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Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer 
long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes 
following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted 
in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, 
these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell 
types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging 
immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response 
upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and 
neurodegenerative diseases, which have an immunological component. This review discusses how immune function, par-
ticularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by 
epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. 
We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging 
process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in 
immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former 
opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With 
all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially 
in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and 
highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the 
aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a 
complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would 
allow for more effective anti-aging strategies.
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Human beings, like all organisms, inevitably age and die. 
Even if science eventually cracked the code for immortality, 
that would not end the need to understand the mechanisms 
of aging and the efforts to slow or revert it. If anything, it 
will be even more critical to maintain the health of all cells 

and organs throughout a long life. Tackling aging is always 
a worthwhile effort to improve the quality of live for the 
middle-aged and elderly populations, especially since the 
human population over 60 years of age is expected to reach 
two billion by 2050 [1].

Infectious diseases of the elderly, especially in low-
income countries, represent a significant social and eco-
nomic burden. The immune system undergoes numerous 
changes as humans age, leaving older individuals more 
prone to disease [2]. The age-related dysregulations in 
the immune system are collectively referred to as “immu-
nosenescence” and include accumulating tissue dam-
age, a low-grade chronic systemic inflammation termed 
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“inflammaging,” impaired immune cell function, inade-
quate response to vaccination, and increased vulnerability 
to infections [3].

The importance of immune memory has perhaps never 
been more evident than during the ongoing coronavirus dis-
ease 2019 (COVID-19) pandemic, which disproportionately 
affected the elderly population due to the altered functional-
ity of their immune system [4]. Thanks to the outstanding 
collaborative effort of governments and scientists, 7 vac-
cines generating effective immune response and protection 
against the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) have been authorized for emergency use by 
World Health Organization (WHO)–recognized authorities 
as of June 2021, and many more are in use with authori-
zations by national regulatory agencies [5]. Due to the 
increased vulnerability of the elderly, they are the priority 
group in COVID-19 vaccination rollouts.

Besides the morbidities caused by infection, the elderly 
also present an increased incidence of metabolic diseases 
such as type 2 diabetes and obesity [6], and neurodegen-
erative disorders such as Alzheimer’s and Parkinson’s dis-
eases [7]. However, the development of these age-related 
conditions is not separated from their aging immunity. All 
systems and organs exchange signals with and are influ-
enced by the immune system. Combining all the accumu-
lating insights from different lines of research is critical to 
drawing up a comprehensive view of aging.

In this review focusing on immune memory, we first 
outline how memory is developed and maintained. Next, 
we delve into metabolic and epigenetic mechanisms, their 
roles in immune memory, how they change with age, and 
the implications for age-related pathologies. As two exam-
ples of the far-reaching impacts of an aging immune sys-
tem, we highlight the interplay of immune memory with 
the gut microbiota and the brain. We end the review by 
presenting the current preventative and therapeutic strate-
gies against aging, approaching from the alternative points 
of view of epigenetic modulation, metabolic intervention, 
microbiota reconstitution, and neuroprotection.

Adaptive Immune Memory

Infections have been one of the primary selective forces 
throughout evolution, so immunological memory has 
evolved to ensure survival when an organism is exposed 
to a pathogen that it encountered before [8]. Until the dis-
covery of non-specific innate immune memory in the last 
decade, the antigen-specific memory established by T and 
B lymphocytes have been getting all the credit for long-
term protection against pathogens.

T Cells: Thymus‑Derived Troops of Immunity

Immunological memory against infections and tumors 
requires the intervention of T cells. T cells can recognize 
both self and non-self antigens through their T cell recep-
tors (TCRs) and mount self-tolerance or immunological 
memory. Different subsets of T cells include naïve T cells 
that recognize new antigens and memory T cells that are 
formed upon former exposure to antigen and assure long-
lasting immunity.

T Cell Development

T cells derive from the hematopoietic stem cells (HSCs) in 
the bone marrow but mature in the thymus. Most mature T 
cells reside in lymphoid tissues, but they are ubiquitously 
present throughout the body. After lymphoid progenitors 
migrate from bone marrow to the thymus, TCR gene rear-
rangement occurs, and  CD4+  CD8+ double-positive cells 
expressing both co-receptors are generated. Then, these 
cells undergo positive selection based on TCR-antigen 
interactions and differentiate into naïve single positive 
 CD4+ helper or  CD8+ cytotoxic T cells, which are released 
into the periphery [9].

Most of our knowledge on T cell development origi-
nates from mouse studies. However, there are substan-
tial differences between mice and humans. For instance, 
although the peripheral naïve T cell pool is almost exclu-
sively provided by the thymus in mice, humans primarily 
sustain it by peripheral cell division [10].

When a naïve cell recognizes an antigen presented by 
antigen-presenting cells (APCs) such as dendritic cells 
(DCs) and macrophages, they proliferate and develop into 
effector cells that can clear the source of the antigen, likely 
a pathogen. A small portion of these effector cells later 
become memory cells to establish long-term immunity that 
can last multiple decades, while the rest die by apoptosis 
[11]. Early in life, before exposure to many antigens, naïve 
T cells constitute most of the T cell pool [12]. Meanwhile, 
regulatory T cells (Treg) are critical for the development of 
tolerance for innocuous antigens in the environment [13].

Around 5% of all adult  CD4+ T cells are Tregs that 
are able to suppress the immune response [12]. Tregs are 
produced in the thymus but can also derive from periph-
eral naïve T cells by acquiring Forkhead Box P3 (FOXP3) 
expression in response to environmental cues [13]. 
Recently, Tregs were shown to acquire memory charac-
teristics, mostly against self-antigens, to prevent unwanted 
inflammation [14].

Memory T cells are divided into three subtypes which 
are central memory (TCM), effector memory (TEM), and 
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stem cell memory (TSCM). Compared to TEMs, TCMs 
have more proliferation capacity and are closer to naïve T 
cells in gene expression profiles [15]. TEMs can perform 
effector functions such as cytokine production. TSCMs are 
a stem cell-like, less differentiated cell type with high self-
renewal capacity and the ability to differentiate into effec-
tor T cells, TEMs, or TCMs [16]. Following TCR stimula-
tion, they are able to secrete interferon gamma (IFN-γ) and 
interleukin 2 (IL-2). The long-lasting, multipotent TSCMs 
might help protect the organism against infections later in 
life when thymic output is low.

Although 90–95% of the effector T cells die after an 
infection resolves, a population of terminally differentiated 
effector cells regaining the naïve T cell marker CD45RA,  
termed TEMRA cells, remain in circulation. These  
senescent-like cells have defects in telomerase expression 
and proliferation; however, they are capable of cytokine pro-
duction and cytotoxicity, unlike exhausted cells [17].

In many tissues such as lungs, intestines, and spleen, 
TEMs are the predominant T cell type [18, 19]. Moreover, 
discrete tissue-resident memory T cell populations (TRM) 
are identified with enhanced expression of adhesion mark-
ers and homing receptors, lower proliferative capacity, and 
higher production ability of pro-inflammatory and anti-
inflammatory cytokines [20]. They can quickly react upon 
tissue injury or infection while also restricting the inflam-
matory damage. Establishing TRMs is a promising approach  
to consider in vaccine design, boosting and prolonging  
vaccine-mediated protection [21–24].

Effects of Aging on T Cells

Lineage differentiation dynamics of HSCs in the bone mar-
row are altered with age. They skew towards myeloid dif-
ferentiation, leading to lower numbers of lymphoid cells 
in the elderly [25]. HSCs also accumulate DNA damage 
throughout life and differentiate into leukocytes with chronic 
DNA damage response [26]. This triggers cellular senes-
cence, which contributes to chronic inflammation by induc-
ing a senescence-associated secretory phenotype (SASP), 
impacting neighboring immune and non-immune cell types. 
Another way that DNA damage can contribute to inflam-
mation is the activation of DNA-dependent protein kinase 
catalytic subunits (DNA-PKcs) that can promote NFκB and 
inflammasome activity [27, 28].

Involution of the thymus is one of the critical age-dependent 
changes in the immune system [29]. It is an evolutionarily con-
served phenomenon in all vertebrates, starting before puberty, 
where the total mass, volume, and cellular content of the thy-
mus shrink [30]. Thymic activity does not entirely cease, at 
least until the sixth decade of life, but thymopoiesis strikingly 
decreases with age [31, 32]. Thymic epithelial cells gradually 
lose the ability to produce IL-7, which is crucial to support 

thymopoiesis [33, 34]. Low thymic output in the elderly is asso-
ciated with increased vulnerability to infections [35]. In a young 
adult, the thymus provides around 16% of the naïve T cell pool, 
the rest of which derives from peripheral proliferation [36]. In 
the elderly, this number falls below 1%, causing them to entirely 
rely on the proliferation of existing naïve T cells.

The decline in the number of naïve T cells and accu-
mulation of terminally differentiated cells are two of the 
hallmarks of T cell aging [36].  CD4+ and  CD8+ naïve cell 
pools, although more markedly for  CD8+ T cells, contract in 
the elderly. Maintenance of naïve T cells through peripheral 
proliferation is more successful for  CD4+ T cells, but  CD8+ 
T cells are largely lost. Interestingly, while this is mostly the 
case in cytomegalovirus (CMV) + individuals in women, it is 
observed in men irrespective of the CMV status [37]. Also, 
CMV + individuals of both sexes have a higher proportion of 
late-differentiated senescent T cells than CMV individuals.

Chronic CMV infection affects most adults, with an 83% 
global seroprevalence rate [38]. Even though it usually does 
not cause active symptoms and is mainly unrecognized, 
CMV presence significantly shapes the T cell compart-
ments and accelerates immunosenescence. Accumulation 
of terminally differentiated T cell types such as TEMs and 
TEMRAs occurs faster in CMV + individuals throughout 
their lifespan [39]. Expansion of  CD8+ TEMRA cells is 
related to impaired antibody production upon influenza vac-
cination in the elderly [40]. Latent CMV infection is also 
associated with inadequate  CD4+ T cell response against 
influenza antigens [41]. Moreover, CMV positivity is associ-
ated with a higher risk of all-cause mortality [42]. Of note, 
CMV + young adults displayed higher antibody responses to 
influenza vaccination, compared to CMV − young individu-
als [43]. In the early stages of the infection, CMV might be 
potentiating immune responses before the accumulation of 
CMV-induced senescent cells pass a certain threshold and 
causes functional impairments.

Not just the numbers but also the receptor diversity of 
naïve T cells are compromised in aged organisms. Naïve 
T cells of a young adult carry around 100 million different 
TCR sequences; however, this repertoire diversity is reduced 
up to tenfold in the elderly [44]. Moreover, memory T cells 
experience a narrowing of TCR repertoires [45], and the 
proliferative capacity of senescent T cells following TCR 
engagement is defective [46]. Activated  CD8+ cells of 
elderly individuals also produce lower levels of cytotoxins 
such as granzyme B and perforin [47]. On the other hand, 
 CD4+ naïve T cells of the elderly seem to maintain their 
differentiation and subsequent cytokine production capaci-
ties [48].

