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Macrophages are a population of immune cells functioning in antigen presentation and
inflammatory response. Research has demonstrated that macrophages belong to a cell
lineage with strong plasticity and heterogeneity and can be polarized into different
phenotypes under different microenvironments or stimuli. Many macrophages can be
recruited by various cytokines secreted by adipose tissue. The recruited macrophages
further secrete various inflammatory factors to act on adipocytes, and the interaction
between the two leads to chronic inflammation. Previous studies have indicated that
adipose tissue macrophages (ATMs) are closely related to metabolic diseases like obesity
and diabetes. Here, we will not only conclude the current progress of factors affecting the
polarization of adipose tissue macrophages but also elucidate the relationship between
ATMs and human diseases. Furthermore, we will highlight its potential in preventing and
treating metabolic diseases as immunotherapy targets.
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INTRODUCTION

Obesity is caused by the excessive accumulation of lipids in adipose tissues. In recent years, obesity
has become the causing factor of many chronic diseases, including type 2 diabetes mellitus (T2DM),
hypertension, cardiovascular and cerebrovascular diseases, and breast cancer, thus posing a burden
on not only patients’ health and finance but also social, medical system (1–4). Apart from storing
nutrients, adipose tissue is also an important immune organ containing many immune cells, among
which macrophages function in maintaining immune levels. “Obesity is metabolic inflammation”
was first proposed by Spiegelman in 1993 (5). It was not until 2003 that researchers discovered
macrophage markers in the adipose tissue of obese animals, finding that the higher the macrophage
content, the higher the obesity level of the animal (6). The traditional theory holds that macrophages
in peripheral tissues are derived from monocytes in the blood (7). Visceral adipose tissue (VAT), a
type of white adipose tissue (WAT), is the primary location of inflammatory response in obesity.
Although many immune cells participate in the inflammatory response, adipose tissue macrophages
(ATM) are considered the most important and characteristic immune cells (8). The proportion of
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macrophages in total cells in normal adipose tissue is only 10%,
but it can reach 50% in obese people (6). Based on the difference
in function and activation markers, macrophages are divided
into pro-inflammatory M1 and anti-inflammatory M2, with M1
macrophages contributing mostly to the increase in obesity
(8–10).

T2DM poses a serious threat to human health, with 80% of its
patients caused by overweight or obese. Insulin resistance
(Figure 1), a common pathological feature of obesity, occurs
when organs are insensitive to insulin stimulation, leading to high
blood sugar levels, thus causing diabetes (11–13). Obesity and age-
related factors are major risk factors for insulin resistance (14).
Obesity stimulates NF-kB, JNK, and other signaling pathways to
promote the expression of inflammatory factors, thus influencing
the insulin signaling pathway and causing insulin resistance (15).
Here, we will summarize the role of ATMs in human diseases and
mainly focus on obesity and T2DM, thus providing new insight
into the treatment of these diseases as therapeutic targets.
OVERVIEW OF ATMS

Macrophages are pivotal in the body’s immune system, and they
are distributed in various tissues and organs throughout the
body, including adipose tissue. Hematopoietic progenitor cells
(HPCs) in the bone marrow can differentiate into monocytes
upon being stimulated by various cytokines, which will transfer
to VAT through the bloodstream to form ATM, thus producing
corresponding inflammatory mediators and promoting HPC
differentiation (16). Previous studies have shown that ATM
Frontiers in Immunology | www.frontiersin.org 2
mostly appears during embryonic development and will
polarize into different phenotypes based on environment, like
body weight (17, 18). When an individual is obese, macrophages
are often polarized to a pro-inflammatory type, the M1 type (19,
20). With the induction of lipopolysaccharide and saturated fatty
acid, M1 macrophages can activate and secrete tumor necrosis
factor a (TNF-a), interleukin-6 (IL-6), interleukin-12 (IL-12),
interleukin-1b (IL-1b) and other pro-inflammatory factors,
leading to inflammation and insulin resistance (Table 1) (21).
ATM manifests as an anti-inflammatory type when the
individual is thin, namely the M2 type. Both M1 and M2 types
have CD11b molecules on the surface. In addition, the M1 type
expresses CD11c molecules, and the M2 type expresses CD206,
CD301, and macrophage galactose type C-type lectin 1
specifically (29). Different from the M1 type, ATM undergoes
the M2 type polarization with the induction of IL-4 and IL-13
and secretes anti-inflammatory mediators such as IL-10 and IL-1
receptor antagonists to play an anti-inflammatory role and
maintain insulin sensitivity (21, 22).
MECHANISMS OF ATMS POLARIZATION
AND RECRUITMENT

