
fnagi-12-00166 June 2, 2020 Time: 22:41 # 1

ORIGINAL RESEARCH
published: 04 June 2020

doi: 10.3389/fnagi.2020.00166

Edited by:
Yu-Min Kuo,

National Cheng Kung University,
Taiwan

Reviewed by:
Ulf Andreasson,

Sahlgrenska University Hospital,
Sweden

Sarat C. Vatsavayai,
University of California,

San Francisco, United States

*Correspondence:
Nan Zhang

nkzhangnan@yeah.net

Received: 17 March 2020
Accepted: 14 May 2020

Published: 04 June 2020

Citation:
Zhang N, Gu D, Meng M and
Gordon ML (2020) TDP-43 Is

Elevated in Plasma Neuronal-Derived
Exosomes of Patients With

Alzheimer’s Disease.
Front. Aging Neurosci. 12:166.
doi: 10.3389/fnagi.2020.00166

TDP-43 Is Elevated in Plasma
Neuronal-Derived Exosomes of
Patients With Alzheimer’s Disease
Nan Zhang1,2* , Dongmei Gu3, Meng Meng2 and Marc L. Gordon4,5

1 Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China,
2 Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China, 3 Department
of Clinical Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, China, 4 The Litwin-Zucker Research
Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States, 5 Donald and Barbara
Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States

Background: Recently, TDP-43 has been recognized as a common proteinopathy in
the “oldest old” and a neuropathological comorbidity in patients with Alzheimer’s disease
(AD). However, since it has a low concentration in cerebrospinal fluid, the presence of
TDP-43 in AD is rarely investigated in vivo.

Methods: Twenty-four patients with amyloid PET confirmed AD and 15 healthy controls
(HCs) were included in this study. TDP-43 level in plasma neuronal-derived exosomes
(NDEs) was measured by enzyme-linked immunosorbent assay.

Results: TDP-43 level was elevated in patients with AD compared with HCs (median
1.08 ng/ml, IQR 0.72–1.37 ng/ml vs. median 0.66 ng/ml, IQR 0.48–0.76 ng/ml,
P = 0.002). There was no correlation between TDP-43 level and cognitive function,
neuropsychiatric symptoms or APOE genotype in patients with AD.

Conclusion: This study demonstrated increased TDP-43 accumulation in AD patients
by examining plasma NDEs, which may provide a window into the effects of TDP-43
on AD progression.
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INTRODUCTION

TAR DNA binding protein of 43 kDa (TDP-43), which plays a fundamental role in exon skipping,
nuclear transcription, splicing and stability of RNA transcripts, micro-RNA processing, and
other cellular functions (Buratti et al., 2004; Buratti and Baralle, 2008; Buratti et al., 2010) has
been identified in an abnormal phosphorylated state in cellular inclusions and is associated
with neurodegeneration and cognitive impairment in the majority of patients with tau-negative
frontotemporal lobar degeneration (FTLD) and nearly all patients with amyotrophic lateral
sclerosis (ALS) (Neumann et al., 2006; Feneberg et al., 2018). Moreover, TDP-43 is considered
to be an independently pathogenic proteinopathy causing an amnestic dementia syndrome,
which was recently named limbic-predominant age-related TDP-43 encephalopathy (LATE)
(Nelson et al., 2019).

In the past decade, several studies reported that TDP-43 accumulates pathologically in the
brains of patients with AD. The proportion of AD patients with TDP-43 pathology has been
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reported to range from 19 to 73.9% (Josephs et al., 2014a;
McAleese et al., 2017). The pathological comorbidity of TDP-
43 is first observed in the medial temporal lobe and eventually
spreads to occipitotemporal cortex, basal ganglia, and frontal
neocortex in patients with AD (Bayram et al., 2019). In a
large autopsy sample, a pathological diagnosis of AD mixed
with TDP-43 was the most common mixed pathology in
subjects with AD (compared to pathological AD mixed with
infarcts, arteriolosclerosis, Lewy bodies or hippocampal sclerosis)
(James et al., 2016).