Lastly, differentiation of non-Treg cells into Tregs and 
proliferation of existing Tregs can maintain the Treg pools 
throughout life, despite reduced thymic output with aging. 
However, the balance between T cell subsets is altered: as in 
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other T cell types, the naïve subset declines with age while 
memory Tregs increase [49].

B Cells: Bone Marrow‑Born Battlers

B cells are a vital part of the adaptive immune memory. 
They have several immunological functions, including anti-
body and cytokine production, antigen presentation, and 
regulation of T cell responses [50]. Most vaccines mainly 
target and rely on B cell activation by inducing long-lived 
plasma and memory B cell proliferation[51]. However, aging 
affects the functional capacity of existing B cell subsets dras-
tically, which is evident from the susceptibility to diseases 
and poor vaccine responses [52].

B Cell Development

B cells continuously arise from the hematopoietic stem cells 
(HSCs) and develop in the bone marrow (BM) [53]. HSCs 
generate multipotent progenitors that eventually diverge to 
common lymphoid progenitors (CLPs). Certain environmental 
cues, transcription factors (TFs), cytokines, and chemokines 
lead CLPs to differentiate into B-cell lineage. Following differ-
entiation, cells undergo a rearrangement in the variable regions 
of the immunoglobulin (Ig) genes and start to express B-cell 
receptors (BCRs) and IL-7 receptor (IL-7R) [54]. Each B cell 
has a unique BCR with a different specificity to antigens.

B cells that finish their developmental process in the bone 
marrow are called transitional (TR) B cells. They make 4% 
of all B lymphocytes in healthy individuals [55] and are 
found in several places, including the bone marrow, periph-
eral blood, and secondary lymphoid tissues. Transitional B 
cells become either marginal zone (MZ) or mature follicular 
(FO) cells partly based on the strength of their BCR signal-
ing. Cells with more robust signaling tend to develop into 
follicular type, while weaker signaling drives them to be MZ 
cells [56]. FO B cells have a broad immunoglobulin reper-
toire and are located in the follicles close to T cell zones 
[57]. Therefore, they are suited for getting T-cell help and 
becoming short-lived plasma cells. On the other hand, MZ B 
cells can get activated easier than FO B cells, which quickly 
allow them to produce immunoglobulin M (IgM) or induce 
class switching without T-cell help [58].

The third naïve B cell subset is B-1 cells, which are con-
sidered part of the innate immune system [59, 60]. Apart 
from the other B cell subsets developed in the bone marrow, 
B-1 B cells originate from a distinct progenitor in the fetal 
bone marrow [61]. They are mainly found in peritoneal and 
pleural cavities; however, low numbers can also be located 
in secondary lymphoid organs. During an infection, they 
act by producing non-specific antibodies that are crucial for 
early defense [62, 63].

Advancing age alters the entire course of B cell develop-
ment, the abundance of distinct B cell subsets, and their 
function. Furthermore, a B cell subset emerging with 
increasing age influences immune responses in the elderly.

Effects of Aging on B Cell Development

B cell development and the influence of old age in this pro-
cess are extensively studied in mice. First of all, the differen-
tiation capacity of long-term HSCs (LT-HSCs) reduces with 
advanced age [64]. The genes driving lymphoid cell differ-
entiation and function are downregulated in LT-HSCs, while 
the genes mediating myeloid cell development are upregu-
lated. Numbers and percentages of early B-cell lineage pro-
genitors decrease as C57BL/6 mice age [65]. Furthermore, 
these populations exhibit declined IL-7 responsiveness, indi-
cating an impaired B lymphopoiesis.

Following progenitor differentiation, the development of 
B cells in the bone marrow is also influenced by aging. In 
different groups of old mice, a severe decrease with more 
than 80% loss of pre-B cells and 50% loss of pro-B cells, or 
a moderate decrease with 20–80% loss of pre-B cells were 
observed [66]. TFs regulating B cell development are altered 
by age, influencing the abundance of developing B cells 
[66–68]. Among them, the E2A gene encodes for two pro-
teins, E47 and E12. Transcription and DNA-binding capac-
ity of E47 were shown to decline in aged mice [66]. As E47 
is a vital TF in B cell development during the pro- to pre-B 
cell stage [69], lower numbers of pre- and pro-B cells in old 
mice could partly be explained by the decreased function 
and expression of E47. PAX5 is another TF regulating early 
B-cell development that is lower in the elderly [70]. Lastly, 
BCR expression and diversity are altered upon aging [71, 
72], although a study suggested that the changes were not 
evident until 70 years of age [73].

The Emergence of Age‑Associated B Cells

In 2011, a new subset of B cells was described in aged mice 
[74, 75]. This mature B cell population is named age-associated 
B cells (ABCs) since it progressively accumulates with increas-
ing age. The origins of ABCs are not exactly known; however, 
differentiated FO, MZ, and B-1 cells are thought to contribute 
to the heterogeneous ABC pool [76]. Although studies define 
ABCs using different markers, they agree that ABCs are mature 
B cells with memory characteristics. Unlike the other B cell 
subtypes, ABCs express the transcription factor T-bet and a 
unique surface marker combination [77]. Therefore, their acti-
vation requirements, functions, and survival conditions are 
remarkably different. BCR engagement induces FO and MZ B 
cell proliferation, while Toll-like receptor 9 (TLR9) or TLR7 
signaling with or without BCR ligation drives proliferation in 
ABCs [76]. In vitro studies showed that TLR stimulation leads 
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to IL-10 and IFNγ production from ABCs, and an in vivo study 
reported that they also produce tumor necrosis factor alpha 
(TNFα) [78].

ABCs are engaged in both protective and autoreactive 
immune responses, although their protective role seems 
scarce. Furthermore, they are linked with autoinflammatory 
and autoimmune diseases, such as systemic lupus erythema-
tosus and rheumatoid arthritis [75, 79, 80], making ABCs 
a potential underlying reason for the increased incidence of 
autoimmune diseases in the elderly.

ABCs contribute to immune dysfunctions observed dur-
ing the aging process. For instance, TNFα produced by 
ABCs has direct and indirect effects on pro-B cell numbers: 
ABCs directly induce pro-B cell apoptosis and lead to their 
loss by altering the bone marrow microenvironment [78]. 
Besides, increased abundance of ABCs was significantly 
correlated with the loss of B cell precursors in the bone 
marrow of aged mice.

ABCs express considerably high major histocompat-
ibility complex II (MHC-II), CD80, and CD86 compared 
to FO B cells; therefore, they are better inducers of T cell 
activation and antigen presentation [81]. However, the same 
study associated these properties of ABCs with autoimmune 
diseases in an autoimmune-prone mice strain. Besides, 
considering that they make the bone marrow environment 
more inflammatory via the production of TNFα and robustly 
produce IL-6 and IFNγ upon TLR7 and TLR9 engagement 
[74, 78], it is plausible to propose that ABCs contribute to 
inflammaging.

Lastly, a study reported that humoral response depends 
more on TLR signaling and less on  CD4+ T cell help due to 
decreased FO B cells and increased ABCs in aged mice [82]. 
This eventually resulted in impaired production of IgG and 
long-lived plasma cells.

Abundance and Functions of B Cells in the Elderly

Several studies reported a decrease of mature B cell subsets 
in humans with aging, although the extent of these changes 
varies depending on the subsets, experimental approaches, 
and cohorts of people [53, 83, 84]. For instance, Muggen 
et al. reported that numbers and relative abundance of sev-
eral B cell subsets including transitional B cells, memory 
cells, and plasmablasts reduced with aging, particularly in 
individuals older than 70 years old [73]. Plasma and mem-
ory B cell percentages in the circulation and bone marrow 
decline, while naïve and immature B cells remain relatively 
stable in older people [85]. The abundance of B-1 cells, 
along with their ability to produce IgM, decreases with age 
[63]. A study found significantly low switched memory B 
cells, but high naïve and double-negative memory B cells in 
people over 65 years of age compared to younger adults [86]. 
The authors concluded that double-negative or so-called 

late-exhausted memory B cells express senescence mark-
ers and are associated with poor immune responses against 
influenza vaccine. Of note, switched memory B cells play a 
role in antibody production upon re-infection, generating a 
rapid response compared to naïve B cells [84]; therefore, a 
lower abundance of switched memory B cells is another evi-
dence of impaired humoral immune response in the elderly.

Not only the numbers but also functions of B cells are 
diminished with aging. Poor antibody responses in the 
elderly after influenza vaccination are due to low binding 
and neutralization capacity of antibodies, decreased class 
switch recombination, hypermutations of the antibody vari-
able regions, and higher abundance of inflammatory B cells 
[87, 88]. Besides, antigen-specific antibody production 
decreases with age, while self-reactive antibodies become 
more abundant, rendering old individuals more susceptible 
to develop autoimmune diseases [89]. All these defects in 
the humoral immune response lead to increased susceptibil-
ity to diseases and reduced efficiency of vaccines [90].

Trained Immunity: a De facto Innate Immune 
Memory

Although immune memory had been attributed only to the 
adaptive immune system for a long time, growing evidence 
consistently shows the existence of memory-like character-
istics in innate immune cells [91–94]. Certain infections, 
vaccinations, or molecules can reprogram innate immune 
cell types to exhibit increased responsiveness against a sec-
ondary insult. This phenomenon is termed trained immunity 
and mediated through extensive epigenetic and metabolic 
changes.

Over the last couple of years, innate immune cells, includ-
ing monocytes [95], natural killer (NK) cells [96], innate 
lymphoid cells (ILCs) [97], DCs [98], and neutrophils [99], 
have been reported to exhibit trained immunity response. 
As innate immune cells can only recognize microbial pat-
terns via their pattern recognition receptors (PRRs), their 
memory-like response is not specific to pathogens but can 
work against a wide range of antigens. Thus far, vaccines, 
such as the tuberculosis vaccine Bacillus-Calmette Guérin 
(BCG) [100], measles [101], and oral polio vaccine [102]; 
microbes/microbial patterns, e.g., β-glucan [91], Candida 
albicans; oxidized low-density lipoprotein (oxLDL) [103]; 
and metabolites such as fumarate [104] have been reported 
to induce heterologous protection through trained immunity.