M1 Recruitment and Polarization
M1 macrophages are activated by helper T lymphocyte Th1
cytokines such as interferon, TNF, and LPS (lipopolysaccharide).
The pathogenesis of obesity is closely related to the recruitment
of ATMs polarized to the pro-inflammatory M1 phenotype (23).
The proportion of CD11c-positive monocytes in obese patients
FIGURE 1 | Mechanisms of insulin resistance.
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was higher than that of normal people, which would decrease
after a low-fat diet (30). Therefore, identifying the factors that
can polarize ATMs to M1 and recruit macrophages to peripheral
tissues in the process of obesity is of great significance for the
prevention and treatment of obesity. Accumulating studies have
indicated that various signaling pathways contribute to the
recruitment and polarization of M1 ATMs during the
progression of obesity.

MAPK (Mitogen-activated protein kinase) is a family of
serine-threonine protein kinases that can be activated by
different extracellular stimuli and cell adhesion, including four
subfamilies: ERK, P38, JNK, and ERK5, and it is significant in the
pathophysiological process of obesity (31). An early study
observed the overexpression of the genes involved in p38 and
JNK signaling pathways in adipose tissue of obese people (32).
An animal study in mice showed that the increase of M1 ATMs
proportion is achieved by increasing mRNA transcription and
protein expression levels of JNK (33). In a classical study, the
researchers constructed a JNK KO mouse, then fed JNK
knockout mice and WT mice with a normal diet and a high-
fat diet, and found that high-fat feeding increased ATMs in WT
mice had few effects on KO mice (34). Moreover, the increase of
macrophages in WT mice was attributed to a significant increase
of M1 macrophages, while the numbers of M1 and M2
macrophages in KO mice did not show significant changes.
Furthermore, the expression of M1-related genes was down-
regulated, and the expression of M2-related genes was up-
regulated in KO mice. These data together suggest that the
activation of the MAPK signaling pathway may be related to
the polarization of ATMs towards the M1 type.

Toll-like receptors are a class of innate immune receptors that
are widely expressed on the surface of monocytes, macrophages,
and lymphocytes, among which TLR-4 contributes to the LPS
response (35). A previous study found that the transcription level
of TLR4 mRNA in obese patients was remarkably higher than
that in normal people, suggesting that the activation of the TLR-4
receptor may be related to the infiltration of ATMs in the process
of obesity (36). Results from different labs confirmed that TLR-4
receptor deficiency reduces inflammation in adipose tissue, and
TLR-4 has a positive role in the polarization of ATMs towards
M1 (37, 38).

The transcription factor NF-kB is the main regulator of
immune homeostasis and inflammation, discovered 30 years
ago (39). Studies have demonstrated that activation of NF-kB
signaling could facilitate the M1 polarization of macrophages in
3T3-L1 cell lines (40, 41). Other studies have shown that
inhibiting NF-kB signaling can promote the release of IL-10
and other anti-inflammatory factors from ATMs (42). In
addition, Cao et al. also observed this phenomenon in the
Frontiers in Immunology | www.frontiersin.org 3
mouse model (43). These studies strongly demonstrate that
NF-kB can mediate the polarization of ATMs towards M1.

In addition to the above signaling pathways, other factors can
also lead to the polarization of ATMs towards M1, including
lysosomes and the AMPK signaling pathway (44–47), indicating
that the polarization of ATMs towards M1 is a complex process
with the coordination of multiple pathways, which needs
further investigation.