The burden of TDP-43 accumulation was observed to be
correlated with progression of AD, such as volumetric reductions
in the hippocampal and entorhinal cortex, decline in memory,
naming, general cognition, and global function, particularly
during the early phases of neurodegeneration (Josephs et al.,
2014a,b, 2015, 2016, 2017; McAleese et al., 2017; Flanagan et al.,
2018). Furthermore, previous pathological studies have provided
conflicting evidence as to whether TDP-43 might be a risk factor
or a protective factor in terms of neuropsychiatric symptoms
in patients with AD (Vatsavayi et al., 2014; Sennik et al., 2017;
Bayram et al., 2019).

Although the plasma concentration of TDP-43 has been
observed to be elevated in patients with FTLD, since TDP-43 has
a low concentration in cerebrospinal fluid (CSF) and may mainly
originate from blood, its correlation with neurodegeneration in
AD is still controversial (Foulds et al., 2008; Foulds et al., 2009;
Williams et al., 2017). Exosomes are a subtype of extracellular
vesicles that arise from a wide range of cells and contain
molecular cargo, including a variety of proteins (Shah et al.,
2018). It has been demonstrated that TDP-43 is secreted via
exosomes in neuronal cells contributing to both propagation and
clearance of TDP-43 in ALS brains (Iguchi et al., 2016) and can
be detected in exosomes from CSF, which originate in the brain
(Feneberg et al., 2014).

Neuronal-derived exosomes (NDEs) have been successfully
isolated from plasma, and analyzed for the expression of AD
biomarkers, such as Aβ, tau, cellular survival factors, lysosomal
proteins, insulin receptor substrate and synaptic proteins in
previous studies (Fiandaca et al., 2015; Goetzl et al., 2015a,b, 2016;
Kapogiannis et al., 2015; Mustapic et al., 2017). In the present
study, we aimed to measure expression of TDP-43 in patients
with AD by isolating and analyzing plasma NDEs, and to further
explore the association between TDP-43 and cognitive function,
neuropsychiatric symptoms and APOE genotype.

MATERIALS AND METHODS

Participants
Twenty-four patients with AD and 15 healthy controls (HCs)
recruited from our longitudinal MRI study of AD and
subcortical ischemic vascular dementia were included in this
study. Patients with AD met the International Working Group-
2 (IWG-2) diagnostic criteria for AD (Dubois et al., 2014),
had an amnestic symptom and an amyloid-positive 11C-
Pittsburgh compound B (PiB) PET scan, were aged 50–85
years, with a Mini-Mental State Examination (MMSE) score

of 10–26 and a Clinical Dementia Rating (CDR) score of
0.5–2. Patients whose cognitive decline was caused by other
neurological diseases, mental disorders, or medical conditions,
such as FTLD, dementia with Lewy bodies, Parkinson’s
disease, vascular dementia, multiple sclerosis, severe depression,
vitamin B12 deficiency, or thyroid dysfunction, were excluded.
Age- and sex-matched HCs had no complaint of cognitive
decline, with an MMSE score >24 and a CDR score = 0.
All participants underwent comprehensive neuropsychological
testing and multimodal brain MRI scans, and blood samples
were collected for further investigation. This study was approved
by the Ethics Committee of Tianjin Medical University
General Hospital. Written informed consent was obtained from
all participants.

Neuropsychological Assessment
A neuropsychological battery was performed to test various
cognitive domains for all subjects, including the Rey Auditory
Verbal Learning Test (AVLT) (Wu et al., 2009), the Symbol
Digit Modalities Test (SDMT) (Smith, 1982), the Trail Making
Test-A (TMT-A) and B (TMT-B) (Rossini and Karl, 1994), the
Stroop test (Stroop, 1935), the Animal Verbal Fluency Test
(AFT) (Mok et al., 2004), the Controlled Oral Word Association
Test (COWAT) (Zhang et al., 2015), the Boston Naming Test
(BNT) (Williams et al., 1989) and the Benton Judgment of
Line Orientation (JLO) (Benton et al., 1994). All of the above
tests have a higher score indicating better performance on the
specific tasks, except for the TMT-A and TMT-B with an opposite
implication. Raw scores were converted to Z scores using the
mean and SD of the HC group. Five main cognitive domains
were calculated: (1) memory composite = average Z score of
total learning, delayed recall and recognition on the AVLT;
(2) language composite = average of the AFT, the COWAT
and the BNT; (3) attention and information processing speed
composite = average of the SDMT and the TMT-A; (4) executive
function composite = average of the TMT-B and the Stroop
color-word test; (5) visuospatial function = Z score of the JLO.

