 1 encoding
session (mean time to finish 16.07 minutes), and $4.50 for
completing the Day 2 retrieval session (mean time to finish
for both the picture and word tasks was 23.5 min).

After data collection, mean hit rates and false alarm rates
for each item were calculated based on the percentage of cor-
rect responses across subjects to old or new trials, respective-
ly. As such, each measure represents an item-wise averaging
across the responses of all contributing AMT workers, and is
therefore expressed as a continuous measure amenable to lin-
ear regression. As analyses were focused on the item level,
each item was presented only as a new or an old item. In total,
memorability information from 456 participants was used to
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establish an individual memory score (Visual or Lexical mem-
ory, Hit Rate and False Alarm Rate). An average of 43 AMT
workers contributed to memory data for each item in the visual
memory task and an average of 31 AMT workers contributed
to memory data for each item in the lexical memory task. For
the visual memory task, 993 objects have a hit rate and 965
have a false alarm rate. For the lexical memory task, we col-
lected ~100 fewer subjects, and therefore 899 items have a hit
rate and 876 have a false alarm rate.

Model analysis

In order to address the relationship between visual and seman-
tic image statistics and image memorability, we adopted a
linear regression framework. Model diagnostics included
overall fit, as well as explicit examination of collinearity
across predictor variables (evaluated by the variance inflation
factor), and diagnostics on normality (see Figs. 2 and 4).

Results

The central goal of the current study was to determine what
visual and semantic information predicts object memorability.
First, we provide regression diagnostics and then summarize
the distribution of memory scores on the Visual and Lexical
memory tests. We then examine a series of predictors for both
memory types based on the visual and semantic features de-
scribed above. Lastly, we examine interactions between the
two forms of memory.

Memory performance

Accuracy for both the visual and the lexical memory tasks on
Day 2, as indexed by both Hit Rate (HR) and False Alarm
Rate (FAR), as well as response times are shown in Table 2.
While the average item-level HRs and FARs are suggestive of
low memory performance, the present analyses are focused on

Table 2 Behavioral performance on visual and lexical memory tests

Visual memory Lexical memory

M SD M SD

Response accuracy

Hit rate 0.56 0.18 0.55 0.15

False alarm rate 0.27 0.15 0.44 0.14
Response time (ms)

Hits 1202 98.48 1288 129.61

Misses 1196 117.78 1304 168.79

Correct rejections 1176 84.09 1318 152.68

False alarms 1245 146.52 1295 290.84

what specific factors place individual items along the norma-
tive distribution of memory scores. These results, and the in-
teractions between memory tasks and response accuracy, are
examined more explicitly below. For descriptive purposes, we
also include a summary of the average HRs across item cate-
gories (Fig. 7A), which show generally better memory (HRs)
for living than non-living categories, but a wide variation
across and within each category. We also show the ten
most- and least-remembered items (according to HR) within
the visual and lexical memory tests, which generally reflects
this preference for living categories (Fig. 7B).

Linear models of memorability

Regression diagnostics In this article, simple visual statistics
such as JPEG size, proportion non-white space, image energy,
and simple semantic statistics such as name agreement,
COCA frequency, and number of features are used to assess
the stand-alone properties of the objects in the database. The
complex semantic statistics we use in this study include mean
distinctiveness (calculated as 1/[the number of concepts in
which a feature occurred]), correlational strength (calculated
as the average pairwise correlations between a target feature
and all other features in the norms), CSxD (calculated by tak-
ing the slope of the regression line that describes the interac-
tion between correlational strength and distinctiveness), and
the entropy of DNN activation values (measure of how dis-
tinct objects are across the layers of a DNN). We sought to
understand if our semantic and visual models significantly
represent the two types of memory we are testing. Our results
indicate that memorability of objects is based on various se-
mantic and visual properties, most notably that the more com-
plex statistics better predict memory than item-wise statistics
in both the lexical and the visual memory task.