M2 Recruitment and Polarization
Th2 cytokines can activate anti-inflammatory M2 macrophage in
three ways: M2a subtypes activated by IL-4 and IL-13; M2b
subtype activated by immune complexes combined with IL-1b or
bacterial lipopolysaccharide; M2c subtype induced by IL-10,
TGFb or glucocorticoids. During the process of inflammation
resolution, M1 phenotype macrophages are polarized towards
the M2 phenotype and are accompanied by the recruitment of
M2 phenotype macrophages. Nuclear receptor transcription
factors are significant in macrophage polarization, such as
PPAR family members.

PPARg is highly expressed in anti-inflammation macrophages
and is important (48, 49). Previous research has found that
activation of PPARg can promote the conversion of M1 type
macrophages to M2 type macrophages, improve insulin
resistance caused by obesity, and reduce the expression of
inflammatory factors (50, 51). After specific activation of
PPARg signaling in mice, it was found that the number of M1
macrophages in ATMs decreased along with the expression of
M1-related genes, and the number of M2 macrophages
increased, along with the expression of M2-related genes (52,
53). Furthermore, the ex vivo therapy model also demonstrated
that activation of PPARg signaling could induce the polarization
of macrophages toward M2 macrophages and induce the
recruitment of M2 macrophages (54). The above studies
demonstrate that PPARg is involved in ATM polarization
towards M2 and M2 macrophage recruitment.

Previous studies also prove that adiponectin can promote the
M2 polarization of macrophages (55). After adiponectin
knockout in mice, the expression of M1-related genes was up-
regulated, and the expression of M2-related genes was down-
regulated. In addition, recombinant adiponectin can up-regulate
the expression of M2-related genes as well (56). These results
suggest that adiponectin can facilitate the polarization of adipose
tissue macrophage towards M2.

IL-4 secreted by immune cells in adipose tissue can also
mediate M2 polarization (24). Overexpression or knockout of IL-
4 was shown to up-regulate or down-regulate the expression of
M2-related genes, respectively (25). These studies demonstrate
that IL-4 can mediate adipose tissue macrophage polarization
TABLE 1 | Properties of adipose tissue macrophages.

Properties M1 macrophages M2 macrophages Refs

Inducer TNF, LPS, Interferon IL-4, IL-10, IL-13, IL-1b, TGFb, LPS, Glucocorticoids (21–28)
Secreted factors TNF-a, IL-6, IL-12, IL-1b Antagonists of IL-1 and IL-10 receptor (21, 22)
Cell surface factor CD11c CD206, CD301 (29)
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toward M2. Some subsequent studies also found that cytokines
such as IL-10, IL-13, and IL-33 can also mediate the polarization
of macrophages towards the M2 phenotype (26–28).
ATMS AND OBESITY

In the obese state, the adipose tissue is under low-intensity
inflammation, and the infiltration of ATMs in it is significantly
increased to a percentage of 41% compared to a normal state,
accompanied by M1 polarization (6). The histological method
shows that many M1 type ATMs gather around the dying
adipocytes, and crown-like structures (CLSs) appear, associated
with obesity-related insulin resistance (57). Further studies have
shown that Mincle (macrophage-inducible C-type lectin) in
ATMs is involved in the formation of CLSs, and its expression
level is positively related to adipose tissue interstitial fibrosis, thus
promoting liver fibrosis, progression of hepatic steatosis, and
insulin resistance (58–60).