Epidemiological studies reporting decreased all-cause 
mortality after certain vaccinations suggested the existence 
of an innate immune memory [105]. The existence of trained 
immunity was first depicted in monocytes with an in vitro 
model and in vivo in mice, where C. albicans and β-glucan 
induced enhanced cytokine productions after the second 
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microbial stimulation [91]. In parallel, BCG vaccination 
was reported to induce higher TNFα and IL-1β production 
against unrelated pathogens, even 3 months after the vac-
cination [100]. Further research demonstrated that trained 
immunity could persist up to 1 year and possibly even longer 
[106]. Considering that monocytes have a half-life around 
1–2 days in the circulation [107], the programming of pro-
genitor cells could be involved in sustaining the memory-
like phenotype. Indeed, β-glucan administration leads to the 
expansion of myeloid lineage progenitors in the bone mar-
row of mice [108]. Increased myelopoiesis is associated with 
upregulated IL-1β and granulocyte–macrophage colony-
stimulating factor (GM-CSF) signaling, besides alterations 
in glucose and cholesterol metabolism. Another mouse study 
demonstrated increased myelopoiesis following BCG vacci-
nation, which is associated with enhanced protection against 
M. tuberculosis infection [109]. These findings align with 
a recent study on humans, showing that BCG vaccination 
leads to the upregulation of myeloid and granulocyte-lineage 
genes in HSCs [110].

Trained Immunity in the Elderly

Low-grade chronic inflammation occurring in the elderly is 
associated with poor innate and adaptive immune responses 
[111]. Koeken et al. recently reported that BCG vaccination 
reduces systemic inflammation, and a lower abundance of 
circulating inflammatory proteins at baseline is correlated 
with trained immunity response 3 months after vaccination 
in males [112]. Therefore, BCG vaccination could alleviate 
inflammaging while providing non-specific protection via 
trained immunity induction in the elderly. On the other hand, 
since the cell differentiation capacity of HSCs in the bone 
marrow changes and is skewed toward myelopoiesis with 
aging, inducing trained immunity could lead to unfavorable 
outcomes by further expanding the myeloid cell production 
in older people.

Nevertheless, a double-blinded placebo-controlled clini-
cal trial demonstrated that trained immunity could be safely 
induced in the elderly by BCG vaccination, evident from the 
increased cytokine production compared to the participants 
who received placebo [113]. Remarkably, the trial showed 
that BCG prolongs the time until an infection and reduces 
the risk of all new infections and respiratory infections by 
45% and 79% compared to the placebo group, respectively. 
In line with this, other trials reported a decrease in acute 
upper respiratory tract infections and pneumonia in older 
people vaccinated with BCG [114, 115]. However, more 
research is needed to explore the strength and longevity of 
trained immunity responses in older individuals compared 
to adults.

BCG’s ability to confer protection against heterolo-
gous infections has attracted a lot of attention during the 
COVID-19 pandemic, which disproportionally affects the 
elderly. BCG is being tested in more than 20 randomized 
control trials to investigate if it has a protective effect against 
SARS-CoV-2 infection [116]. Promisingly, a recently pub-
lished study from Greece reported 68% risk reduction for 
COVID-19 6 months after BCG vaccination [117]. Another 
study revealed that even an early history of BCG vaccina-
tion is associated with decreased incidence and symptoms 
of COVID-19 among healthcare workers [118]. Therefore, 
induction of trained immunity by BCG vaccination may be 
utilized as a preventive measure against COVID-19, espe-
cially in the vulnerable elderly group.

Aging as a Multisystem Malady

Aging leaves no part of the body unscathed. Besides tissue-
specific damage occurring with advanced age, the aging 
immune system impacts many other systems and processes. 
Even the organs that were once thought to be devoid of 
immune cells, such as the brain, are now known to harbor 
tissue-resident immune cells and interact extensively with 
the peripheral immune system. The last few decades have 
also witnessed a boom in research on the microbiota, the 
collection of up to 100 trillion microorganisms residing in 
human bodies, mainly in the gut [119]. The microbiota has 
close interactions with the host immune system and is also 
prone to age-related disruptions.

In the following chapters, we discuss the interplay 
of microbiota and the brain with the aging immune sys-
tem, mainly focusing on immune memory. We especially 
approach this body of research from a metabolic perspec-
tive, describing various cellular metabolic programs and 
their impact on immune memory in aging and age-related 
diseases. Additionally, we point out the role of epigenetic 
regulation underlying all the topics discussed. By providing 
such a comprehensive view, visualized in Fig. 1, we aim to 
strengthen the notion of aging as a multisystem problem and 
accordingly inform counteractive efforts.

Interplay of Metabolism and Immune Memory

Metabolism and metabolic inflammation are key processes 
that both influence and get influenced by aging. Metabolic 
diseases such as type 2 diabetes mellitus, cardiovascular dis-
eases, and obesity are also considered age-related diseases. 
These conditions are accompanied by chronic inflammation, 
termed metaflammation, which is driven by nutrient excess. 
Although the triggers might vary, the mechanisms under-
lying metaflammation and inflammaging are quite similar. 



Clinical Reviews in Allergy & Immunology 

1 3

Mitochondrial dysfunction, accumulation of senescent cells 
and cellular debris, and hyperactivation of innate immune 
responses, such as inflammasome, contribute to both pro-
cesses [120]. Therefore, it is crucial to understand the inter-
play between cellular aging, metabolism, and inflammation 
in chronological aging and age-related metabolic diseases 
to revert them.

T Cell Metabolism

Quiescent T cells mainly use catabolic processes, while 
activated cells rely on anabolic processes to support pro-
tein production and proliferation. Cells need to activate a 
critical serine/threonine kinase, mammalian target of rapa-
mycin (mTOR), to induce anabolic pathways [121]. While 
driving growth and proliferation, mTOR also upregulates 
glucose transport and glycolysis. Glycolysis is one of the 
main pathways to generate energy. Although it is not ener-
getically efficient — only 2 adenosine triphosphate (ATP) 
molecules can be generated from one glucose molecule — 
it generates energy very rapidly, which is of use for active 
and proliferating T cells [122]. Processing of glucose yields 
ATP, NADH, and pyruvate. Pyruvate is then converted to 
lactate and exported as lactic acid in the case of glycolysis 

or otherwise transported to mitochondria for oxidative phos-
phorylation (OXPHOS).

OXPHOS is a much more efficient bioenergetic pathway, 
producing 36 ATP molecules from every glucose molecule 
[123]. In this case, pyruvate is converted to acetyl-CoA and 
enters the tricarboxylic acid cycle (TCA cycle), which is 
coupled to the electron transport chain (TCA) through elec-
tron donors NADH and FADH2. TCA cycle can be replen-
ished by amino acids and oxidation of fatty acids. Fatty acid 
oxidation (FAO) is mainly used by cells with low energy 
demands and plays a critical role in  CD8+ memory and 
 CD4+ Treg development [124]. Activated T cells upregulate 
their glutamine uptake and perform glutaminolysis to yield 
α-ketoglutarate, which enters the TCA cycle.

Additionally, TCA cycle metabolites can regulate 
immune functions in ways other than energy production. 
For instance, acetyl-CoA acts as the key cofactor for his-
tone acetylation [125]. In activated T cells, acetyl-CoA is 
required for IFNγ production through histone acetylation 
[126]. Acetyl-CoA also contributes to the acetylation of 
mitochondrial proteins [127], which has vast functional con-
sequences for both innate and adaptive immune cells [128].

Quiescent naïve T cells meet their energy needs with 
OXPHOS [129]. IL-7 and TCR signaling are essential for 
their metabolic regulation and survival [130, 131]. When T 
cells are activated, an immediate need for energy occurs for 
effector functions and biomass generation. The cells upregulate 
transporters like glucose transporter 1 (GLUT1) and engage 
in aerobic glycolysis, promoting cytokine production through 
pathways, such as the phosphoinositide 3-kinase (PI3K)-AKT-
mTOR axis and mitogen-activated protein kinase (MAPK) 
signaling [132]. The glycolytic switch is required for the effec-
tor functions, e.g., IFNγ production but not essential for prolif-
eration [133]. OXPHOS can also be utilized for proliferation 
and survival purposes. Although activated T cells functionally 
rely on glycolysis, OXPHOS is certainly not dispensable: when 
OXPHOS is inhibited with oligomycin, T cell activation and 
proliferation are blocked [133].

Although they rely on OXPHOS and FAO in the resting 
state, memory T cells need to respond quickly and efficiently 
upon antigen encounter. Therefore, they can shift to glycoly-
sis quicker than naïve T cells [134]. Greater mitochondrial 
mass and a strong mitochondrial spare respiratory capacity 
have been linked to this bioenergetic advantage [135, 136]. 
Additionally, mitochondrial fusion is essential for the devel-
opment and function of memory T cells [137].

Impact of Aging on T Cell Metabolism

Increased p38 MAPK activity is one of the character-
istics of senescent T cells. Inhibiting p38 improves tel-
omerase activity, proliferation, autophagy, and mitochon-
drial fitness, in an mTOR-independent way [17]. MAPK 

Fig. 1  The far-reaching effects of the aging immune system. Age-
related changes in immune cells include genomic instability, epi-
genetic modifications, altered cellular metabolism, and cellular 
senescence. An aged and impaired immune system has broad conse-
quences, affecting many tissues and systems of the body. Gut micro-
biota and the central nervous system are profoundly impacted by and, 
in turn, regulate the immune system
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inhibition also enhances T cell and antibody responses in 
influenza-vaccinated old mice [138].

Patients with gain-of-function mutations in PI3K have 
depleted naïve T cells but an accumulation of senes-
cent effector cells, just like in the elderly [139]. Inhibit-
ing mTOR activity with rapamycin treatment partially 
restores the senescent phenotype in these patients. There-
fore, overactive PI3K/AKT/mTOR signaling is suggested 
as one of the drivers of T cell senescence.

Aged naïve T cells have higher mitochondrial mass, but 
interestingly, less mitochondrial respiratory capacity, pos-
sibly due to transcriptional downregulation of respiratory 
chain genes [140]. Furthermore, enzymes of one-carbon 
metabolism are deficient in aged naïve T cells, and supple-
mentation with formate and glycine, one-carbon metabolism 
metabolites, improves cell survival and activation [141].

Autophagy is important for the generation of T cell mem-
ory, and induction of autophagy by spermidine improves 
 CD8+ T cell responses against influenza vaccination in aged 
mice [142].  CD4+ memory T cells of the elderly display 
upregulated oxidative phosphorylation, reactive oxygen 
species (ROS) production, and fatty acid oxidation [143]. 
They also have a higher expression of Sirtuin 1 (SIRT1), a 
NAD-dependent deacetylase, compared to younger cells. 
SIRT1 and AMPK, two important nutrient-sensing mole-
cules and negative regulators of mTOR, positively influence 
each other [144]. In contrast to  CD4+ memory cells, aging-
associated terminally differentiated memory  CD8+CD28− T 
cells have a high glycolytic capacity, which is linked to their 
downregulated SIRT1 expression [145].

CD8+ TEMRA cells have a higher expression of gly-
colysis and glutaminolysis-related genes and a larger 
ATP pool compared to naïve and EM cells [146]. Despite 
upregulated glycolytic transcription in TEMRA cells, 
basal glycolysis levels are similar to naïve and EM cells. 
Like EM cells, TEMRA cells can quickly increase gly-
colysis and OXPHOS upon activation [146]. In terms of 
function, TEMRA cells are capable of cytotoxicity and 
cytokine production, despite their senescent state and 
impaired mitochondrial function [17, 36].