In applying regression using large samples of data it is
important to be sensitive to the assumptions of the shape of
the distribution, including the normality, skew, and kurtosis of
the constituent distribution, as well as the collinearity between
potential predictors. Model diagnostics describing skew, kur-
tosis, and normality were conducted on all predictors for all of
the regression models and were adjusted and normalized
where needed. If a distribution was positively or negatively
skewed the appropriate transformation was applied and that
value was used in the regression for both the lexical and the
visual model. For example, most variables necessitated a
log10 transformation, while Hue, Saturation, and Value mea-
sures were corrected with a boxcox transformation. Proportion
of non-white space, Mean Distinctiveness, and CSxD were
considered normal in their original state. Figures 2 and 4 dis-
play the original distributions (in pink) and the transformed
distributions (in red) for both visual and semantic measures,
respectively. To assess collinearity of the predictors in our
regression model (see Fig. 8 for covariance across all
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Fig. 7 Memory performance summary across category and items. (A)
Categorical averages of item hit rates for the lexical (light pink) and
visual memory task (dark pink). Living items (left side) were
considerably better remembered as than non-living items (right side),

predictors), the mean of the variance inflation factor (VIF) was
calculated for both models. The VIF indicates whether one
predictor has a strong linear relationship with another predic-
tor or multiple predictors. It is the ratio of the variance in a
model with multiple terms by the variance of the model with
only one term. If the VIF is substantially greater than 5 or 10
then the regression model is biased due to multicollinearity
(James et al., 2013). The VIF values for all predictors in our
model for both false alarm rates and hit rates and for both
memory tasks were less than 3.5, suggesting that the models
are not likely to lead to multicollinearity.

Visual and lexical memory prediction Here, we first describe
the results of the visual properties and their contribution to
memory before examining semantic properties. We then re-
port the results of the four separate regression models testing
four distinct memory measures: Hit Rates (HRs) and False
Alarm Rates (FARs) for both Visual and Lexical memory tests
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across all item categories. (Note: categories with fewer than 5 items were
removed from this descriptive plot.) (B) Visual representation of the most
and least memorable object images in the corpus, for both lexical and
visual memory

(see Table 3). Before examining the linear regression model
using visual and semantic features to predict these scores, we
first sought to address the possibility that response bias might
lead to an incorrect interpretation of memory scores across
items. We calculated criterion item-wise [¢= —0.5(Zyr +
Zrar)] and found that values for both the visual (mean ¢ =
0.25) and lexical tasks (mean ¢ = 0.02) were low, suggesting
response bias did not play a strong role in the HR and FAR
results presented below.

First, examining the capacity for visual properties to predict
later memory, we found that entropy values based on activa-
tion of all layers of the DNN (Early, Middle, and Late based
on AlexNet Layers 3/6/8, respectively), had a significant in-
fluence on nearly all measures of memory discriminability.
Early DNN information was a significant predictor of memory
in both tasks. This layer, which is organized roughly by shape
(see Fig. 3A) significantly predicted HRs in the lexical (5 =
0.23,t=2.63, p =0.009) and visual memory tasks (5= 0.29, t
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Fig. 8 Covariance matrix for all predictors. Covariance across all
predictors in the regression model. Variance inflation factor suggests
models are not likely to lead to multicollinearity. NoF number of non-
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taxonomic features, DNN deep neural network (AlexNet), CSxD
Correlational Strength x Distinctiveness

Table 3  Regression output
Predictors Visual memory Lexical memory
Hit rate False alarm rate Hit rate False alarm rate
Visual features
Energy -3.12 (-0.05) 0.30 (0.005) -0.60 (-0.009) 0.71 (0.01)
JPEG size -0.30 (-0.02) -3.27 (-0.16) -2.39 (-0.12) -2.45 (-0.13)
Proportion non-white space 0.43 (0.01) -0.43 (-0.01) 0.84 (0.02) -1.19 (-0.04)
Hue 0.57 (0.003) 1.33 (0.006) 0.21 (0.0009) -0.52 (-0.002)
Saturation 0.28 (0.002) 0.89 (0.005) 1.12 (0.007) 0.69 (0.004)
Value -1.61 (-0.01) 0.39 (0.002) 1.03 (0.006) 0.21 (0.001)
Early DNN layer (3) 2.92 (0.29) 3.25(0.28) 2.63 (0.23) 0.13 (0.01)
Middle DNN layer (6) -3.14 (-0.45) -5.21 (-0.64) -3.70 (-0.45) -4.14 (-0.51)
Late DNN layer (8) 4.03 (0.50) 3.25(0.35) 0.19 (0.02) 0.97 (0.10)
Semantic features
Frequency -0.28 (-0.001) -0.11 (-0.0005) 1.93 (0.008) 3.72 (0.02)
Name agreement 3.76 (0.06) 2.03 (0.03) 7.99 (0.12) 2.87 (0.04)
Number of non-taxonomic features -0.20 (-0.01) -0.29 (-0.02) 0.77 (0.05) -0.26 (-0.02)
Correlational strength 7.69 (0.75) 5.94 (0.51) 5.36 (0.46) 2.84 (0.24)
Mean distinctiveness -6.38 (-2.09) -7.32 (-2.08) -5.17 (-1.49) -3.56 (-1.02)
Correlation x Distinctiveness 5.48 (0.08) 4.24 (0.06) 3.85 (0.05) 3.58 (0.05)