During obesity, ATM is stimulated by inflammatory factors
such as IFN-g, leukotriene B4 (LTB4), and monocyte
chemoattractant protein-1 (MCP-1) released by fatty tissue,
followed by M1 polarization (8, 61). Previous studies also found
that the expression of IL-6, monocyte MCP-1, resistin, lipase
(Adip-sin), leptin, and other factors in obese adipose tissue is
up-regulated, which increases the expression of vascular
Frontiers in Immunology | www.frontiersin.org 4
endothelial cell adhesion molecules, thus recruiting monocytes in
the blood, and promoting the infiltration of ATMs (Figure 2).
Further studies confirmed that MCP-1 recruits ATMs through
CCR2, while LTB4 recruits ATMs through its receptor BLT1 (62–
64). The M1 type ATM secretes inflammatory factors such as IL-6,
TNF-a, IL-1b, MCP-1, and PAI-1 (plasminogen activator
inhibitor-1), which further increase ATM levels and maintain
the M1 phenotype, thus forming a vicious circle. Studies have
shown that the occurrence of various obesity-related chronic
diseases, such as type 2 diabetes and atherosclerosis, are
inseparable from inflammatory factors such as IL-6 and TNF-a
(65, 66). In addition, in a previous study, Shimizu et al. verified that
neuronal guidance molecules are also involved in the recruitment
of ATMs, such as Sema3E, which can promote adipose tissue
inflammation through its receptor PlexinD1 (67). Other molecules
such as osteocalcin are also involved in the recruitment of ATMs
and the progression of adipose tissue inflammation and may be
targeted for intervention in metabolic-related diseases such as
obesity (68). There is also a positive feedback loop between
ATMs derived from blood monocytes and myeloid progenitors
in bone marrow tissue. The NLRP3 inflammasome of ATMs is
activated to stimulate myeloid progenitor cells to differentiate into
monocytes and neutrophils by secreting IL-1b, and intervening in
this circuit can reduce adipose tissue inflammation (16). Besides,
Zhuang et al. found that miR-223 can inhibit the polarization of
ATM toM1 type and ultimately inhibit the inflammatory response
FIGURE 2 | Changes of macrophages in adipose tissue in obesity. There are a small number of M2 macrophages in normal adipose tissue. When obesity occurs,
blood monocytes accumulate in adipose tissue. Under the induction of the MCP1 factor secreted by adipose tissue, monocytes differentiate into M1 macrophages.
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of adipose tissue while knocking out the miR-223 gene can
aggravate the inflammatory response and increase the
proportion of M1 type in ATM (69). Other studies have shown
that adipose tissue inflammatory response is closely related to the
b1 subunit of AMPK, and the results suggest that these molecules
and enzymes may provide new entry points for future obesity
treatment (70). Another study showed that IL-6 could induce the
IL-4 receptor expression of ATM. ATMwas significantly polarized
towards the M1 type in mice that did not express the IL-6R a
chain, suggesting that IL-6 may affect ATM polarization, reducing
inflammation in adipose tissue (71).

Growing evidence has indicated that macrophages have a
greater impact on the remodeling process of adipose tissue. First,
the adipose tissue of obese animals has a higher number of
macrophages, which are an important component of adipose
tissue. In addition, M1 macrophages can produce some
inflammatory mediators and reactive oxygen that have a certain
impact on the structure and function of adipocytes. These
substances will affect the normal metabolism of adipocytes and
increase the release of free fatty acids (FFA), leading to increased
lipotoxicity and reduction in the synthesis and secretion of
adiponectin (72). Compared with normal mice, adipocyte death
was significantly increased in mice with higher fat content, and a
similar situation occurred in obese people, indicating that an
important pathological manifestation of obesity is adipocyte
death (73). A study of adipose tissue of obese patients showed
that after adipocyte apoptosis, ATM surrounded it with a coronal
structure, forming huge multinucleated cells, but this phenomenon
was not observed in the adipose tissue of non-obese people (20).
Therefore, the infiltration and activation of ATM during obesity is
a powerful mechanism of adipose tissue remodeling.

In addition to the abnormal recruitment and polarization of
ATMs in the adipose tissue of obese animals, their emigration is
also abnormal, which is mediated by signaling molecules such as
chemokines and neural guidance molecules. One previous study
reported that Netrin-1 was up-regulated in ATMs of obese
patients and mouse models, thus inhibiting the migration of
ATMs through its receptor Unc5b (74).