Long-term CMV infection, known to promote immu-
nosenescence, also alters the cellular metabolism of T 
cells, increasing glucose uptake, promoting glycolysis, 
restructuring lipid rafts, and disturbing cholesterol metab-
olism [147, 148]. In addition, chronic inflammation due 
to lifelong CMV infection disrupts pancreatic β-cells and 
increases the risk for type 2 diabetes in the elderly [149].

B Cell Metabolism

The metabolic pathways that regulate T cells are also essen-
tial for B cell function, although there has not been much 
research on B cell metabolism. When a B cell is activated 

upon antigen recognition by the BCR and T cell help, it acti-
vates PI3K/AKT/mTOR signaling [150]. Just like activated 
T cells, activated B cells need rapid energy production to 
increase biomass and proliferate. As a result, glucose and 
glutamine uptake increase, along with oxygen consumption, 
OXPHOS, and mitochondrial remodeling [151]. OXPHOS 
and glutamine-fueling of the TCA cycle have been suggested 
as the critical bioenergetic pathways for B cell growth and 
function, while glucose was dispensable [152].

A study showed that activated B cells have more mito-
chondria but similar amounts of mitochondrial DNA, indi-
cating that fission of naïve B cell mitochondria with multi-
ple nucleoids, rather than mitochondrial replication, occurs 
upon activation [152]. Another study suggested that mito-
chondrial remodeling and ROS levels determine the fate of 
activated B cells. Cells with increased mitochondrial mass 
and higher ROS levels upon activation are destined for class 
switch recombination, whereas cells with decreased mito-
chondrial mass undergo plasma cell differentiation [153].

The energy needs of activated B cells in GCs frequently 
shift [154]. In the hypoxic light zone, cells consume less 
oxygen and are more glycolytic. mTORC1 is not neces-
sary for the regulation of glycolysis here, but it is critical, 
together with c-Myc, for the positive selection of the cells 
and migration to the dark zone for proliferation and somatic 
hypermutation [155, 156].

Upon GC maturation, when a cell differentiates into 
memory B cell, the metabolic state becomes more quiescent 
with dominant OXPHOS. However, rapid re-activation of 
mTORC1 and glycolysis is possible for later differentiation 
into antibody-producing plasmablasts [157]. Furthermore, 
memory B cells have high basal autophagy, which is essen-
tial for their survival until antigen encounter [158, 159].

GCs also output long-lasting plasma cells, which can pro-
duce thousands of antibodies per second. This, naturally, is 
highly energy demanding. mTORC1 is essential for plasma 
cell generation and antibody synthesis [160]. Plasma cells 
have high levels of glucose uptake, but most of the glucose 
is used for protein glycosylation [161]. Still, survival and 
antibody production of plasma cells were impaired when 
the glucose transporter Glut1 was deleted [162]. Also, mito-
chondrial import of pyruvate, provided by glycolysis, is criti-
cal for the long-term maintenance of plasma cells [161].

Finally, tissue-resident B1 B cells are more active in gly-
colysis and OXPHOS than other B cells, the classical anti-
body-producing and memory B cells. In addition, autophagy 
is critical for the mitochondrial function and self-renewal of 
B1 cells [163].

Impact of Aging on B Cell Metabolism

There is less literature on how B cell metabolism is regulated 
and impacts function as organisms age. A study showed that 
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antibody-secreting B cells of aged individuals had lower 
SIRT1 expression, and higher SIRT1 levels were associated 
with better antibody response to multiple influenza virus 
strains [164]. Also, naïve and activated B cells of the elderly 
had slightly less glycolytic capacity and a more striking 
reduction in OXPHOS. In mice, aged B cells had similar 
glycolysis and OXPHOS rates as young counterparts but 
could not further enhance OXPHOS upon stimulation [165]. 
However, the cells were able to upregulate glycolysis to meet 
their energy need.

Leptin, a pro-inflammatory hormone secreted by adipo-
cytes, is higher in the circulation of obese individuals [166]. 
Among non-obese people, leptin concentrations are strik-
ingly more elevated in the elderly [167]. Leptin abundance 
in the serum is also positively associated with frailty [168]. 
After exposure to leptin, B cells from young lean individuals 
exhibit a similar profile as B cells of older lean and young 
obese individuals regarding the transcriptional profile and 
antibody secretion [167]. Leptin also decreases influenza-
specific antibody production from B cells in vitro. Obesity is 
known to impair B cell responses to vaccination, and studies 
suggest that leptin might be partially responsible for this 
[169].

Additionally, post-transcriptional glycosylation of 
antibodies modulates their function, and altered glyco-
sylation patterns have been linked to aging [170, 171]. 
β4-Galactosyltransferase activity increases with age [172], 
which would have functional consequences, although yet 
unexplored.

Metabolism in Trained Immunity

Metabolic reprogramming is one of the key mechanisms 
underlying trained immunity (also known as innate immune 
memory), along with chromatin remodeling. In fact, meta-
bolic changes can drive epigenetic changes since certain 
metabolites, e.g., acetyl-CoA, can regulate epigenetic 
enzymes [173]. Fumarate is one example of TCA metabo-
lites driving epigenetic changes. It can induce trained immu-
nity on its own, and its accumulation during this process 
induces trimethylation of histone 3 lysine 4 at the promoters 
of IL-6 and TNFα [104]. This is due to fumarate inhibiting 
the activity of lysine-specific histone demethylase KDM5.

The AKT/mTOR/HIF1α pathway is the most critical 
pathway for inducing aerobic glycolysis in β-glucan-trained 
monocytes [174]. Contrary to β-glucan-induced trained 
immunity, BCG upregulates not just glycolysis but also 
OXPHOS [175]. Glutaminolysis and cholesterol synthesis 
are other crucial metabolic pathways for β-glucan-induced 
trained immunity [104]. Interrupting these pathways blocks 
these processes in vitro and in vivo. BCG also induces glu-
taminolysis, and glutamine availability is important for the 
trained response [175].

Synthesis of cholesterol itself is not essential for trained 
immunity but rather the accumulation of the intermediate 
mevalonate is. Blocking mevalonate generation inhibits 
trained immunity, while mevalonate alone can induce trained 
immunity in monocytes through the activation of insulin-like 
growth factor 1 (IGF1) receptor and mTOR [176]. Further-
more, the changes in glycolysis and mevalonate pathways 
are observed not only in monocytes but also in HSPCs [108].

oxLDL, a non-microbial inducer of innate immune mem-
ory, upregulates both glycolysis and oxygen consumption, 
and high glucose availability further enhances the trained 
immunity response [103]. Similarly, catecholamine-induced 
trained immunity is accompanied by increased glycolysis 
and oxygen consumption. Of note, the particular metabolic 
rewiring might differ for different inducers of innate immune 
memory. For instance, stimulation with aldosterone is not 
associated with elevated glycolysis or OXPHOS but is 
dependent on fatty acid synthesis [177].

As of yet, trained immunity responses and associated 
metabolic states have not been characterized in the context 
of aging. However, several ongoing large-scale studies of 
BCG vaccination in the elderly would soon shed light on the 
effects of BCG-induced trained immunity on the metabolism 
of aged immune cells (NCT04537663, NCT04417335).

Role of Epigenetic Alterations in Immune Memory

Epigenetic changes include histone modifications and DNA 
methylation that regulate the way a gene works. These modi-
fications are dynamic and affect all cells and tissues through-
out life. Environment and lifestyle, as well as aging, can 
lead to dramatic epigenetic alterations. For the purpose of 
this review, we will focus on how age-dependent epigenetic 
modifications alter innate and adaptive immune memory.

DNA Methylation In Adaptive Immunity

DNA methylation is the most abundant epigenetic modifi-
cation that occurs by transferring a methyl group to the 5th 
carbon of the cytosine [178]. DNA methylation does not 
always indicate a lower gene expression; however, meth-
ylation in gene promoters is generally associated with poor 
TF binding and reduced transcription [179]. Biological sex, 
genetic background, environmental factors, and age affect 
the DNA methylation profile [180]. Among these factors, 
age-dependent methylation is very well-characterized. 
Remarkably, different mathematical models are developed 
to predict the biological age based on the methylation levels 
of certain CpG sites from various tissues or cells [180–182].

Advancing age is associated with a progressive loss 
of methylation marks on DNA [183], although abnormal 
hypermethylation patterns are also observed in some gene 
promoters [184]. Changes in the methylation landscape are 
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linked to various age-related diseases as well as dysfunctions 
in the immune system. For instance, age-related macular 
degeneration, a disease resulting in irreversible blindness 
in the elderly, has been correlated with the loss of methyla-
tion in the promoter region of the IL17RC gene, leading to 
increased IL17RC protein levels in the blood [185].

A growing number of studies indicate that DNA methyla-
tion plays a significant role in the adaptive immune system’s 
functioning. Age-related functional changes in immune 
cells, such as decreased self-renewal capacity, defects in cell 
differentiation, and skewed differentiation towards myeloid 
cell production in the elderly, are strongly correlated with 
epigenetic modifications occurring in HSCs during aging 
[186]. Murine studies show that gene expression of HSCs 
is regulated via hyper- and hypomethylation of certain 
DNA regions, affecting the capacity of those cells to dif-
ferentiate [187]. Expression of DNA methyltransferases in 
HSCs are lower in aged mice [186]. Also, HSCs of mice 
with decreased DNA methyltransferase activity fail to effi-
ciently differentiate into lymphoid progeny [188]. These 
studies reveal that DNA methylation is essential to fine-
tuning the differentiation capacity of HSCs and therefore 
the proper activity of the innate and adaptive immune sys-
tem. Epigenetic modifications also modulate the function 
of HSCs during aging, which will be elaborated in “Histone 
Modifications.”

Several studies report age-dependent methylation changes 
in T cells. A study analyzing  CD4+ and  CD8+ T cell methyl-
ome profiles in young individuals and the elderly found that 
48,876 and 12,275 CpG sites were differentially methylated 
in  CD8+ T and  CD4+ T cells, respectively [189]. Moreover, 
the methylation profile of  CD8+ T cells was strongly associ-
ated with aging and inversely correlated with genes linked 
to T cell differentiation and immune response, suggesting a 
possible link between weakened T cell responses and age-
related alterations in DNA methylation.

The age-associated methylation profile of  CD4+ T cells 
is characterized by hypermethylation of CpG sites enriched 
in the polycomb repressive complex 2 (PRC2) genes and 
hypomethylation of CpG sites enriched in enhancer regions 
[190, 191]. Of note, the PRC2 proteins regulate histone 
methylation, cell differentiation, and proliferation [192]. 
These methylation patterns identified by Dozmorov and 
colleagues were highly similar to the methylation and tran-
scriptomic profile of T cells from lupus patients. Lupus ery-
thematosus, an autoimmune disease leading to autoreactive 
T cells, is characterized by defects in the MAPK signaling 
pathway and increased mTOR activity resulting from altered 
methylation patterns [193]. Therefore, the authors suggested 
that the age-dependent methylation profile of naïve  CD4+ 
T cells might render the elderly susceptible to autoimmune 
diseases, such as lupus, though this remains to be formally 
demonstrated.