Behavioral and psychological symptoms of dementia
(BPSD) were assessed using the 12-item Neuropsychiatric
Inventory (NPI) (Cummings et al., 1994). Apart from the
total score of the NPI, the presence of motor disturbance
and four symptom clusters (Sayegh and Knight, 2014)
including psychosis (delusions, hallucinations), hyperactivity
(agitation, disinhibition, irritability), affect (depression, anxiety),
and apathy/vegetative (apathy, sleep, appetite), was also
analyzed in this study.

APOE Genotyping
A 500 µl sample of blood was collected in ethylenedi-
aminetetraacetic acid-containing (EDTA) vacutainer tubes from
all participants. Genomic DNA was extracted using the TIANamp
Blood DNA Kit (Tiangen Biotech Co., Ltd., Beijing, China)
following the manufacturer’s protocol. Then polymerase chain
reaction amplification of the APOE gene was followed by
using genomic DNA. The accuracy of genotyping was further
confirmed with Sanger sequencing by using an ABI 3730xl DNA
analyzer (Applied Biosystems) in Allwegene Clinical Testing
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Laboratory (Tianjin, China). The sequences were analyzed
using the software Sequencing Analysis 5.2. Primer sequences
are listed in Supplementary Table 1. The APOE status of
all participants was determined by two single nucleotide
polymorphisms (rs429358 and rs7412) that define the epsilon 2,
3, and 4 alleles.

Exosome Isolation and Identification
The isolation of NDEs was performed according to the methods
previously developed by Goetzl (Fiandaca et al., 2015). 0.5
ml of plasma was incubated with 0.15 ml of thromboplastin-
D (Fisher Scientific, Inc., Hanover Park, IL, United States) at
room temperature for 60 min, followed by the addition of 0.35
ml of calcium- and magnesium-free Dulbecco’s balanced salt
solution (DBS−2) with 20 µl protease inhibitor cocktail (Roche
Applied Sciences, Inc., Indianapolis, IN) and 5 µl phosphatase
inhibitor cocktail (Pierce Halt, Thermo Scientific, Inc., Rockford,
IL, United States). After centrifugation at 3000 × g for
20 min, supernates were mixed with 252 µl of ExoQuick
exosome precipitation solution (EXOQ; System Biosciences, Inc.,
Mountainview, CA, United States), and incubated for 1 h at 4◦C.
Resultant exosome suspensions were centrifuged at 1500 × g for
30 min at 4◦C and each pellet was resuspended in 350 µl of
DBS−2 with inhibitor cocktails.

Each sample was mixed with 50 µl of 3% bovine serum
albumin (BSA) (Thermo Scientific, Inc.) and was incubated
for 1 h at 4◦C with 1µg of mouse anti-human CD171
antibody (L1CAM neural adhesion protein, eBio5G3, Biotin,
eBioscience, San Diego, CA, United States), then followed by
addition of 25 µl streptavidin-agarose resin (Thermo Scientific,
Inc.) plus 50 µl of 3% BSA for 30 min at 4◦C. After
centrifugation at 400 × g for 10 min at 4◦C and removal
of the supernates, each pellet was suspended in 50 µl of
0.05 M glycine-HCl (pH 3.0) by vortex-mixing for 10 s.
Each suspension was then combined with 0.5 ml M-PER
mammalian protein extraction reagent that had been adjusted
to pH 8.0 with 1 M Tris-HCl (pH 8.6) and the inhibitor
cocktails followed by incubation for 10 min at 37◦C with vortex-
mixing for 15 s and was stored at −80◦C before enzyme-linked
immunosorbent assay (ELISA).

Neuronal-derived exosomes were identified by both
transmission electron microscopy and a nanoparticle tracking
system. Transmission electron microscopy measurement
was conducted using a Talos F200c electron microscope
(FEI, United States) at an acceleration voltage of 200 kV to
characterize the size and shape of NDEs. In addition, exosomes
were visualized with a NanoSight 500 instrument (NanoSight,
Amesbury, United Kingdom) and characterized according to the
size distribution of vesicles.