M1 type ATMs are considered pro-inflammatory phenotypes
in adipose tissue, and M2 type ATMs are considered anti-
inflammatory phenotypes, but ATMs cannot be mechanically
recognized in practice. A growing number of studies have shown
that ATMs have multiple origins, with their functions spanning
pure pro- or anti-inflammatory effects, and they are highly
plastic and can achieve phenotypic transformation under
specific circumstances, which can be therapeutic targets in the
future (75, 76).
ATMS AND IR, T2MD

More and more studies have demonstrated that ATMs are
important in IR and T2MD. Next, we will clarify the
relationship between ATMs and IR and T2MD (Figure 3).

In a previous study, scientists demonstrated that M1
macrophages could aggravate insulin resistance, and CD11c+
Frontiers in Immunology | www.frontiersin.org 5
cell depletion led to decreased adipose tissue inflammation and
rapid normalization of insulin sensitivity (77). In another study,
scientists observed that CD11c+ ATM ablation could reduce
adipose tissue inflammatory gene expression and improve
insulin resistance in the Ccr2 KO mice model (78). It can be
seen that CD11c+ ATM infiltration of adipose tissue is one of the
reasons for insulin resistance, where increasing FFAs may
aggravate insulin resistance. Fetuin-A is a glycoprotein secreted
by the liver, and its plasma concentration increases in obesity (79).
With the mediation of Fetuin-A, FFAs can indirectly activate
TLR4 of CD11c+ ATM so that nuclear factor downstream of TLR4
inhibits the phosphorylation of protein kinase b/nuclear factor-B
(IKKb/NF-kB) and c-Jun N-terminal kinase-activator protein 1
(JNK/AP-1) inflammatory signaling pathway, enhancing
inflammatory gene expression and secreting more inflammatory
factors like TNF-a, IL-6, and MCP-1. Some studies have found
that FFAs also activate TLR2 of ATM to participate in insulin
resistance (80). Physiologically, insulin mediates the tyrosine
phosphorylation of the insulin receptor substrate (IRS) through
the insulin receptor, thus enhancing the downstream PI3K/Akt
signaling pathway, promoting glucose uptake, and exerting the
hypoglycemic effect. However, activated IKKb and JNK can cause
insulin resistance through IRS serine phosphorylation and
blockage of IRS tyrosine phosphorylation and the downstream
PI3K/Akt pathway (81). In addition, inflammatory factors secreted
by macrophages, such as TNF-a, can further activate
inflammatory pathways such as IKKb/NF-kB, JNK/AP-1, and
mTOR signaling pathway, forming a vicious circle (82).

Saturated fatty acids are also involved in insulin resistance.
The researchers found that knockout of the CGI-58 (comparative
gene identification-58) gene in obese mouse macrophages
resulted in mitochondrial dysfunction and reactive oxygen
species-mediated oxidative stress in ATM, resulting in the
activation of NLRP3 inflammasome and downstream caspase-
1, leading to the exacerbation of insulin resistance and
hyperglycemia (83). NLRP3 inflammasome is a protein
complex in the cell cytoplasm, a member of the NLRs family,
and its expression is increased in the adipose tissue of obese
diabetic patients (84). Activated NLRP3 inflammasome and
downstream caspase-1 do not affect the ratio of M1/M2 in
adipose tissue but promote the secretion of IL-1b and IL-18,
leading to insulin resistance (84).

Unlike the M1 type, M2 type ATMs secrete the anti-
inflammatory factor IL-10, thus inhibiting inflammation and
enhancing insulin resistance (85). Therefore, activating factors of
M2 macrophages also indirectly affect insulin sensitivity. PPARg
is a fatty acid sensor widely expressed in M2 ATMs, which
mediates the activation of monocytes’ polarization towards M2
macrophages (86, 87). With the PPARg gene knocked out in
obese mice, the expression levels of related genes in M2 type
macrophages in adipose tissue decreased by 70% to 80%, while
the expression levels of inflammatory genes in M1 type
macrophages increased, accompanied by insulin resistance and
exacerbated hyperglycemia, suggesting that PPARg is vital in
maintaining M2 macrophage phenotype and recovering insulin
sensitivity (86). KLF4, as another M2-related cytokine, can
June 2022 | Volume 13 | Article 908749
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synergize with IL-4 to activate STAT6 and inhibit the NF-kB
signaling pathway, thus activating M2 type polarization and
inhibiting M1 type polarization (88). Knockout of KLF4 in
macrophages of obese mice would decrease the proportion of
M2 type ATMs and worsen insulin resistance and hyperglycemia
(88). In addition, compared with normal people, the expression
level of KLF4 in subcutaneous adipose tissue of obese patients
decreased by 50%, which may be one of the reasons for the
increased M1/M2 ratio in adipose tissue.