Note. The table represents t-values (beta values in parenthesis). Bold font indicates significance, p < 0.05. Adjusted R? for hit rates for the visual memory
= 0.16 and for lexical memory = 0.14. Adjusted R> for false alarm rates for visual memory = 0.12 and for lexical memory = 0.07
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=2.92, p = 0.004); FARs were also influenced by this early
visual information in the visual (6= 0.28,t=3.25, p=0.001)
but not the lexical memory task (6= 0.01,t=0.13, p=0.90).
Middle DNN information, which is roughly organized by col-
or and orientation information, significantly predicted all
memory measures (in the opposite direction) for both the vi-
sual (HR: 3=-0.45,t=-3.14,p=0.002; FAR: 3=-0.64,t=-
5.21, p < 0.000001) and the lexical memory tests (HR: 3 = -
0.45, t = -3.70, p = 0.0002; FAR: 5 =-0.51,t=-4.14,p =
0.00004). Late DNN information, which is roughly organized
by category (which we would predict from the last layer of a
DNN), significantly predicts memory in the visual memory
task (HR: 8 =0.50, t = 4.03, p = 0.00006; FAR: 3=0.35,t
=3.25, p = 0.001), but not the lexical memory task (HR: 3 =
0.02,t=10.19, p = 0.85; FAR: 3=0.10,t=0.97, p = 0.33).
Such a pattern of findings suggests strong evidence that visual
memory is reliant on a continuum of complex image proper-
ties, but that Lexical memory may generally be less reliant on
these properties.