TDP-43 Assay
TDP-43 protein level in plasma NDEs was assayed by ELISA kits
(Signalway Antibody, College Park, MD, United States). Human
CD81 (Cusabio-American Research Products, Inc.) was used for
normalization of TDP-43 concentration. The mean value of all
CD81 levels was set at 1.00, and the relative value for each sample
was used to normalize their recovery.

Statistical Analysis
Statistical analyses were performed using SPSS 13.0 (SPSS
Inc., United States). Demographic and clinical data of patients
with AD and HCs were analyzed using Pearson chi-square
test for categorical variables or independent-sample t-test for
continuous variables. The difference in CD81 and TDP-43 level
between the two groups was analyzed using Mann-Whitney
U-tests. Partial correlation analyses were conducted to test the
correlations between TDP-43 and the neuropsychological scores
in patients with AD, controlling for age, sex and educational
level. With respect to the NPI clusters and APOE analyses,
dichotomized classification was used according to the presence
or absence of the symptoms, or the epsilon 4 allele carrier status.
Then, Mann-Whitney U-tests were used to test the difference
in TDP-43 level between AD patients with and without the
specific neuropsychiatric symptoms, and between APOE epsilon
4 carriers vs. non-carriers within the AD group. All the tests were
two-tailed, and values of P < 0.05 were regarded as significant.

RESULTS

Demographic and Clinical Features
Twenty-four patients with AD (age range: 53–84, mean age:
67.8 ± 8.2 years, median age: 68 years, 17 females) and 15 HCs
(age range: 55–77, mean age: 64.8 ± 6.0 years, median age:
64 years, 10 females) were included in this study. There was
no significant difference in age, sex or education between the
AD patients and HCs. The AD group had a significantly lower
score on MMSE (16.3 ± 6.1 vs. 27.7 ± 1.7) and a much higher
proportion of APOE ε4 carriers (3 with 4/4, 10 with 3/4, 10 with
3/3, 1 with 2/3 vs. 0 with 4/4, 2 with 3/4, 9 with 3/3, 4 with 2/3)
compared with the HC group. Table 1 presents the demographic
characteristics of the two groups.

TDP-43 Level in Exosomes
Neuronal-derived exosomes were identified with an electron
microscope (Figure 1A) and a nanoparticle tracking system
(Figure 1B). The size and shape of plasma NDEs from AD
patients are similar to those previously reported (Winston et al.,
2016). CD81, an exosome membrane marker, was measured and
used to normalize the concentration of NDEs for all participants.
The AD group showed a lower CD81 level (median 4.53 ng/ml,
interquartile range (IQR) 3.74–6.28 ng/ml vs. median 6.28 ng/ml,

TABLE 1 | Demographic and clinical features of patients with AD and HCs.

AD N = 24 HC N = 15 P

Age, y 67.8 ± 8.2 64.8 ± 6.0 0.228

Sex, F/M 17/7 10/5 0.784

Education, y 11.0 ± 3.6 12.6 ± 2.4 0.125

APOE ε4 carrier/non-carrier 11/13 2/13 0.036

MMSE 16.3 ± 6.1 27.7 ± 1.7 0.000

Age, education and MMSE are provided as mean ± SD. AD, Alzheimer’s disease;
HC, healthy control; MMSE, Mini-Mental State Examination.
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FIGURE 1 | Plasma neuronal-derived exosomes identified with TEM and NTA. (A) A representative image detected with transmission electron microscopy of
exosomes extracted from an AD patient. The scale bar equals 100 nm. (B) A representative plot of size/concentration determined with nanoparticle tracking analysis
for plasma exosomes derived from an AD patient.

FIGURE 2 | Protein concentrations of plasma neuronal-derived exosomes detected with ELISA. (A) Median CD81 level was lower in patients with AD compared to
HCs. (B) Median normalized TDP-43 concentration was higher in patients with AD compared to HCs. AD, Alzheimer’s disease; HC, healthy control.

IQR 5.35–7.26 ng/ml, Mann-Whitney U = 91.0, P = 0.01) than
the HC group (Figure 2A). Normalized plasma neuronal-derived
exosomal concentration of TDP-43 was higher in patients with
AD compared to HCs (median 1.08 ng/ml, IQR 0.72–1.37 ng/ml
vs. median 0.66 ng/ml, IQR 0.48–0.76 ng/ml, Mann-Whitney
U = 71.0, P = 0.002) (Figure 2B).