In addition, ATM can secrete an exosome (Exos) containing
microRNA (miRNA). Intravenous injection of ATM-secreted Exos
(ATM−Exos) from obese mice into normal mice for 2 weeks
resulted in impaired glucose tolerance and IS, suggesting the
occurrence of T2DM. In contrast, when ATM-Exos from normal
mice were injected into obese mice, their glucose tolerance and IS
were significantly improved, and the overexpression of miR-155 in
obese mice ATM-Exos inhibited the expression of its downstream
IS-promoting target gene PPARg, thereby impairing insulin
signaling, leading to IR (89). Another study found that miR-29a
was overexpressed in ATM-Exos of obese mice and transferred to
adipocytes, cardiomyocytes, and hepatocytes, causing IR (90). ATM
−Exos can be paracrine to insulin target cells, impacting intracellular
insulin and glucose homeostasis. However, there are hundreds of
miRNAs in ATM−Exos, and none of them affects IS alone, which
may be that multiple miRNAs work together to affect adipose tissue
metabolism. The above studies have shown that ATMs secrete
exosomes carrying miRNAs, which can be transported to insulin
target cells through paracrine or endocrine mechanisms,
Frontiers in Immunology | www.frontiersin.org 6
significantly enhancing the action of intracellular insulin,
improving insulin sensitivity and overall glucose homeostasis.

Obesity is closely related to T2MD observed in clinical practice
(91). Recent studies suggest that ATMs and the inflammatory
response play a bridge role in this process (63, 69). The c-Jun N-
terminal kinase (JNK) signaling pathway is significant in obesity-
related metabolic responses. In a high-fat diet-induced obesity
mouse model, although macrophage-specific JNK knockout did
not affect the bodyweight of mice, it reduced ATMs infiltration and
improved insulin sensitivity, and JNK knockout could inhibit the
polarization of ATMs towards M1 (34). These suggest that ATMs-
related inflammatory responses, rather than obesity itself, contribute
to the development of obesity-related T2MD.

Further studies have shown that ATMs are involved in obesity-
related T2MD by secreting cytokines such as upd3. Studies in
Drosophila have shown that depletion of macrophages or
macrophage-specific knockout of upd3 can inhibit the activation
of the JAK-STAT signaling pathway, thus increasing insulin
sensitivity without affecting body weight (92). Mincle in ATMs
plays a role in the formation of CLSs and participates in obesity-
related insulin resistance (58). Furthermore, the inflammatory
cytokines secreted by ATMs may be causative factors leading to
insulin resistance and T2MD. In addition, PAI-1 blood levels were
significantly increased in obese individuals, and further studies
confirmed that it was derived from ATMs stimulated by free fatty
acids (93). It is worth noting that breaking the link between ATMs
and NK cells, CD8+T cells, and myeloid progenitor cells can
inhibit ATMs-mediated inflammatory response and ultimately
FIGURE 3 | Related mechanisms of adipose tissue macrophages and type2 diabetes mellitus. White adipose tissue acquires insulin resistance under the action of
M1 macrophages. When the body is exercising or dieting, M2 macrophages can induce the transformation of white adipose tissue into brown adipose tissue,
allowing it to regain insulin sensitivity.
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reduce insulin resistance, which may bring light to the treatment
of T2MD (16, 94, 95).
ATMS AND CLINICAL THERAPY

Metformin is still the first-line T2MD drug especially caused by
obesity. Since macrophages are involved in insulin resistance, they
are likely to be ideal targets for treating metabolic diseases. The
strategy is to regulate the inflammation-related signaling pathways
in macrophages, thus inhibiting their polarization toward M1 and
reducing macrophages’ production of inflammatory factors. Some
small interfering RNAs and small molecule drugs block the activity
of M1 macrophages by inhibiting NF-kB, JNK, and other signaling
pathways in macrophages, reducing their infiltration in adipose
tissue, thereby improving the body’s sensitivity to insulin (96, 97).
Nevertheless, the models used in most studies are mice, which did
not enter clinical trials.