Loss of CD28 co-stimulatory protein in  CD4+ T cells 
is one of the well-characterized aging marks, leading to 
impaired T cell activation and differentiation. Compari-
son of methylation profiles of  CD28+ and  CD28null T cells 
revealed 296 differentially methylated genes associated with 
poor TCR signaling and cytotoxic response [194]. Further-
more, the expression of the genes involved in inflammasome 
activation was higher in  CD28null T cells, suggesting that 
these cells have a higher pre-activation state. Another study 
reported that increased methylation at the BACH2 locus of 
the  CD4+ T cells in the middle and old age groups results 
in lower BACH2 expression [195]. BACH2 has a regulatory 
role in immune responses, modulating  CD4+ T cell differen-
tiation and controlling inflammation [196]. Overall, altera-
tions in the DNA methylation patterns contribute to  CD4+ T 
cells becoming more inflammatory in the elderly.

A few studies shed light on the DNA methylation profile 
of B cells during activation and diseases [197–200]; how-
ever, whether B cells are affected by age-dependent methyla-
tion changes is yet to be known.

Histone Modifications in Adaptive Immunity

N-terminal histone tails are targets for post-translational 
enzymatic modifications including acetylation, meth-
ylation, phosphorylation, ubiquitylation, and sumoylation 
[201]; however, this review will focus on methylation and 
acetylation, which are the most well-characterized altera-
tions regulating histone structure. Methyl groups are added 
to the histone by histone methyltransferases and removed 
by histone demethylases [202]. The trimethylation of his-
tone 3 lysine 4 (H3K4me3), histone 3 lysine 36 (H3K36), 
and histone 3 lysine 79 (H3K79) are linked to open and 
actively transcribed regions [203]. On the other hand, 
mono-methylation of histone 3 lysine 9 (H3K9me), histone 
3 lysine 27 (H3K27me), and histone 4 lysine 20 (H4K20me) 
is associated with closed and inactive chromatin regions. 
Furthermore, histone acetylation is associated with loos-
ened chromatin structure and increased gene transcription 
[204]. Histone acetyltransferases catalyze lysine acetylation, 
whereas histone deacetylases (HDACs) reverse the modi-
fication [205]. Post-translational modifications of histones 
do not only influence the accessibility and transcription of 
genes but also modulate alternative splicing, DNA replica-
tion, and repair [206].

Histones and epigenetic marks on histones undergo 
transitions with aging. HSCs from old mice have more 
H3K4me3 and H3K27me3 peaks compared to young HSCs 
[186]. In addition, expression of FLT3, one of the regula-
tors of CLPs, was decreased due to H3K27me3 in the old 
HSCs, suggesting a link between poor lymphoid differen-
tiation potential of HSCs in the elderly. An extensive study 
performed in young and old monozygotic twins showed 
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that chromatin modifications during aging are non-heritable 
[207]. Moreover, histone modification profiles are, to some 
extent, homogenous in young individuals and heterogeneous 
among elderly subjects. Heterogeneity in histone modifica-
tions was observed between individuals and also cell types 
in the elderly.

Epigenetic changes are one of the underlying causes of 
the major defects seen in  CD8+ T cells of the elderly. More 
closed chromatin regions are observed in the enhancer and 
promoter regions of the genes related to T cells signaling 
in the elderly compared to the young [208]. Furthermore, 
IL-7R, in the memory  CD8+ T cells, is one of the top genes 
related to multiple closed chromatin peaks in the elderly. 
As IL-7 ensures homeostasis and maintenance of T and B 
cells, poor IL-7 signaling in the elderly might be an under-
lying reason of impaired adaptive immune response [209]. 
Furthermore, naïve  CD8+ cells in the elderly have lower 
chromatin accessibility at the gene promoters associated 
with poor nuclear respiratory factor 1 (NRF1) binding [140]. 
Considering the role of NRF1 in oxidative phosphoryla-
tion, decreased chromatin activity might partially explain 
the impaired  CD8+ T cell metabolism in the elderly [210]. 
Other significant findings of the study are that open chro-
matin regions are associated with a memory cell profile, 
and accessibility of the promoters is diminished in aged 
individuals.

As mentioned in the DNA methylation section, an age-
associated decrease in BACH2 expression is observed in 
 CD4+ T cells. Another mechanism leading to lower BACH2 
gene transcription is due to Menin deficiency observed in 
immune senescence [211]. Menin induces BACH2 expres-
sion by binding to its locus and maintaining histone acety-
lation. Decreased binding of Menin to BACH2 locus and 
subsequently reduced BACH2 expression contributes to 
immunosenescence in  CD4+ T cells.

A study investigating the epigenetic changes in B cell 
precursors in old and young mice associated these altera-
tions with gene expressions [212]. It revealed that aged 
pre-B cells exhibit a loss of H3K4me3 at the promoter site 
of insulin receptor substrate 1 (IRS1), which is associated 
with lower transcription. As insulin signaling is necessary 
for the development of B cells in the bone marrow [213], 
decreased insulin growth factor (IGF) signaling might lead 
to defects in B cell development.

Epigenetic Reprogramming as a Hallmark of Trained 
Immunity

A distinct epigenetic profile regulates trained immunity 
responses following the first insult. As a result of cer-
tain infections or stimulations, primed cells undergo an 

epigenetic reprogramming that allows them to respond 
stronger upon a heterologous infection by facilitating the 
transcription of genes related to inflammation and metabo-
lism [106].

H3K4me3 is the first characterized epigenetic mark in 
monocytes after β-glucan treatment [91]. Further analy-
sis revealed that H3K4me3 peaks are enriched at the pro-
moter sites of TNF, IL6, IL18, DECTIN1, and MYD88 
genes, indicating that gene transcriptions are more active 
in these regions. In addition, increased H3K27ac is a 
well-characterized histone mark in trained cells, promot-
ing glycolysis and PI3K/AKT pathway activation [174, 
214]. Besides the enrichment in H3K4me3 and H3K27ac, 
decreased H3K9me3 was found in the promoters of genes 
related to cytokine production and glycolysis [175]. Since 
H3K9me3 is a repressive mark, reduced trimethylation 
suggests the presence of open chromatin regions. These 
studies show that trained immunity responses are modu-
lated by epigenetic modifications that facilitate enhanced 
cytokine responses and specific metabolic changes. Trained 
cells share a common epigenetic profile; however, different 
stimuli could lead to minor unique epigenetic alterations.

Infections and certain stimulations leave marks on the 
DNA methylation profile, as well as histones, of innate 
immune cells [215]. Studies demonstrate the role of DNA 
methylation in anti-mycobacterium response following BCG 
vaccination, discriminating responders from non-responders 
[216, 217]. Responders to BCG vaccination were charac-
terized by reduced DNA methylation at the promoters of 
inflammatory genes [216]. However, whether DNA (de)
methylation plays a direct role in the development of non-
specific protective responses is still being investigated.

As in adults, trained immunity is modulated by histone 
modifications in the elderly. Giamarellos-Bourboulis and 
colleagues recently showed that increased cytokine produc-
tion upon BCG vaccination in the elderly was accompanied 
by acetylation of H3K27 at the promoter regions of TNF and 
IL6 genes [113]. However, further studies are warranted to 
compare the epigenetic differences following innate immune 
memory development between adults and older individuals 
and explore how aging influences epigenetic marks in the 
context of trained immunity.

Gut Microbiota Modulating Immune Memory

Aging causes changes throughout the whole body of humans, 
and trillions of microbes living there are no exemption. The 
composition and diversity of gut microbiota dynamically 
shift in infancy, remain relatively stable during adulthood, 
and start to decline with old age [218].
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Interactions of Microbiota and the Adaptive Immune 
System

The gut microbiota has essential roles in educating the adap-
tive immune system by inducing a certain level of immune 
response and fine-tuning the inflammation. For instance, 
Bacteroides fragilis, a commensal in the gut, enhances 
and regulates  CD4+ T cell differentiation into T helper 1 
(Th1) and Th2 [219]. In the presence of gut bacteria and 
TGFβ, naïve  CD4+ T cells become Tregs, producing IL-10 
to maintain immune homeostasis. On the other hand, Tregs 
and Th17 cells in the lymphoid follicles of the gut induce B 
cell class switching, resulting in IgA secretion [220, 221]. 
Microbiota-associated IgA, IgM, and IgG secretion from B 
cells also occurs via TLR signaling activation without T 
cell help [222].

The adaptive immune system can limit the inflammatory 
response against commensal gut microbes mediated by the 
innate immune system. IgA produced by B cells is explained 
as a part of sustainable host-microbe interaction, controlling 
the inflammatory response against beneficial microorgan-
isms [223]. Besides, intestinal Treg cells express TCRs for 
intestinal antigens, such as metabolic products and com-
mensals, while other Tregs in the body express TCRs for 
self-antigens [224]. In this way, intestinal Tregs suppress 
immune responses against intestinal antigens and play an 
immunoregulatory role in the guts.

How microbiota strikingly shapes the adaptive immune 
system development was also demonstrated in germ-free 
mice: the lack of microbial species in the gut is character-
ized by defects in secondary lymphoid tissue development 
[225], low IgA production [226], and reduced Th17 cells and 
Tregs [227]. It should be noted that short-chain fatty acids 
(SCFAs) produced by microbial species in the gut greatly 
contribute to the immune system development and responses 
[228].

A healthy gut microbiota composition is important in 
protecting individuals from diseases. As an example, IL-10 
secreting IgA + plasma cells and plasmablasts originating 
in the gut confer resistance to experimental autoimmune 
encephalomyelitis induced in mice [229]. Another study 
reported that gut microbiota protects against respiratory 
infections induced by S. pneumoniae and K. pneumoniae by 
inducing GM-CSF and IL-17A secretion [230].

The Role of Dysbiosis in Aging

The incidence of gut dysbiosis, the imbalance of microbial 
species, increases with age and is associated with numer-
ous health problems [231]. However, it is unclear whether 
cellular and molecular alterations of the immune cells dur-
ing aging affect the composition and functioning of the gut 
microbiota, or if age-related dysbiosis triggers defective 

immune responses. It is likely that both are concurrently 
true, but a better understanding of the gut microbiota-
immune system interactions is necessary to resolve this 
question.