The Association Between TDP-43 and
Cognitive Function, Neuropsychiatric
Symptoms, and APOE Genotype in
Patients With AD
Z scores for all cognitive domains, including memory, language,
attention and information processing speed, executive function,
and visuospatial function, were prominently decreased in

patients with AD compared with HCs. TDP-43 level in NDEs did
not correlate with the total MMSE score or the Z score of any
cognitive domain, after controlling for age, sex and educational
level (Table 2).

There was no significant difference in neuronal-derived
exosomal concentration of TDP-43 between AD patients with
and without symptoms of any neuropsychiatric cluster according
to the NPI, including psychosis (medians 0.78 ng/ml vs. 1.10
ng/ml), hyperactivity (medians 1.15 ng/ml vs. 1.00 ng/ml), affect
(medians 0.91 ng/ml vs. 1.26 ng/ml), apathy/vegetative (medians
1.08 ng/ml vs. 1.04 ng/ml) and motor disturbance (medians 1.06
ng/ml vs. 1.10 ng/ml) (Figures 3A–E).

TDP-43 level did not differ between APOE ε4 carriers (median
1.10 ng/ml) and non-carriers (median 1.06 ng/ml) in patients
with AD (Figure 3F).

Frontiers in Aging Neuroscience | www.frontiersin.org 4 June 2020 | Volume 12 | Article 166

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-00166 June 2, 2020 Time: 22:41 # 5

Zhang et al. Elevated Exosomal TDP-43 in AD

TABLE 2 | Correlation between TDP-43 level and cognitive function in
patients with AD.

Score r P

MMSE 16.33 ± 6.14* 0.062 0.791

Memory −3.38 ± 1.36** 0.304 0.181

Language −2.29 ± 1.81** 0.067 0.772

Information processing speed −2.37 ± 1.42** 0.056 0.809

Executive function −1.79 ± 0.90** 0.161 0.485

Visuospatial function −3.22 ± 2.14** 0.143 0.537

AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination. *Raw score of the
MMSE. **Z score of the cognitive domains.

DISCUSSION

TDP-43 has been increasingly recognized as an independent
proteinopathy associated with an amnestic syndrome that can
mimic AD, as well as a common neuropathological comorbidity
in patients with AD. In the present study, we demonstrated that
TDP-43 level in NDEs from plasma is elevated in patients with
AD. However, we did not observe any correlation between TDP-
43 level and cognitive function, neuropsychiatric symptoms or
APOE genotype in AD.

It has been reported that TDP-43 pathology is strongly
correlated with advanced AD and arteriosclerotic pathologies
in the aged human brain according to a neuropathology data
set study (Katsumata et al., 2018). We found that TDP-
43 level was increased in patients with AD compared to
cognitively healthy individuals through analysis of plasma NDEs,
which may reflect neuropathological status. Our present finding
supports previous studies that TDP-43 pathology could be a
common comorbidity in patients with AD. Recently, it has
been observed that there is a correlation between TDP-43
burden and Aβ deposition (Wennberg et al., 2018; Bayram
et al., 2019) and increased hippocampal TDP-43 pathology is
associated with advanced tau neurofibrillary tangle pathology
(Smith et al., 2018) in patients with AD. Moreover, TDP-
43 contributed to reducing plaque burden and increasing
pre-fibril oligomers of Aβ (LaClair et al., 2016) as well as
exacerbating tau aggregation (Davis et al., 2017) in an APP/PS1
mouse background.

TDP-43 has been found to be associated with cognitive
decline and dementia conversion in a cohort of older persons
without dementia at study entry (Wilson et al., 2013). However,
the correlation between TDP-43 and cognitive deficits in
patients with AD has not been established. We did not
find a relationship between TDP-43 level in plasma NDEs
and global cognition measured with the MMSE, or any
specific cognitive domain, including memory, language,
attention and processing speed, executive function, and
visuospatial function. The current National Institute on
Aging and Alzheimer’s Association (NIA-AA) research
framework posits that the decline in cognitive function of
AD is mainly attributable to the interaction of amyloid
plaques, neurofibrillary tau deposits and neurodegeneration

(Jack et al., 2018) in which TDP-43 is involved but may not
be a determinant.