In contrast to the more complex values derived from the
DNN, we found only a few other visual properties to be pre-
dictive of memory success. Simple image statistics such as
mean hue of an image was not predictive of memory in either
the visual (HR: 8 = 0.003, t = 0.57, p = 0.57) or the lexical
memory task (HR: 5= 0.0009, t = 0.21 p = 0.83). Mean satu-
ration was also not predictive of memory in either the visual
(HR: 8 =0.002, t = 0.28, p = 0.78) or the lexical (HR: 3 =
0.007,t=1.12, p = 0.26) memory task. Mean color value was
not predictive of memory in the visual memory task (HR: 3 =-
0.01, t=-1.61, p = 0.11) or the lexical memory task (HR: 3 =
0.007, t = 1.03, p = 0.30). These results indicate that simple
properties describing color features of images are not memora-
ble, regardless of the task. This result is in line with other find-
ings on the ability of basic image properties to predict memory
(Dubey et al., 2015). Image energy (a measure derived from the
average spectral power of an image; for more information see
Torralba & Oliva, 2003) negatively predicted HR in the visual
memory task (G=-0.05,t=-3.12, p=0.002), but not the lexical
memory task (G=-0.009, t=-0.60, p=0.76). In addition, JPEG
size (a measure of image complexity) offered a significant neg-
ative prediction for FARs in both the visual (5=-0.16,t=-3.27,
p = 0.001) and the lexical (6 = -0.13, t = -2.45, p = 0.01)
memory tasks. JPEG size did not predict memory in the visual
(HR: 6 =-0.02, t = -0.30, p = 0.77) memory task, but it did
predict memory in the lexical task (HR: 3=-0.12,t=-2.39,p=
0.02). This result is intriguing because it suggests that image
complexity serves to make an object less confusable with other
objects, or, conversely, that simpler images are generalized
across mnemonic exemplars. No other image statistic has a
significant influence on any memory measure (see Table 3).
Overall, these results suggest that simple image statistics play
a generally small role in predicting memory for objects (espe-
cially with regard to semantic properties discussed below).
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Turning to our semantic properties, we found that in the
visual memory task, the complex feature-based predictors
generally proved to be stronger than more simple statistics
as predictors of later memory strength. Correlational strength
was a strong predictor of both item-wise HRs (3 = 0.75, t =
7.69, p < 0.000001) and FARs (5 = 0.51,t =594, p <
0.000001) in the visual memory task. Such a result is intuitive
assuming that when attempting to make a recognition judg-
ment on an image, participants reactivated co-occurring fea-
tures for an object to ease conceptual processing, as is as-
sumed during object recognition (Taylor et al., 2011). In the
lexical memory task, correlational strength predicted item-
wise HRs (3 =0.46, t = 5.36, p < 0.000001), and, to a signif-
icant but weaker extent, FAR (6= 0.24, t = 2.84, p = 0.005).
Viewing an image and attempting to recognize it by viewing
its corresponding lexical label relies on recall of both visual
features of that object, as well as descriptive features of that
object (Taylor et al., 2012). Mean distinctiveness also influ-
enced the visual memory HRs (8 = -2.09 t = -6.38, p
<0.000001) and FARs (8 = -2.08, t = -7.32, p < 0.000001),
as well as lexical memory HRs (6 =-1.49, t = -5.17, p <
0.000001) and FARs (8 = -1.02, t = -3.56, p = 0.0004).
Interestingly, mean distinctiveness predicted memory HRs in
the opposite direction from CS, such that objects with more
distinctive features are associated with lower hit rates. A ready
alternative explanation for this effect is that objects with
shared, highly correlated properties — i.e., typically animals
and other living items — will be better remembered. While it
is intuitive to see how more correlated features may lead to
better memory for an object due to a greater number of inter-
related cues, it may seem less intuitive with respect to MD.
Distinctive features are thought to ease activation of a unique
representation of an object (Biederman & Kalocsai, 1997;
Clarke & Tyler, 2015; Martin et al., 2018); however, in our
data it is possible that while the distinctiveness of the item
features facilitate identification, retention in memory suffers
from highly distinctive features. Subsequent mediation analy-
ses below cast doubt on the possibility that this negative
weight is simply a product of interactions with other semantic
(or visual) predictors, as this negative relationship is present in
both the a and b effects in the mediation.

One direct means of disentangling this somewhat
perplexing result is in an examination of a third CSA statistic.
In addition to CS and MD, the mean correlational x distinc-
tiveness (CSxD, also known as “slope”) measure was a posi-
tive predictor of both the visual (HR: 5 = 0.08, t = 5.48, p
<0.000001; FAR: 8 = 0.06, t = 4.24, p = 0.00003) and the
lexical (HR: 5 =10.05, t 3.85, p=0.0001; FAR: 3=0.05,t=
3.58, p = 0.0004) memory tasks. These results indicate that
memory for objects with highly correlated distinctive features
(as is the case in many living items; see Taylor et al., 2012) is
better in both the visual and the lexical memory tasks.
Distinctive features on their own might not be beneficial for
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memory, but if features are highly correlated (e.g., animals
that have eyes, ears, nose) and highly distinctive (e.g., animals
that have wings and feathers) they may contribute to overall
memory for that object.

In addition to these semantic predictors, COCA frequency
and name agreement also predicted memory. COCA frequen-
cy of a concept positively predicted both lexical HRs and
FARs, (HRs: §=0.008, t = 1.93, p = 0.05; FAR: 5 =0.02, t
= 3.72, p = 0.0002), in keeping with the notion that high-
frequency items are more likely to be endorsed as “old”
(Badham et al., 2017); no effect of Frequency was seen for
visual memory. Name agreement was predictive of memory in
the visual memory task (HRs: 3= 0.06, t = 3.76, p = 0.0002;
FAR: 3=0.03,t=2.03, p=0.04) and the lexical memory task
(HR: 6=0.12,t=7.99,p <0.00001; FAR: 5=0.04,t=2.87,
p = 0.004). Knowing the name of an object is clearly neces-
sary to recall an item given the cue presented in the lexical
retrieval task, but this information may also be helpful when
recognizing an image. Nonetheless, the low name agreement
in roughly one-quarter of our sample (276/995 items with <
50% name agreement), while typical for everyday concept
norms such as these (Devereux et al., 2014), nonetheless sug-
gests that some “miss” responses could have been driven by
not recognizing the specific lexical cue used in our study.
Further work may be necessary with more constrained item
stimuli sets. In an effort to encourage such exploration, our
dataset has a range of name agreement values and users of our
dataset are free to access these data and determine appropriate
cut off points.