As individuals age, a decline in certain beneficial bac-
terial species, such as Bifidobacterium, is replaced by the 
growth of pathogenic species, i.e., Enterobacteriaceae [232]. 
A decrease in Firmicutes and increase in Proteobacteria are 
also reported in older people [233]. Besides, gut dysbiosis 
is associated with several age-related diseases, including 
obesity [234], type 2 diabetes [235], Alzheimer’s disease 
[236], and increased incidence of infections [237–239]. The 
risk of developing cancer is also higher in the elderly due 
to dysbiosis-associated chronic inflammation, debilitated 
phagocytosis of senescent and dormant tumor cells, and 
impaired activation of tumor-specific  CD8+ T cells [240].

Dysbiosis was also proposed to be a major reason for 
various age-associated pathologies and premature death 
in older individuals by triggering excess inflammation and 
several complications, including leaky gut and diminished 
functions of gastrointestinal tract [228]. In line with this, a 
particular composition and diversity of microbial species 
is correlated with health, fitness, and increased survival in 
the elderly [241, 242]. A recent study revealed that healthy 
elderly experience a particular drift in their microbiota 
composition, while this drift is missing in the frail elderly 
[242]. Furthermore, having high Bacteroides abundance 
during aging correlates with decreased survival rate over 
the 4-year follow-up. Another recent work with 15 years of 
follow-up reported that Enterobacteriaceae abundance was 
significantly linked with deaths related to gastrointestinal 
and respiratory causes in the elderly [243].

Dysbiosis can lead to defects in intestinal barrier integ-
rity, which results in the translocation of bacterial species to 
the host tissues. Those bacteria create inflammation through 
the recruitment of neutrophils and differentiated Th17 cells 
[244]. For example, translocation of a gram-positive patho-
biont E. gallinarum that results from defects in the gut bar-
rier induces Th17 response and autoantibody production 
[245].

Akkermansia is a beneficial commensal shown to protect 
the gut barrier integrity [228] and enhance antibody and 
T cell responses [246]. Loss of Akkermansia is associated 
with insulin resistance in aged non-human primates and 
mice [247]. Decreased butyrate and Akkermansia abundance  
increase gut leakage, which in turn increases pro-inflammatory  
responses.

A human study, on the other hand, reported that Akker-
mansia is more abundant in the elderly [248]. Furthermore, 
Akkermansia was significantly correlated with serum IgA 
and  CD8+ T cells and negatively correlated with  CD4+ T 
cells in older people. Bacteroidetes, which are less abundant 
in the elderly, were positively correlated with serum IgG 



Clinical Reviews in Allergy & Immunology 

1 3

levels and  CD4+ T cell abundance in the middle age group. 
In conclusion, this study highlights the relationship between 
the adaptive immune system and gut microbiota composi-
tion, although the direct link between them is missing.

Microbiota also affects disease course and vaccine 
responses in the elderly. Even though the antiviral therapy 
for human immunodeficiency virus (HIV) is successful and 
increases the life expectancy of patients, older HIV + people 
suffer more from comorbidities compared to HIV − elderly. 
HIV + elderly have less  CD4+ T cells and more  CD8+ T cells 
than HIV individuals older than 55 [249]. In addition, the 
abundance of Prevotella in the gut is significantly higher in 
the individuals with low  CD4+ T cell counts. Prevotella was 
previously associated with cardiovascular diseases [250], but 
how it interacts with the immune system is not yet clear.

Age-dependent alterations in gut microbiota are likely 
to contribute to poor immune responses after vaccinations 
[251]. Some studies reported that probiotics supplements 
increase the antibody titers after influenza vaccine in the 
elderly [252–255], whereas a few studies showed limited or 
no effect [87, 256, 257]. Variations in the results could be 
due to multiple factors, including the sample size, type of 
probiotics, and delivery route. Nevertheless, studies strongly 
suggest that imbalances in microbiota cause impaired 
immune responses, and restoring the healthy composition 
might be beneficial for a better vaccine response in the 
elderly.

Innate Immune Memory Induction by Gut Microbiota

As the adaptive immune cells, members of the innate 
immune system closely interact with the gut microbiota. A 
few studies suggest that microbiota could regulate immune 
memory development by priming or tolerizing the cells with 
microbial antigens and SCFAs. For instance, β-glucan, a 
fungal cell wall component, and BCG act through Dectin-1 
and NOD2 signaling pathways, respectively [91, 100]. Since 
Dectin-1 and Nod-like receptors (NLRs) are found on vari-
ous cell types in the intestines, including non-immune cells, 
it is plausible to propose that these cells develop immune 
memory due to their exposure to the gut microbiome. Sup-
porting this argument, peptidoglycan fragments derived 
from gut microbiota were shown to prime the innate immune 
system, promoting the killing capacity of neutrophils [258].

Furthermore, gut microbiota was shown to induce mye-
lopoiesis to protect mice against infection [259], similar to 
the increase in the number of myeloid progenitors in the 
bone marrow of mice following trained immunity induction 
by β-glucan administration [108]. Other microbiota-derived 
components, such as lipopolysaccharide (LPS), flagellin, and 
β-glucan, might also be able to induce trained immunity 
in the guts, although the dose of the stimuli is critical for 
immune memory or tolerance response [260].

As mentioned before, trained immunity is mediated by 
extensive metabolic and epigenetic programming. Molecules 
and metabolites produced by commensal gut microbes and 
microbes themselves are able to induce such changes in 
both innate and adaptive immune cells [261]. For example, 
despite causing an increase in the anti-microbial activity, 
butyrate produced by gut microbes have effects opposite to 
trained immunity in macrophages, possibly stemming from 
decreased mTOR activity and inhibition of HDAC3 [262].

It is important to note that non-immune cells, e.g., fibro-
blasts [263], epithelial cells [264], and intestinal stromal 
cells (ISCs) [265] are also capable of forming immune 
memory, showing increased responsiveness after secondary 
infection. It was shown that ISCs could clear infection more 
rapidly during a secondary related or unrelated infection, 
indicating the presence of immune memory [266]. There-
fore, non-immune cells also contribute to the homeostasis 
between gut microbes and the immune system.

Considering the strong links between gut microbiota and 
induction of innate immune memory, it would be conceiv-
able to hypothesize that trained immunity response could 
be dysregulated by the dysbiosis in the elderly. Poor trained 
immunity response could render the elderly more suscepti-
ble to infections, while exuberant response might contribute 
to disease pathogenesis. However, more research is needed 
to understand how age-related changes in microbiota affect 
innate immune memory.

Cross talk Between the Immune System 
and the Brain

Aging causes a great deal of deterioration in the central 
nervous system (CNS) through DNA damage, accumula-
tion of waste products, oxidative stress, disturbed energy 
homeostasis, and impaired function [267]. The brain and the 
rest of the CNS are not immunologically isolated, as once 
thought: there is extensive cross talk between the immune 
system and the CNS. Brain homeostasis and regeneration 
depend on a robust immune system [268]. Therefore, dete-
rioration of the immune system with old age contributes to 
and escalates brain aging and neurodegenerative diseases.

In the CNS parenchyma, the resident immune cell type is 
the microglia, which originates from primitive macrophage 
progenitors in the yolk sac early in development [269]. 
Microglia are extremely important for the maintenance of a 
healthy brain. They perform immunosurveillance, respond 
to infections, orchestrate the communication with the cir-
culating immune system, regulate neurons, and other cell 
types in the brain, phagocytose cellular debris, misfolded 
proteins, toxic products, and even synapses [270]. Microglia 
are altered by aging and contribute to age-related neuro-
degenerative diseases [271]. Their phagocytic capacity is 
reduced with advancing age, and they contribute to a state of 
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chronic low-grade inflammation. Due to this review’s focus 
on immune memory, we will not go into detail on micro-
glia and instead focus on the role of adaptive immunity and 
trained immunity in the context of brain aging.

The blood–brain barrier (BBB) largely prevents the 
infiltration of immune cells into the brain. However, cer-
tain immune cell types are present in the cerebrospinal fluid 
(CSF) and the blood-CSF barrier at the choroid plexus (CP)  
[272]. CP, located in the brain’s ventricles, is a CSF- 
producing epithelial cell network with embedded capillaries.  
T cells are present in CP, and they regulate immune cell 
trafficking into CSF by IFNγ-dependent activation of CP 
epithelium [273].

Immune cells contribute to neuronal survival and neuro-
genesis during homeostasis, upon injury, or under neurode-
generative conditions [272]. Damage to the CNS induces a 
protective T cell response that prevents neuronal loss [274]. 
 CD4+ lymphocytes play the most prominent role in this 
“neuroprotective immunity.”

Neuroprotective T Cell Immunity

CP harbors  CD4+ T cells with an effector-memory pheno-
type that recognize CNS-specific self-antigens [275]. These 
cells can receive signals from circulation through the epithe-
lium and the CNS through the CSF and orchestrate an inte-
grated response to maintain brain homeostasis [276]. Astro-
cytes, a cell type that helps maintain synapses and the BBB, 
among various other functions, assume a neuroprotective 
phenotype and reduce neuronal apoptosis when co-cultured 
with T cells [277]. During spinal cord injury, CNS-specific 
autoreactive T cells migrate to the injury site, inhibit cyst 
formation, and contribute to the preservation of axons [278].

In T cell-deficient mice, the proliferation of progenitor 
cells is reduced, leading to lower numbers of new neurons, 
while neurogenesis is boosted in transgenic mice with excess 
CNS-specific autoreactive T cells [268]. Supplementation of 
the T-cell-derived cytokine IFNγ can enhance neurogenesis 
in old mice with Alzheimer’s disease [279]. CNS-specific 
T cells are also critical for spatial learning and memory. In 
immunodeficient mice, spatial memory is impaired but can 
be restored with reconstitution of immune cells even in aged 
mice [280]. In models of the motor neuron disease amyo-
trophic lateral sclerosis (ALS), T cell deficiency accelerates 
the disease, while reconstitution promotes neuroprotection 
and delays disease progression [281–283]. However, of note, 
T cells contribute to the death of dopaminergic neurons in 
mouse models of Parkinson’s disease [284].

One mechanism through which T cells improve brain 
maintenance is the regulation of brain-derived neurotrophic 
factor (BDNF). BDNF signaling via tropomyosin receptor 
kinase B (TrkB) plays wide-ranging roles, for example, in 
adult neurogenesis [285], memory formation and retrieval 

[286, 287], and is regulated by anti-depressant treatments 
[288]. BDNF levels are lower in T cell-deficient mice [268]. 
BDNF is associated with depressive behavior and immuni-
zation of mice with a myelin-derived peptide, generating 
CNS-specific immunity, restores BDNF levels, improves 
neurogenesis, and reduces depressive behavior [289]. Fur-
thermore, healthy stress response in mice is associated with 
T cell trafficking in the brain and BDNF levels. Anxious 
behavior caused by stress is also reduced by immunization 
with a myelin-derived peptide [290]. Apart from neurons 
and microglia, T cells themselves are shown to secrete 
BDNF [291].

