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Abstract
Microtubule structure and functions have been widely studied in vitro and in cells. Research

has shown that cysteines on tubulin play a crucial role in the polymerization of microtubules.

Here, we show that blocking sulfhydryl groups of cysteines in taxol-stabilized polymerized

microtubules with a commonly used chemical crosslinker prevents temporal end-to-end

annealing of microtubules in vitro. This can dramatically affect the length distribution of the

microtubules. The crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-car-

boxylate, sulfo-SMCC, consists of a maleimide and an N-hydroxysuccinimide ester group to

bind to sulfhydryl groups and primary amines, respectively. Interestingly, addition of a malei-

mide dye alone does not show the same interference with annealing in stabilized microtu-

bules. This study shows that the sulfhydryl groups of cysteines of tubulin that are vital for

the polymerization are also important for the subsequent annealing of microtubules.

Introduction
Microtubules (MTs) are cytoskeletal filaments that are vital for cell division and vesicle trans-
port in cells [1]. MTs are also believed to play a role in cell mechanics via interconnections
with actin filaments [2]. Experiments and simulations have shown that the embedding of
microtubules in actin networks lowers Poisson’s ratio of the composite, compared to a pure
actin network [3, 4]. MTs are hollow cylinders with a diameter of 25 nm, polymerized from
heterodimers of α and β tubulin. Microtubules are polar and have a plus and a minus-end. The
polarity of MTs is crucial for their biological function, making it possible for molecular motors
to travel along MTs in a specific direction. Polymerization and depolymerization kinetics at the
ends of MTs are dependent on the state of the nucleotide (GTP/GDP) bound to each tubulin
monomer, and GTP hydrolysis, coupled to polymerization, makes MTs non-equilibrium poly-
mers. Microtubules show, under certain circumstances, dynamic instability, i.e., switching
between phases of growth and shrinkage [5]. In cells, MTs undergo various post-translational
modifications and are the substrate for a multitude of MT-binding proteins that control many
functions [6]. Because in vivo experiments are difficult to interpret due to the complexity of
cells, protocols for polymerizing microtubules (MTs) in vitro have been developed providing a
more controlled system for the study of MT structure and function [7–9].
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Stabilization of microtubules with the small drug paclitaxel (taxol) or with the non-
hydrolyzable GTP analogue, GMPCPP [10], makes it possible to perform experiments with
dilute solutions or single microtubules. The minus end of tubulin can be blocked by N-ethyl
maleimide (NEM). When polymerized from a mixture of NEM-labeled tubulin and regular
tubulin, MTs, therefore, exhibit unilateral growth at their plus end [8]. Although the mecha-
nism of inhibition of minus end assembly by NEM is not exactly known, it is believed that
binding of NEM to β tubulin Cys239 is responsible for the minus end capping effect [11]. A
further property of MTs that is relevant for in vitro reconstitution experiments is end-to-end
annealing. Fragmenting MTs in high-shear flow, e.g. by pressing the solution through a fine
syringe needle, results in a short average length that one can see increasing again within a
few hours [12].

Biopolymer network architecture depends strongly on polymer length, especially for sparse
networks [13–15]. In vitro studies of such networks have been widely used to provide a basis
for the understanding of cytoskeletal mechanics [16–18]. While many experiments have been
performed on actin networks, crosslinked with a variety of actin binding proteins (ABPs) [19,
20], networks of crosslinked microtubules have not been much explored. This is most likely
due to the fact that in cells MTs are either strongly bundled in a parallel manner such as in the
axons and dendrites of neurons or in the meiotic and mitotic spindle [21–23], or they are
sparsely dispersed as in the cellular transport network spreading out from the MT-organizing
center [1]. In most cells, though, MTs will intermingle with both intermediate filaments and
with the actin network, and the different polymer systems may mechanically influence and reg-
ulate each other [24–31]. Published work on microtubule networks has focused on the charac-
terization of network viscoelasticity of rigidly crosslinked MTs [32, 33]. A more realistic
representation of the cytoskeleton would be a network of rigid rods with compliant crosslin-
kers. Theoretical models and simulations of composite networks of stiff rods and flexible cross-
linkers exist [14, 15, 34], but experimental approaches in such heterogeneous networks have
been limited. A way to construct such heterogeneous networks would be to chemically cross-
link MTs with compliant polymers such as intermediate filaments or DNA.