Lastly, we sought to further address the possibility that
response bias may have influenced item-wise memory scores,
given that the values for many predictors of both HR and FAR
trend in the same direction (see Table 3). While criterion
scores were generally low (see above), we found that using
d’ as our measure of memory did attenuate predictors on both
the visual and lexical tasks compared to HRs and FARs, such
that for the visual memory model, Image Energy (t =-2.54, p
=0.01), JPEG size (t=2.33, p=0.02), and CSxD (t=2.43, p
=0.02) remained as significant predictors, while for the lexical
memory, Name Agreement (t = 5.34, p = 0.000002), CS (t =
3.11, p = 0.002), and MD (t = -2.22, p = 0.03) remained
significant. All other predictors in these models were not sig-
nificant. This finding suggests that measures of response bias
and memorability beyond hit rate should be considered when
estimating an item’s intrinsic memorability.

Visual-lexical memory relationships

Lastly, in order to test the independence of visual and lexical
memory, we performed two additional analyses on these data.
First, we assessed the relationship between visual and lexical
memory at the level of items using Pearson’s correlations. As
shown by Fig. 9A, we found that Hit Rates for the two tests

were significantly related (rg93 = 0.33, p < 0.0001). FARs,
while also correlated (1993 = 0.54, p < 0.0001), were not ex-
amined, due to the fact that many distinct confounds could
explain such errors in memory. This relationship therefore
engenders the question, “what common qualities of a retrieval
stimulus make an item memorable across perceptual and con-
ceptual memory retrieval conditions?”

To answer this question, we explored the relationship be-
tween visual and lexical memory hit rates using mediation
analyses, which helps to explore potential sources of variation
mediating an observed relationship between a predictor and
outcome variable. In our analysis, we posited the significant
predictors in the regression output above (see Table 3) as
mediators of the relationship between lexical and visual mem-
ory hit rates, where mean hit rates were treated as item-level
observations (see Table 4). As such, we expect that the ob-
served relationship between the predictor (visual HR) and
outcome variables (lexical HR) could be at least partially ex-
plained by an underlying visual or semantic property. Of
these, only Correlational Strength (i.e., the measure of relat-
edness of items’ constituent features) acted as a significant
mediator of the relationship between visual and lexical mem-
ory hit rates (ab = 0.15, CI =[0.03, 0.07], 47% mediation; see
Fig. 9B). Unsurprisingly, CS showed strong relationships with
both visual and lexical memory HRs (a and b effects in this
mediation, respectively). Collectively this result suggests that
the underlying similarity in item memorability across our two
tests could be at least partially explained by the underlying
semantic structure common to perceptual and conceptual rep-
resentations of a given item.

General discussion

The current analysis presents a large-scale database of object
concepts with a comprehensive assessment of visual and se-
mantic properties, as well as visual and lexical memorability
information based on independent tests of object memory. In
our analysis, we identified two critical observations that help
to guide future analyses of object memory. First, we found
that complex visual and semantic features (e.g., DNN-based
entropy, correlational strength of features) were strong predic-
tors of item memory for both visual and lexical tests, a finding
that highlights the importance of considering these fine-
grained relationships between items in stimuli selection.
Second, we found that despite the fact that visual and lexical
item memory had a relatively modest correlation in hit rates
across items, performance was driven by similar object prop-
erties, and that correlational strength helped to explain the
relationship between these memory scores. This result sug-
gests that object representations have distinct visual and ver-
bal components, but remain grounded in the same core sub-
strate. Furthermore, this suggests that memorability may not
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Fig. 9 Relationships between visual and lexical memory. (A) Correlations between hit rates (HR, above) for visual and lexical memory scores. (B)
Mediation analyses demonstrate that correlational Strength helps to explain a significant proportion of the covariance between our memory test HRs

be an intrinsic quality of an image but may instead depend on
the context under which the memory for such image is tested.