Tregs are also shown to be protective and delay disease 
progression in ALS by reducing microglial activation [292]. 
In models of Alzheimer’s disease, Treg transplantation 
enhances cognitive abilities and reduces amyloid plaques 
[293]. Moreover, a lower Treg/Th17 ratio is correlated with 
more severe disease in patients with multiple sclerosis, a 
debilitating autoimmune disease affecting neurons [294].

Although an over-exuberant immune response would 
impair brain function, a fine-tuned T cell immunity is clearly 
vital for healthy brain homeostasis and recovery from injury. 
Any intervention targeting this phenomenon must be care-
fully controlled to avoid inflammatory damage; however, 
the insights into adaptive immunity’s role in brain health 
open up new avenues to counter brain injury or age-related 
neurodegenerative diseases.

Trained Immunity in Microglia

Recent studies suggest that innate immune memory can 
be induced in microglial cells. One study found epigenetic 
reprogramming in microglia present for at least 6 months 
upon systemic LPS administration [295]. Interestingly, while 
a single LPS injection induced a trained phenotype in micro-
glia, repeated LPS injection led to the induction of tolerance. 
Similarly, low-dose TNFα administration was also found to 
induce microglia training. In a mouse model of Alzheimer’s 
disease, trained immunity exacerbated the disease while tol-
erance alleviated it. A recent study confirmed the finding 
of LPS-induced training and demonstrated that systemic 
β-glucan administration could also induce trained immu-
nity in microglia [296]. However, the trained phenotype of 
microglia was only observed two days after the priming and 
was no longer present at day 7, possibly indicating a lack of 
sustained epigenetic reprogramming. Therefore, it is worth-
while to investigate the strength and persistence of training 
with different doses and different injection regimens.

The Aging Brain

Many brain functions deteriorate with aging, with some even 
starting to decline after the third decade of life [297]. The  
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impaired functions include processing speed, problem- 
solving, fluid reasoning, perceptual abilities, verbal fluency, 
and working memory. However, the impairments do not nec-
essarily correlate with chronological age. It is rather an out-
come of increased maintenance demand through the accu-
mulation of damage and the inability of the immune system  
to monitor the brain to meet these demands. Of course, aging 
contributes to both the demand and the incapacity of the 
immune system through the mechanisms discussed earlier.

Aged microglia develop a pro-inflammatory phenotype 
[298]. Following a head injury or infection, they produce an 
excessive amount of pro-inflammatory cytokines for a longer 
time compared to a healthy young brain [299]. This inflam-
matory state leads to inhibited neurogenesis [300, 301]. A 
pro-inflammatory environment also inhibits modulators of 
long-term memory such as BDNF and activity-dependent 
cytoskeletal-associated protein and causes memory dys-
function [299]. Circulating BDNF levels decrease with age 
in humans, and brain levels are shown to decline in rodent 
models [302], which might reflect the age-associated drop 
in T cell numbers and function.

Aging is also associated with increased recruitment of 
effector memory  CD8+ T cells to the CP and the meninges 
— the membranes covering the brain [303]. These cells were 
shown to impair microglial function during homeostasis but 
enhance pro-inflammatory cytokine production upon injury. 
Moreover, Treg numbers are elevated in elderly individuals; 

however, their migratory capacity and function are likely 
impaired since they are not able to control neurodegenera-
tion. For instance, Tregs of multiple sclerosis patients have 
less immunosuppressive capacity and are unable to survive 
in sclerotic lesions in the brain [304].

In the case of chronic inflammation, while innate immune 
cells typically display tolerance leading to lower cytokine 
production, microglia acquire a primed to exhibit a more 
inflammatory phenotype, accelerating cognitive decline 
[305]. In addition, high levels of circulating TNFα observed 
in aged organisms might also cause damage by inducing 
trained immunity in microglia, as discussed above. There-
fore, a well-balanced innate immunity is as essential for the 
healthy maintenance of the brain as adaptive immunity.

Tackling Immune Aging From All Angles

Efforts to slow or revert aging are far from scarce. However, 
the outcome measures assessed by most studies are restricted 
in the sense that they do not offer mechanistic insights or 
focus on specific processes. Yet, some exciting interven-
tions, including caloric restriction, metformin, and physical 
exercise, interfere with aging on multiple levels encompass-
ing immunity, metabolism, epigenetics, microbiota, and the 
nervous system (Fig. 2). The following chapters discuss 

Fig. 2  Promising anti-aging interventions that target multiple facets 
of the aging process. Metformin delays stem cell aging, improves 
mitochondrial function, prevents telomere shortening, reverses age-
related epigenetic modifications, and reduces gut leakiness and 
dysbiosis. Physical exercise, even if initiated late in life, improves 
immune cell numbers and functions, restores mitochondrial metabo-
lism, prevents cellular senescence, counteracts cognitive decline, and 
reduces risks for neurodegenerative diseases. Resveratrol, available in 

grapes and red wine, acts as an antioxidant, extends lifespan in vari-
ous model organisms, attenuates systemic inflammation, and slows 
epigenetic aging. Caloric restriction by 20–40% enhances lifespan 
and reduces all-cause mortality in non-human primates, delays epige-
netic aging, restores gut microbiota, and slows cognitive decline. Cel-
lular mechanisms shared by these treatments include limitation of the 
mTOR/AKT axis and activation of AMPK and SIRT1
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different ways to tackle the aging problem and detail the 
mechanisms of the most promising anti-aging treatments.

Metabolic Interventions

For most of the human evolution, nutrients were scarce, 
and a great deal of physical activity was required to obtain 
them. Thus, humans evolved to adapt to those conditions. 
Our current sedentary lifestyle with an overabundance of 
nutrients is proposed to cause the high prevalence of meta-
bolic diseases, such as obesity, diabetes, and cardiovascular 
disease [306]. Furthermore, age is a risk factor for these 
conditions, as mentioned before, and immunosenescence has 
a lot in common with metabolic disease profiles. Therefore, 
focusing on metabolic interventions is a sensible approach 
to tackle aging and metabolic disorders simultaneously. 
Caloric restriction (CR) and exercise, bringing us closer to 
the ancestral conditions, take the lead in this line of research.

CR refers to a reduction of total calory intake by 20–40%. 
From yeasts to non-primates, CR has repeatedly been shown 
to enhance lifespan [307]. In rhesus monkeys, CR starting 
from young adulthood reduced the risk of mortality related 
to age-related causes by threefold and all-cause mortality by 
1.8-fold [308]. In another study, CR decreased the incidence 
of diabetes, cancer, and cardiovascular disease while also 
delaying disease onset [309]. A contrasting study reported 
no improvement in survival, although the incidence of can-
cer and diabetes was reduced [310].

In a randomized controlled trial of 218 non-obese peo-
ple, a 2-year CR diet reduced circulating TNFα levels and 
strikingly decreased cardiometabolic risk markers, such 
as cholesterol and triglycerides, without any intervention-
related adverse effects [311]. So far, there is no human study 
reporting a significant effect of CR on longevity. Large and 
extensive studies with genetically diverse populations are 
needed to solidify the promise of CR in humans.

Various metabolic impacts of CR include downregulation 
of mTOR and insulin signaling and activation of SIRT1, 
which all have broad implications on immune cell function 
[312]. CR is shown to delay T cell senescence in rhesus 
monkeys [313]. Furthermore,  CD4+ and  CD8+ naïve T cell 
pools were expanded, and thymic output and T cell prolifera-
tion were increased, but IFNγ production by CD8 + cells was 
reduced after CR. Although reducing the amount of calo-
ries taken seems to reverse age-induced metabolic changes 
and improve health and longevity, it is important to note 
that a few studies in rodents reported an impaired adaptive 
response and increased mortality against influenza A and 
West Nile viruses in elderly animals after CR [314, 315]. 
However, a recent mouse study revealed protective effects 
of CR against M. tuberculosis infection. This effect was 
related to metabolic shift characterized by mTOR inhibi-
tion but enhanced glycolysis and reduced FAO, along with 

increased autophagy [316]. mTOR inhibitor rapamycin acted 
synergistically with CR and further enhanced autophagy, 
leading to more efficient inhibition of M. tuberculosis.

Similar to CR, exercise is promising to interfere with 
immunosenescence. Regularly exercising older women had 
better NK and T cell functions compared to age-matched 
sedentary women [317]. Naïve T cell numbers and thymic 
output were higher in physically active elderly, similar to 
young adults, compared to sedentary ones [318]. They also 
had lower circulating IL-6 and higher IL-7, which is essen-
tial for T cell development. However, senescent  CD8+ T 
cell numbers did not differ between groups. After an 8-week 
training program, immune cells of elderly adults displayed 
enhanced autophagy and downregulated NLRP3 inflamma-
some [319]. Exercise also improved mitophagy and mito-
chondrial biogenesis in skeletal muscle cells and immune 
cells alike, restoring the cellular metabolic status impaired 
by aging [320].

Apart from lifestyle interventions, chemical metabolic 
regulators are also investigated for their anti-aging potential. 
Metformin, safely used in humans for more than 60 years 
for its glucose-lowering effect, attenuates age-associated 
hallmarks through a plethora of mechanisms. These include 
activation of AMPK, inhibition of mTORC1, improved 
mitochondrial biogenesis, downregulation of insulin/IGF1 
signaling, and activation of SIRT1 [321]. Furthermore, met-
formin delays stem cell aging and reduces telomere short-
ening. Overall, it seems to act on all hallmarks of aging. A 
large clinical trial of more than 3000 individuals aged 65–79 
is currently being planned to assess the anti-aging potential 
of metformin (https:// www. afar. org/ tame- trial).

Everolimus, another mTOR inhibitor, attenuated immu-
nosenescence and improved antibody responses to influenza 
vaccination in the elderly [322]. Even though most immune 
cell subsets were not altered in this study, T cells positive 
for programmed cell death protein 1 (PD-1), a marker of 
exhaustion, were markedly reduced. A follow-up study with 
264 elderly subjects reported upregulated antiviral expres-
sion, improved response to influenza vaccination, and overall 
fewer infections [323].

SIRT1 activation is another approach to tackle immu-
nosenescence. It is known to improve B cell proliferation 
and function, and therefore could help improve antibody 
responses declining with age [324]. SIRT1 can modulate 
metabolic pathways through protein and histone deacety-
lation [325]. Targets of SIRT1 include NF-κB, hypoxia-
inducible factor 1-alpha (HIF1α), and FOXO transcription 
factors. Moreover, SIRT1 activation potentiates BCG-
induced trained immunity response [326]. Despite mouse 
studies with SIRT1-activators showing delayed age-related 
phenotypes and increased lifespan [327, 328], there is no 
evidence suggesting that SIRT1 is associated with longevity 
in humans [329].

https://www.afar.org/tame-trial
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Resveratrol, a polyphenol compound found in red wine, 
is a potent activator of SIRT1 [330]. It is also shown to acti-
vate AMPK, therefore repressing mTOR signaling [331]. 
Apart from in vitro studies and inflammatory disease models 
displaying resveratrol’s antioxidant and anti-inflammatory 
activity [332], several mice studies reveal its antiviral capac-
ity [333, 334]. In terms of longevity, studies failed to report a 
significant lifespan extension by resveratrol in healthy mice 
[327, 335]. However, in mice fed with a high-calorie diet, 
resveratrol shifted the transcriptional profile towards that of 
standard-fed mice [336]. It also improved insulin sensitiv-
ity and increased survival. Similar results were observed 
in rhesus monkeys on a high-fat, high-sugar diet [337]. 
Thirty-day supplementation of obese men with resveratrol 
induced metabolic changes through the AMPK-SIRT1 axis 
and reduced systemic inflammation, glucose, and triglycer-
ide levels [338]. However, a similar study did not report any 
beneficial effects of resveratrol [339].