However, most clinical research reduces the level of
inflammatory factors secreted by macrophages through
inflammatory factor inhibitors to treat insulin resistance. TNF-a
is the first pro-inflammatory cytokine involved in insulin resistance,
but limited data can show that TNF-a is involved in glucose
regulation in humans. Early research suggested that short-term
administration of a single TNF-a antagonist could not modulate
blood glucose homeostasis (98, 99). However, 50 patients with
obesity-related metabolic diseases were treated with TNF-a
inhibitor etanercept for 6 months, which could significantly
improve fasting blood glucose and increase adiponectin content
in blood (100). The mechanism by which TNF-a inhibitors
improve blood sugar still needs further investigation.

The interaction of CCR2 with its ligandMCP-1 affects monocyte
migration into tissues and regulates monocyte-to-macrophage
differentiation, producing pro-inflammatory cytokines and
amplifying adipose tissue inflammation (20). Accumulating
studies in mice have demonstrated that CCR2 selective inhibitors
or CCR2/5 inhibitors can significantly improve type 2 diabetes
(101–104). Combined with CCR2 inhibitors, metformin can treat
diabetes by lowering blood sugar and inhibiting inflammation. A
clinical trial involving 332 diabetic nephropathy patients showed
Frontiers in Immunology | www.frontiersin.org 7
that based on standard treatment, taking the CCR2 selective
inhibitor, CCX140-B, could further reduce urinary protein and
protect the kidneys. Compared with the placebo group, fasting
blood glucose levels were significantly lower in the inhibitor group
compared to the placebo group, although there was little change in
HbA1C level (102). TRIM29 inhibits the secretion of IL6 and CCL2/
5 in alveolar macrophages (105). CCL2/CCR2 is not the only
pathway affecting the recruitment and differentiation of
macrophages. The chemokine regulatory network is very
complex, with CCR1-CCL3/4/5, CX3CR1-CX3CL1, and CXCR3-
CXCL10 involved in macrophage differentiation. Therefore,
utilizing CCR2 inhibitors to regulate macrophages to improve
insulin resistance requires the support of more clinical trial data.
CONCLUDING REMARKS AND
PERSPECTIVES

The infiltration of pro-inflammatory macrophages in adipose tissue
increases in obesity, and many inflammatory factors are secreted,
resulting in adipose tissue inflammation. Inflammatory responses
inhibit adipocyte insulin signaling, leading to insulin resistance. An
adipose tissue macrophage is a key factor in obesity-induced insulin
resistance by regulating a series of insulin-related and inflammatory
factor-related signaling pathways through paracrine interactions
between adipocytes and macrophages. In recent years, adipose
macrophages have become a research hotspot based on their
important role in insulin resistance. The in-depth study of
macrophages has added new insights to the pathogenesis of
metabolic diseases. In different microenvironments or under
different stimuli, macrophages can show different activation
modes and polarize into subtypes with different functions. Each
subtype is involved in obesity, insulin resistance, T2MD, and other
diseases such as atherosclerosis and severe acute pancreatitis (SAP).
Therefore, the polarization direction of macrophages can be
induced by regulating various factors affecting the polarization of
macrophages, thereby stabilizing the balance between M1/M2 types
of macrophages in vivo, which will make macrophages a potential
new target for the treatment of metabolic diseases and bring a boon
to human health (Figure 4).
FIGURE 4 | Adipose tissue macrophages can be used as a potential therapeutic target for treating obesity and diabetes.
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