In the present study, TDP-43 level was not associated with
any cluster of neuropsychiatric symptoms measured with the
NPI, including psychosis, hyperactivity, affect, apathy/vegetative,
and motor disturbance. A few previous studies focused on
the contribution of TDP-43 to BPSD in patients with AD,
but the findings were inconclusive. For instance, TDP-43 was
observed to be a risk factor for agitation/aggression assessed
by the NPI-Q in AD patients with high pathology load of
neurofibrillary tangles (Sennik et al., 2017). In another study
using the NPI-Q to evaluate BPSD, TDP-43 was associated with
increased severity of aberrant motor behavior and decreased
severity of depression, and the correlations between TDP-43
and neuropsychiatric symptoms interacted with amyloid and
Lewy body pathologies (Bayram et al., 2019). Additionally,
there was no reported correlation between global TDP-43
pathology and psychosis, which was rated with the Consortium
to Establish a Registry for Alzheimer’s disease Behavioral Rating
Scale. However, TDP-43 in the frontal cortex may have a
protective effect regarding the risk of psychosis in patients
with AD (Vatsavayi et al., 2014). Therefore, the effect of TDP-
43 on BPSD may interact with core AD pathology and other
neuropathological changes, and may be dependent on the brain
region of its accumulation.

It has been observed that APOE ε4 is associated with TDP-
43 burden in community-based individuals (Yang et al., 2018)
and patients with AD (Josephs et al., 2014b, 2017) according
to post-mortem studies. In another study, although APOE ε4
was directly correlated with TDP-43, this effect was mediated
by Aβ and tau (Wennberg et al., 2018). However, we did
not identify a relationship between APOE genotype and TDP-
43. From our point of view, the effect of APOE genotype on
TDP-43 accumulation in patients with AD should be carefully
interpreted, since APOE affects core AD neuropathology
and cerebrovascular disease, both of which also interact
with TDP-43.

In the present study, all participants were recruited from
our prospective research study, and all patients with AD
had a biomarker-supported diagnosis with PiB PET. However,
there are some limitations to our study. L1CAM was used
to extract NDEs from plasma, however, it is not exclusively
expressed in the CNS, but also in other tissues including skeletal
muscle and fat. In addition, the concentration of exosomes
identified by CD81 was different between the AD patient
group and the HC group, although we standardized TDP-
43 level with CD81 for subsequent analysis. This discrepancy
could be partly explained by the impact of APOE ε4, which
has been observed to reduce exosome expression in mouse
and human brain tissues (Peng et al., 2019). In this study,
54.2% of AD subjects were APOE ε4 carriers, compared
with only 13.3% of HCs. Moreover, the antibody used in
this study recognizes full length TDP-43 protein. We did
not assay specific forms of TDP-43, such as phosphorylated
or truncated fragments, which should be explored in future
investigations. Furthermore, some neuropsychological testing
scales have “floor effects” and “ceiling effects.” For instance,
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FIGURE 3 | The comparison of TDP-43 concentration between patients with and without specific neuropsychiatric symptom clusters, and APOE ε4 carriers and
non-carriers in AD. (A–E) There were no correlations between TDP-43 and psychosis, hyperactivity, affect, apathy/vegetative, and motor disturbance measured with
NPI in patients with AD (P > 0.05). (F) The difference in TDP-43 level between APOE ε4 carriers and non-carriers of AD patients was not statistically significant (P >

0.05).

several AD patients were unable to complete the TMT-B
task within the set time of 300 s; on the other hand, some
items were scored 0 for the NPI in very mild patients. These

effects may have affected the correlation analyses between
TDP-43 and cognitive function and neuropsychiatric symptoms.
Finally, the samples size was relatively small, especially for
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the HCs. Our findings need to be validated in a large
population cohort.

CONCLUSION

TDP-43 level in plasma NDEs is increased in patients with
AD. Although we did not find any correlation between TDP-
43 level and cognitive function, neuropsychiatric symptoms or
APOE genotype in patients with AD, the relationship between
TDP-43 pathology, cognition and BPSD is complicated, and
may interact with other neuropathology in the AD context. The
measurement of TDP-43 in plasma NDEs is a promising non-
invasive biomarker with the potential to provide insight into the
role of TDP-43 in neurodegeneration and progression in AD.
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