In the process of constructing such networks, we have here tested the effect of a commercial
crosslinker, sulfo-SMCC, on the length distribution of taxol-stabilized microtubules. Sulfo-
SMCC is a commonly used hetero-bifunctional crosslinker bearing N-hydroxysuccinimide
(NHS) ester and maleimide groups to react with primary amines and sulfhydryl groups, respec-
tively [35–37]. We demonstrate in time-dependent measurements and dual-color experiments
that sulfo-SMCC inhibits the end-to-end annealing of stabilized MTs. Curiously, addition of a
maleimide or an NHS ester group alone does not show an equivalent inhibition of annealing.

Methods

Preparation of microtubules
Labeled and unlabeled porcine tubulin powders were commercially obtained from Cytoskele-
ton, Inc., Denver, CO, USA. Sulfo-SMCC was purchased from Thermo Fisher Scientific, Wal-
tham, MA, USA. MTs were polymerized to a final concentration of 2 mg/ml in 80 mM PIPES
buffer (pH 6.8) containing 10 μM taxol, 2 mMMgCl2, 0.5 mM EGTA, and 1 mM GTP. A mix-
ture of rhodamine-labeled tubulin (Cytoskeleton, Inc., Denver, CO, USA) and unlabeled tubu-
lin (1:5) was used in the time-dependent measurements. In these experiments, polymerized
MTs were divided in 2 groups: control and sulfo-SMCC (250 μM) treated. Both samples were
imaged after diluting 1:5 and incubating for 0 h (within 45 minutes after polymerization), 6 h,
and 24 h. We performed 3 independent sets of experiments, and the total number of scored
microtubules per time point are given in Table 1.
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For dual-color experiments, red and green microtubules were polymerized as described
above, using rhodamine-labeled tubulin and HiLyte 488-labeled tubulin, respectively. The red
and green microtubules were mixed in a 1:1 ratio, and then divided into control and sulfo-
SMCC (250 μM) treated groups. Both samples were imaged after 0 h and 6 h. Data were col-
lected from 3 sets of experiments (see Table 2 for further details).

Last, a control experiment was performed with MTs treated with 250 μMAlexa 488 NHS
ester dye (Life Technologies GmbH, Darmstadt, Germany), and 250 μMAlexa maleimide 488
dye (Life Technologies GmbH, Darmstadt, Germany) for 24 h. Details regarding the mean
lengths calculated from one set of experiments and the total number of scored microtubules
are given in Table 3.

Imaging and image analysis
Positively charged silane-coated coverslips were used to attach the negatively charged MTs to
the substrate. MTs were imaged using an oil immersion objective (EC Plan-Neofluar 100x/1.3,
Carl Zeiss MicroImaging GmbH, Jena, Germany) on a standard fluorescence microscope
(Axiovert 200, Carl Zeiss). MT solutions were diluted to different degrees so that the recorded
images were not too crowded, showing too many overlaps of MTs that would complicate the
automated filament recognition. Images were recorded using a digital CCD camera (CoolSnap

Table 1. Lengths of untreated and sulfo-SMCC treated MTs at different time points. The table shows the total number of microtubules (from three inde-
pendent sets of experiments), average calculated mean length (Lmean) and average mean length from the fitting curve (Lmeanfit) for sulfo-SMCC treated and
untreated MTs, measured after 0 h, 6 h, and 24 h of incubation.

Sample Time (h) Number of MTs Lmean (μm) Lmeanfit (μm)

MTs 0 769 6.82 +/- 0.17 5.92 +/- 0.10

MTs 6 880 9.77 +/- 0.24 8.21 +/- 0.34

MTs 24 625 12.05 +/- 0.42 9.71 +/- 0.84

SMCC 0 958 6.02 +/- 0.13 5.21 +/- 0.05

SMCC 6 726 5.74 +/- 0.14 4.99 +/- 0.12

SMCC 24 990 5.77 +/- 0.13 4.43 +/- 0.22

doi:10.1371/journal.pone.0161623.t001

Table 2. Dual-colored microtubule experiments. The table shows the total number of microtubules (from three independent sets of experiments), average
calculated mean length (Lmean) and average mean length from the fitting curve (Lmeanfit) for different time points of sulfo-SMCC treated and untreated MTs.