Visual and semantic feature statistics

A principal contribution of the current article is a highly di-
mensional image corpus comprising of 995 concrete objects
spanning a wide range of different categories, along with vi-
sual and semantic features and output from the associated
memory study, all of which are available within a centralized
database (http://mariamh.shinyapps.io/dinolabobjects).
Within this database are a variety of object statistics that
range from common to unique (e.g., lexical frequency and
feature-based stats), visual to semantic (image energy and cor-
relational strength), simple to complex (e.g., JPEG size and
DNN information). Furthermore, this database complements
other rich concept corpuses (Devereux et al., 2014; Hebart
et al., 2019; Ken McRae et al., 2005) by including statistics
on the two different kinds of memory for each object image.
This may serve as a useful heuristic for selecting object stimuli
for experiments with patients experiencing age-related

Table 4 Mediation between visual and lexical memory hit rates

memory disorders (Bainbridge et al., 2019). The statistics
we have compiled allow integration of object concepts along
several interrelated schemes, such that one can use these data,
for example, to visualize how concept categories are orga-
nized according to semantic feature information (Fig. 3D),
or how DNN organization draws upon more basic image
properties like RGB balance (Fig. 3A). All data are publicly
available, including the images, the visual and semantic prop-
erties of the images, as well as the memory scores (both HRs
and FARs) established on the separate tests of memory based
on visual and lexical cues.

In the visual domain, we contribute a rich form of visual
statistics based on three separate layers of a deep
convolutional neural network. There is evidence that DNNs
share some similar properties to the ventral visual pathway
(Cichy et al., 2016), and can even surpass traditional theoret-
ical models. In the present study, we sought to understand the
dimensionality of visual information in our object images
using activation values of the DNN in order to calculate en-
tropy of the an early, middle, and late layer of interest (Layers
3, 6, and 8). One consistent pattern from the memory

Mediator a b c’ ab R? CI

HRs; total effect (c) = 0.41, t = 11.2%%%*

Visual predictors
Early DNN 0.11 (3.03) 0.06 (1.86) 0.40 (11.00) 0.01 0.12 [0, 0.02]
Middle DNN -0.08 (-1.52) -0.04 (-1.62) 0.40 (11.14) 0.00 0.11 [0, 0.01]
Late DNN -0.03 (-0.55) 0.10 (4.09) 0.41 (11.38) 0.00 0.13 [-0.02, 0.01]

Semantic predictors
CS 0.03 (5.83) 1.52 (7.01) 0.36 (10.02) 0.05 0.15 [0.03, 0.07]
MD 0.01 (0.92) -0.06 (-0.24) 0.40 (11.18) 0.00 0.11 [0, 0]
CSxD 0.46 (2.40) 0.03 (4.21) 0.39 (10.96) 0.01 0.13 [0, 0.03]

Note. For all models, df = 992. HR = hit rate.

FAR false alarm rate, DNN deep convolutional neural network, CS correlational strength, MD mean distinctiveness, CSxD interaction between CS and

MD
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prediction models above (Table 3) is that while early DNN
information contributed to both visual and lexical memory,
late-layer DNN information predicted memory in the visual
memory task, but not the lexical memory task. In addition,
DNNs are trained to classify objects based only on visual
information, not semantic information, and therefore its total
value in predicting memory based on verbal cues is limited.
While visual DNNs can appropriately label images, they do
not capture the semantic relationship between items. For ex-
ample, an orange and a banana are semantically more related
(i.e., both are fruits) than an orange and a basketball (i.e., more
visually similar). The notion that visual similarity requires
semantic similarity is an important feature of the ventral visual
processing stream (Devereux et al., 2018), which is not cur-
rently captured through visual DNNs. This emaphasizes the
importance of considering semantic statistics from large
property-norming studies such as the one introduced here.