Overall, there are highly promising therapeutic 
approaches targeting metabolic pathways underlying immu-
nosenescence and age-associated metabolic diseases. How-
ever, large-scale randomized control trials in humans are 
needed to see whether these exciting observations in non-
human primates and smaller model organisms are translat-
able for human use.

Strategies Modulating Epigenetics

Epigenetic interventions have been employed for several 
age-related diseases, e.g., cancer, diabetes, and Alzheimer’s 
disease; however, only a few studies specifically target age-
dependent changes in the epigenetic structure [340]. Instead, 
metabolic interventions employed to halt immunoaging also 
work by altering the age-associated epigenetic landscape. 
Resveratrol, CR, and metformin are three promising therapy 
options reconfiguring age-related DNA methylation and his-
tone modifications in the elderly.

An intriguing study revealed that regenerating the thymus 
resulted in a 2.5-year younger epigenetic age [341]. Par-
ticipants between 51 and 65 years of age received a 1-year 
treatment with recombinant human growth hormone, dehy-
droepiandrosterone (DHEA), which is a steroid hormone 
precursor, and metformin. The treatment led to restored 
functional thymic mass, changes in the immune cell sub-
sets, and cytokine production, as well as altered epigenetic 
profile, which was associated with younger age.

Rhesus monkeys, who were exposed to 40% caloric 
restriction, were late to display the methylation changes 
found in the older monkeys [342]. Although this study 
does not provide direct evidence of a longer lifespan asso-
ciated with delayed methylation drift, it suggests that CR 
could be used to slow down the aging process. In line with 
this, improving the lifespan of mice with resveratrol or CR 

resulted in slower epigenetic aging [343]. Life-long CR has 
also shown to prevent age-related DNA methylation changes 
in the brain, providing neuroprotection [344].

A few studies explain how CR could affect epigenet-
ics. These mechanisms include decreased histone acetyla-
tion mediated by increased SIRT1 expression, higher DNA 
methyltransferase (DNMT) activity, and hypermethylation 
of specific regulatory genes, such as Ras [340]. Similarly, 
metformin acts on epigenetic marks via activating SIRT1 
and inhibiting HDACs [345]. To our knowledge, there is no 
research investigating the effects of CR on aging-related epi-
genetic alterations, possibly due to the limitations of imple-
menting such long-term interventions on humans.

Potential Treatments Targeting Microbiota

Since gut microbiota regulates host metabolism, anti-aging 
interventions targeting metabolism inevitably affect the 
gut microbiota. As an example, besides acting on meta-
bolic pathways, metformin modulates the gut microbiota. 
A study investigating the effects of metformin in obese 
and aged mice found a decrease in IL-1β and IL-6 in the 
epididymal fat, which was associated with changes in the gut 
microbes [346]. Furthermore, type 2 diabetes patients who 
take metformin had a higher abundance of Akkermansia in 
their guts [347], which was correlated with lower bacterial 
translocation and risk of dysbiosis [348]. In line with these, 
metformin reduced age-related leaky gut and inflammation 
in mice [349].

Another treatment strategy to halt immunoaging by tar-
geting the microbiota is the use of pro- and prebiotics. Probi-
otics are supplements containing live microorganisms, while 
prebiotics is substrates that microorganisms can utilize for a 
living [350]. Although there is conflicting evidence, studies 
suggest that regular probiotics use can modulate the diver-
sity and abundance of the gut microbes, decreasing the inci-
dence of dysbiosis [351, 352]. Probiotics are associated with 
improved immune responses evident from increased B and 
T cell counts, enhanced NK cell activity [353] and higher 
IgA production against influenza virus in older individuals 
[354]. Furthermore, supplementation with probiotics helped 
reduce the growth of opportunistic bacteria Clostridium dif-
ficile among the elderly [355]. Contrary to these findings, a 
meta-analysis of 10 randomized controlled studies showed 
no beneficial effect of probiotics on decreasing inflammatory 
cytokine production [356].

The combination of probiotics with prebiotics, i.e., synbi-
otics, also has beneficial effects, like probiotics supplemen-
tation. Two months of treatment in elderly individuals with 
a synbiotic formula significantly improved the metabolic 
syndrome parameters in circulation and decreased inflam-
matory proteins, such as TNFα and C-reactive protein [357]. 
A double-blind 4-week symbiotic treatment study reported 
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an increase in Bifidobacteria, Actinobacteria, Firmicutes, 
and the metabolite butyrate in the treatment group compared 
to placebo, while Proteobacteria and pro-inflammatory 
cytokines were lower [358].

Caloric restriction could be another treatment strategy to 
improve cognitive functions, metabolic parameters, and gut 
microbiota in the elderly. CR slowed the cognitive decline 
in a mouse model of Alzheimer’s disease, associated with 
increased Bacteroides in the guts. Aged mice receiving 30% 
fewer calories for 2 months displayed significant shifts in 
their microbiota towards a more balanced composition simi-
lar to that of young mice [359]. Lifelong CR induced more 
extensive changes in the microbiota, reduced the concentra-
tion of inflammatory peptides, and increased the lifespan 
of mice [360]. However, a recent study revealed that severe 
CR, more than 50%, disrupts the diversity of microbiota 
and leads to the growth of pathogenic bacteria C. difficile 
[361]. Thus, it is critical to carefully determine the extent 
and duration of CR.

Interventions for Brain Aging

Physical exercise is an excellent way of promoting brain 
health. Exercise counteracts cognitive impairment, reduces 
dementia risk, improves spatial memory, and enhances neu-
roplasticity [362]. Physical activity can attenuate the effects 
of risk alleles for memory impairment [363] and protect 
against the development of Alzheimer’s disease [364, 365]. 
A systematic review of 16 studies with a total of 163,797 
participants reported that regular exercise led to 28% and 
45% risk reduction in dementia and Alzheimer’s, respec-
tively [366]. Of note, exercise-associated risk reduction was 
observed in most of the individual studies irrespective of the 
frequency and intensity of the exercise.

Studies suggest antioxidant and anti-inflammatory effects 
of exercise as potential mechanisms behind neuroprotection 
[367, 368]. Anti-inflammatory consequences of exercise 
include reduced circulating IL-6 but increased IL-10 and IL-
1RA, lower numbers of Treg, and higher numbers of inflam-
matory monocytes in circulation, and inhibited monocyte 
function [369]. Besides these, physical exercise is associated 
with reduced senescent T cells, increased NK cell cytotoxic-
ity and neutrophil phagocytosis, and longer telomeres in leu-
kocytes [370]. Additionally, moderate cardiovascular exer-
cise improved seroprotection after influenza vaccination in 
the elderly [371]. Slowing down immunosenescence would 
limit brain aging and cognitive decline through improved 
immunosurveillance and repair of the CNS.

Moreover, even a single exercise session increases BDNF 
levels which is further enhanced with regular exercise 
[372]. Interestingly, the exercise-related increase in BDNF 
is more pronounced in males compared to females. Ketone 
bodies are also shown to induce BDNF expression [373, 

374], possibly contributing to the neuroprotective effect of 
ketogenic diets in neurological diseases [375].

CR is another intervention shown to prevent neu-
ronal damage. It leads to increased BDNF expression and 
enhanced neurogenesis [376], causes an energetic shift from 
glycolysis to the use of ketone bodies, protects white matter 
integrity, and improves long-term memory in mice [377]. In 
rats, an alternate-day CR regimen promotes neuronal resist-
ance to chemically induced damage [378]. One mechanism 
of CR-induced neuroprotection is likely due to the suppres-
sion of oxidative stress in the brain [379, 380]. However, 
severe CR with 50% reduction of calorie intake was reported 
to cause depressive behavior in rats [381]. In mouse models 
of Alzheimer’s disease, CR is able to limit amyloid plaque 
deposition [382, 383], possibly through a mechanism involv-
ing SIRT1 activation [384].

Despite all the positive results in rodents, neuroprotec-
tive effects of CR are not very clear in non-human primates, 
while large human studies are lacking [385]. Nevertheless, 
a small randomized controlled trial with humans resulted 
in no significant improvement in cognitive function [386]. 
Another clinical study on older adults showed improved 
memory scores upon 3  months of CR [387]. Improved 
memory, along with higher functional connectivity in the 
hippocampus, was reported in obese women that underwent 
a 3-month CR diet [388]. More extensive human studies 
with CR are necessary to understand the extent of the neu-
roprotective effects.

Interestingly, BCG vaccination was recently shown to 
reduce the risk of Alzheimer’s and Parkinson’s diseases in 
bladder cancer patients treated with BCG immunotherapy, 
compared to non-treated patients [389, 390]. In bladder 
cancer treatment, BCG is applied directly into the blad-
der, rather than the usual intradermal route of administra-
tion. Exciting future research projects would be assessing 
the effects of intradermal BCG on neurodegenerative dis-
eases and investigating the underlying mechanisms to find 
out if trained immunity plays a role in the neuroprotective 
effects. Currently, a clinical trial is underway using intra-
dermal BCG injections in late-onset Alzheimer’s patients 
(NCT04449926).

Concluding Remarks

Biological aging is a complex process involving all systems 
of the organism. The immune system is at the very center 
of it, interacting with all the others. The aging immune sys-
tem is a culprit for the high susceptibility of the elderly to 
infections and age-related metabolic and neurodegenerative 
diseases, among others. Therefore, improving innate and 
adaptive immunological responses is immensely important 
to reduce infection-related morbidity and mortality and 
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enhance vaccine responsiveness in older individuals. Here, 
we also presented a large body of research hinting towards 
new roles of immune memory in metabolic regulation and 
maintaining a healthy central nervous system. Approaching 
aging from all angles, with immunity as a central node, and 
designing anti-aging interventions targeting the common 
mechanisms ubiquitously affected by aging is a sensible way 
to further research. Behavioral interventions such as caloric 
restriction and physical exercise as well as pharmacological 
agents such as metformin and resveratrol are able to regulate 
many facets of aging and have yielded promising results in 
animal models and humans. A comprehensive strategy is 
essential for human beings striving to lead long lives with 
healthy guts, functional brains, and free of severe infections.
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