Sample Time (h) Number of MTs Lmean (μm) Lmeanfit (μm)

MTs 0 337 10.62 +/- 0.46 8.28 +/- 0.68

MTs 6 440 19.31 +/- 0.61 19.07 +/- 1.23

SMCC 0 421 7.29 +/- 0.27 5.8 +/- 0.34

SMCC 6 653 5.00 +/- 0.16 3.36 +/- 0.14

doi:10.1371/journal.pone.0161623.t002

Table 3. Chemically treated and untreated MTs. The table shows the total numbers of microtubules (from one set of experiments), average calculated
mean lengths (Lmean) and average mean lengths from the fitting curve (Lmeanfit) for untreated MTs, and MTs treated with sulfo-SMCC, maleimide dye, and
NHS ester dye for 24 h.

Sample Time (h) Number of MTs Lmean (μm) Lmeanfit (μm)

MTs 24 213 17.01 +/- 1.04 16.3 +/- 1.12

SMCC 24 747 1.99 +/- 0.04 1.3 +/- 0.24

Maleimide dye 24 210 9.2 +/- 0.46 9.75 +/- 1.18

NHS ester dye 24 111 21.009 +/- 1.62 19.38 +/- 1.87

doi:10.1371/journal.pone.0161623.t003
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ES, Roper Scientific, Martinsried, Germany), and image analysis for measuring lengths of short
MTs was done in Fiji with a custom script involving standard procedures [38]. Image process-
ing involved thresholding, followed by forming ‘masks’ after excluding microtubules at the
edges. The masks were then run through custom software, Filament sensor [39], which outputs
the lengths of MTs. In case of dual-colored MTs, composite images of red and green channels
were analyzed in the software to measure lengths of annealed MTs. Exclusion of tubulin clus-
ters and length measurement of looped MTs was done manually. Length histograms were nor-
malized by the total number of MTs scored and then fitted by a single exponential, modified to
account for underestimating short MTs due to the resolution limit (Fig 1). The calculated
mean lengths were compared using a standard t-test.

Results
MTs were treated with 250 μM sulfo-SMCC, and imaged after incubation for 0 h, 6 h, and 24 h.
Fig 1 shows the length distribution of sulfo-SMCC treated (A) and untreated MTs (B) after the
different incubation times. Lengths of biopolymers that follow simple polymerization-depo-
lymerization kinetics at fixed rates are distributed exponentially [40–42]. Consistent with pre-
vious studies [32], both treated and untreated MTs showed exponential length distributions at
all time points. The mean lengths of untreated MTs increased significantly after 6 h
(p< 0.001) and 24 h (p< 0.001) of incubation, in comparison with those measured at 0 h.
Table 1 shows mean lengths and standard deviations of the data taken at each time point. The
increase in length over time can be attributed to end-to-end annealing of MTs; a known phe-
nomenon. Curiously, MTs treated with sulfo-SMCC showed a constant mean length, indepen-
dent of the incubation time.

To verify that the observed effect was an inhibition of end-to-end annealing of MTs, we per-
formed experiments using dual-colored MTs. A mixture of red and green microtubules, which
were polymerized separately, was treated with sulfo-SMCC for 0 h and 6 h. The mean length of
untreated MTs increased significantly after 6 h (p< 0.001), as shown in Fig 2A. The average
mean lengths of dual colored untreated and sulfo-SMCC treated MTs are given in Table 2.
Moreover, Fig 2C shows MTs consisting of both red and green (cyan in the images) segments
after 6 h, clearly demonstrating the annealing process. Fig 2D shows that the mean length of
sulfo-SMCC treated MTs did not increase after 6 h of incubation (p> 0.05). Furthermore, the
image of treated MTs after 6 h (Fig 2E) shows short filaments of either color, but not a mixture
of both colors. These results strongly indicate that sulfo-SMCC hampers the temporal end-to-
end annealing of microtubules.