The role of complex semantic properties in predicting
memory

A major finding from this analysis is that semantic feature
statistics associated with complex semantic properties, based
on the interrelatedness of the constituent features of items
(e.g., mean distinctiveness, correlational strength), were sig-
nificant predictors of hit rates on the visual and lexical mem-
ory tests. This novel finding demonstrates that feature statis-
tics that describe the interrelatedness of constituent features
across items have a strong mnemonic value for both percep-
tual and conceptual memory. The direction of this prediction
was intuitive when one places a premium on interrelatedness.
Correlational strength had a strong positive prediction score
(Table 3), suggesting that highly correlated features may pro-
vide a richer set of cues from which to encode and retrieve
specific object concepts or images. In contrast, the mean dis-
tinctiveness of features in turn had a strong negative prediction
score, a finding that seems somewhat counterintuitive if one
places a premium on item frequency or typicality as a strong
mnemonic predictor for episodic memory judgments
(Fernandez et al., 1998; Schmidt, 1996). Helping to disambig-
uate this result, we also found that a third measure (CSxD) had
a unique and positive prediction accuracy for hit rates in both
Visual and Lexical memory tasks, suggesting distinctive fea-
tures do help with an object’s memorability, but only when
those distinctive features are considered within a broader se-
mantic network of features (Taylor et al., 2012).

Visual working-memory and episodic memory research are
both based on the premise that objects are represented as
bound units (Brady et al., 2013; Gajewski & Brockmole,
2006; Luck & Vogel, 1997; Morey & Cowan, 2005). While
both forms of memory are dependent on the same high-level
object representations, they do not account for discrepancies
in memory errors for objects with the same features. Thus,

while certain visual and semantic traits explain the memora-
bility of scenes (e.g., spatial layout of a scene, as in Isola et al.,
2014), and faces (e.g., atypicality of a faces, as in Bainbridge
et al., 2013), they do not capture all of the variance in mem-
orability scores across all items within a corpus. Accordingly,
these approaches have rarely found a strong role for semantic
content in predicting item memorability. The current data
present some evidence that one of the keys to understanding
this variability in the intrinsic memorability of an item lies in
considering the variance in properties such as MD, CS, or
CSxD.

These meaningful properties have been shown to be pre-
dictive of memory in other studies. In Brady et al. (2013),
participants were shown real-world objects and given a
forced-choice color and state (e.g., some meaningful manipu-
lation on an object’s functional or observable properties) test
after a short or long delay. The results indicated that partici-
pants’ ability to detect color decreased over time, whereas
their ability to detect state remained stable across short and
long delays. This suggests that while salient visual features
like color or luminance are forgotten quickly, meaningful
properties that are integrated with object representation are
retained longer. The problem with previous approaches is that
“meaningful” or “semantic” is often defined in terms of dis-
crete categories or cardinal attributes, and not a continuous
metric amenable to rigorous analysis. Furthermore, our anal-
ysis helps to bridge the gap between complex semantic and
object memorability literatures, and thus offers some clear
predictions on how feature relatedness will affect performance
on a given task.

Item memory differs between visual and lexical tests

Our second finding showed that similar item characteristics
predict memory on both tests, and that visual and lexical hit
rates were correlated across items. This finding supports the
idea that the organization of perceptual and conceptual mem-
ory traces share similar underlying item characteristics, but
nonetheless draw on a number of unique representational
forms based on the modality of retrieval (Saffran et al.,
2003). As shown in Fig. 9A, hit rates on the two tests demon-
strated a modest correlation (r7g4 = 0.33), an effect size that is
moderate given the number of observations (n = 784). This
inflation due to sample size was further evidenced by exam-
ining the same cross-test relationship within each category,
and also found no significant item-wise relationship between
hit rates in the two tests (all rs < 0.2 within each category).
Nonetheless results from our memory prediction analyses sug-
gested that both visual and lexical memory performance
depended on similar object properties.

What do these findings mean for the study of visual mem-
ory of everyday things? Our data show strong support for the
idea that the fidelity of long-term memory representations is
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driven by complex semantic properties that describe the struc-
ture of an object’s constituent features. Such a result provides
an item-wise perspective on a range of previous studies show-
ing that, compared to perceptual information, semantic infor-
mation can have stronger influences on both hit rates and false
alarm rates. For example, the fact that false alarm rates were
predicted by all three complex feature-based semantic statis-
tics (MD, CS, and CSxD; see Table 3) provides greater detail
to the finding that pre-existing conceptual information detracts
from the processing of perceptual, item-specific features
(Konkle et al., 2010b; Koutstaal et al., 2003). These earlier
studies were often based on a rather general notion of semantic
relatedness, category membership, whether for real-world
(Brady et al., 2008; Konkle et al., 2010a) or novel objects
(Hout & Goldinger, 2010; Koutstaal et al., 2003), rather than
a detailed set of semantic properties as presented in the current
study. Category members may vary widely in their relatedness
— and hence, how strongly a category exemplar may act as a
potential memory lure. Our more detailed semantic feature
information helps to quantify this variation across object ex-
emplars within a category, and may serve as a principled basis
on which to explicitly examine the effect of semantic related-
ness on false memory. Thus, the current dataset provides
greater detail on why semantic relatedness influences broad
category relationships.