Lastly, we tested the effect of the individual reactive groups of sulfo-SMCC, i.e., maleimide
and NHS ester on the length of MTs. MTs were incubated for 24 hrs with 250 μM of sulfo-
SMCC, maleimide dye, or NHS ester dye. Control samples consisted of MTs without chemical
treatment, also incubated for 24 h. Fig 3 shows length distributions calculated from images of
MTs under the three treatment conditions.

We observed that MTs treated with sulfo-SMCC were drastically shorter compared to
untreated MTs with almost an order of magnitude difference in their mean lengths (see
Table 3). Curiously, maleimide dye treatment at the same concentration resulted in only a two-
fold shorter mean length than that of the untreated MTs. It is unclear why the effect of sulfo-
SMCC is much more pronounced than that of maleimide dye although they bear the identical
reactive group. We therefore tested a control sample to check for a possible effect of the NHS
ester group of sulfo-SMCC on MT length. The length distribution after NHS ester treatment of
MTs overnight, however, was very similar to that of untreated MTs. This excludes a possible
effect of the NHS ester group.
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Fig 1. Length distribution of sulfo-SMCC treated and untreated MTs after different incubation times.
Length distributions of 2 mg/ml (tubulin) solution of (A) untreated and (B) sulfo-SMCC treated (250 μM) MTs
after 0 h, 6 h, and 24 h are shown. Untreated MTs show a significant increase in their mean lengths after 6 h
(p < 0.001) and 24 h (p < 0.001) of incubation, in comparison with those measured at 0 h. Sulfo-SMCC treated
MTs show a constant mean length, independent of incubation time. Lengths of all samples are distributed
exponentially; exponential fits with the normalized probability function a2 Lexp(−aL) are shown as dashed
lines. This functional form takes undersampling of short MTs due to the resolution limit into account.

doi:10.1371/journal.pone.0161623.g001
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Fig 2. Lengths of dual-colored MTs after 0 h and 6 h of incubation. (A) Length distributions of 2 mg/ml
(tubulin) solution of untreated MTs and MTs treated with 250 μM sulfo-SMCC after 0 h and 6 h of incubation.
Corresponding images of untreated MTs after 0 h (B) and 6 h (C). Sulfo-SMCC treated MTs after 0 h (D) and 6 h
(E). Dotted lines are exponential fits to the data.

doi:10.1371/journal.pone.0161623.g002
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Discussion
We have shown through systematic experiments that sulfo-SMCC inhibits end-to-end anneal-
ing of taxol-stablized MTs. We speculate that the maleimide group on sulfo-SMCC binds to
thiol groups on MT ends, and thereby prevents annealing. Previous studies have identified the
sulfhydryl (SH) groups of cysteines of tubulin to be essential for MT polymerization [43–45].
Chemically modifying cysteines on tubulin affected assembly of MTs in vitro as well as in vivo
[46, 47]. Experiments with isothiocyanates have shown that mitotic arrest and apoptosis can be
induced in cells by the covalent modification of cysteines in tubulin [48]. All prior experiments
demonstrated deleterious effects of chemicals blocking the SH groups on MT polymerization.
So far, little was reported regarding the effect on polymerized and stabilized MTs. Here, we
have provided evidence that the vital SH groups on cysteine residues that are essential in MT
polymerization appear to also be important for the annealing of stabilized MTs and that a

Fig 3. Length distributions of chemically treated and untreated MTs after 24 h of incubation. Length distributions of 2 mg/ml (tubulin) solution
of untreated MTs, MTs treated with 250 μM sulfo-SMCC, 250 μMmaleimide dye and 250 μMNHS ester dye are shown. Lengths of MTs are
distributed exponentially in all cases; single-exponential fits shown as dashed lines. Treatment with sulfo-SMCC resulted in drastically shorter MTs
in comparison to untreated MTs (mean length = 2 μm and 17 μm, respectively). Maleimide dye treated MTs, however, showed a less drastic effect
with an intermediate mean length of 9.2 μm. Addition of NHS ester dye to MTs as a control did not affect the lengths of MTs.

doi:10.1371/journal.pone.0161623.g003
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commonly used crosslinker has a significant impact on MTs structure and dynamics. Therefore
special care must be taken when using cysteine binding chemicals, not only during MT poly-
merization, but also after stabilization.
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