Our article attempts to bridge the object perception literature
(which focuses on item-wise properties) and the episodic mem-
ory literature (which focuses on subject-level performance).
Given our interest in measuring memory for items, we averaged
the frequency of hits (1) and misses (0) across participants in both
the visual and the lexical memory tasks and conducted a linear
regression model. However, analyses quantifying subject-level
bias towards different object classes or categories might identify
not only the degree to which a particular object is memorable
across contexts, but also the capacity for biased memory endorse-
ments. For example, more familiar items may be seen as more
memorable (Nickerson & Adams, 1979). More broadly, these
data speak to the necessity of considering the concept of image
memorability as a potentially malleable property across individ-
uals and test types, and we release our data via public repositories
to encourage such exploration.

Lastly, our mediation analyses (Fig. 9B) lend support to the
idea that greater correlational strength facilitates conceptual
processing (Clarke et al., 2013; Cree & McRae, 2003;
Devereux et al., 2016). These results clearly show a relevance
to the relative independence of perceptual and conceptual rep-
resentations. As the current analysis was focused on item-wise
characteristics in explaining this independence, we performed
a number of follow-up tests using these item-wise character-
istics to help explain this effect. We tested multiple mediators
of the visual-lexical memory relationship, namely predictors
that were identified in our item-wise regression analyses as
significant predictors of either visual or lexical memory
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performance. As expected, only semantic features showed a
significant mediation of the relationship between visual and
lexical memory, while no visual feature demonstrated a sig-
nificant mediation. Nonetheless, it is possible that the promi-
nent role for complex semantic features in predicting both
forms of memory may be driven by the fact that the encoding
task required a semantic (living, non-living) judgment, thus
focusing participants on semantic properties of the object im-
age before them. Future studies may benefit from a more
explicit comparison of encoding strategies designed to high-
light complimentary feature types (e.g., Koutstaal et al.,
1999); we have endeavored to make our dataset and associat-
ed code readily available to facilitate this work.

Conclusion

In addition to furthering our understanding of the influence of
different stimulus properties on item-wise memorability of
object images, the current results also showcase how broad,
comprehensive image databases can be utilized to answer fun-
damental questions on the nature of memory representations.
The current study goes beyond memorability studies that ex-
amined a single memory task (Isola et al., 2014), and estab-
lishes a bridge between this work focused on stimulus factors,
and those that focus on memory processes. Furthermore,
correcting for possible response bias (by using d’) did attenu-
ate some of the effects, such that Image Energy, JPEG size and
CSxD remained significant predictors in the visual memory
task, while Name Agreement, CS, and MD remained signifi-
cant for the lexical memory task. Thus, while both forms of
memory are supported by complex semantic properties, these
results do suggest that the predictive properties for image
memorability begin to diverge somewhat depending on how
memory is tested, and fight against the idea that image mem-
orability is an intrinsic property of an object image. While HR
and FAR are the primary focus of the paper, such a finding
highlights the necessity to consider latent response bias, the
potential for objects to act as conceptual lures, or other mne-
monic factors that suggest the concept of memorability should
be defined beyond hit rates alone. By investigating object
memory with two different memory tests, we show that there
is no single set of “memorability features” that can predict
memory for objects in all scenarios; rather these scores are
more likely based on the context (i.e., the type of memory
test) in which the stimuli are tested. As such, future studies
investigating object memory can take into consideration the
transfer appropriate processing principle and test stimuli in
multiple memory paradigms. We hope that this new set of
object property norms and their associated memory strength
in multiple domains will help to foster new investigations on
object representation and the fidelity of object memory.
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