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Abstract: CD155 is an adhesion molecule belonging to the Nectin/Nectin-like family often
overexpressed on tumor cells and involved in many different processes such as cell adhesion,
migration and proliferation. In contrast to these pro-tumorigenic functions, CD155 is also a ligand for
the activating receptor DNAM-1 expressed on cytotoxic lymphocytes including Natural Killer (NK)
cells and involved in anti-tumor immune response. However, during tumor progression inhibitory
receptors for CD155 are up-regulated on the surface of effector cells, contributing to an impairment
of their cytotoxic capacity. In this review we will focus on the roles of CD155 as a ligand for the
activating receptor DNAM-1 regulating immune surveillance against cancer and as pro-oncogenic
molecule favoring tumor proliferation, invasion and immune evasion. A deeper understanding of
the multiple roles played by CD155 in cancer development contributes to improving anti-tumor
strategies aimed to potentiate immune response against cancer.
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1. Introduction

CD155 is an immunoglobulin superfamily adhesion molecule involved in many different
physiological processes ranging from cell adhesion and migration, proliferation and modulation
of immune responses [1-3]. Based on its ability to mediate the binding of human poliovirus, CD155
was initially identified as PolioVirus Receptor (PVR) [4]. CD155 is also known as Necl5 since it is
a member of the Nectins and Nectin-like (Necls) family of molecules that comprises four Nectins
(Nectin1-4) and five Necls (Necl1-5) [1,5,6]. They are expressed in many different cell types and can
function both as ligands and receptors, hence being able to bidirectionally signal between juxtaposed
cells. Nectins and Necls mediate both homotypic and heterotypic adhesion between one cell and its
neighbors or the extracellular matrix (ECM) components. They are connected to signaling pathways
that control actin and microtubule dynamics and ultimately affect cell motility [5,6].

In particular, Nectins are involved in the organization of E-cadherin-based adherens junctions in
epithelial cells through homophilic and/or heterophilic Ca**-independent interactions and are linked
with the cytoskeleton through a cytoplasmic domain that contains a motif able to bind the actin-binding
protein afadin [7].

Differently from Nectins, Necl proteins, including CD155, lack this cytoplasmic motif. CD155
intracellular domain, instead, binds to Tctex-1, a light chain subunit of the dynein motor complex [8]. This
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interaction allows the retrograde axonal transport of CD155 containing endocytic vesicles [8]. Furthermore,
CD155 is not involved in homophilic interactions but trans-interacts with Nectin3 on neighboring
cells [9,10]. It also mediates cell-to-ECM adhesion by binding to the ECM protein vitronectin [11].

CD155 gene transcription gives rise to the production of a mRNA that can be alternatively spliced
into different isoforms and ultimately translated in four possible proteins: two transmembrane forms
and two soluble forms [12,13]. All of them bear the same extracellular domains but the soluble secreted
CD155 $ and y forms lack the transmembrane domain, whereas the two transmembrane isoforms of
CD155, namely « and $, differ in their intracellular tail. In particular, only the cytoplasmic domain
of CD155¢ interacts with the u1B subunit of the clathrin adaptor complex, directing the sorting of
CD155« to basolateral membranes in epithelial cells [14]. Moreover, the CD155x isoform contains an
Immunoreceptor Tyrosine-based Inhibition Motif (ITIM) responsible for signal transduction [3]. Upon
antibody-mediated CD155 engagement, the ITIM motif is phosphorylated by the c-Src tyrosine kinase
allowing the recruitment of the Src homology region 2 domain-containing phosphatase (SHP-2) that
initiates intracellular signals [3,15].

Although constitutively expressed at low level in diverse healthy tissues including the kidney,
lung, liver, and testes, CD155 isoforms are up-regulated in several types of human malignancies
and their overexpression correlates with unfavorable prognosis [16-21]. Indeed, CD155 may favor
proliferative signals and tumor growth along with cancer cell invasion and metastasis.

On the other hand, CD155 provides a direct link between cellular responses to stress and immune
surveillance because it is a ligand for DNAX-associated molecule-1 (DNAM-1), an activating receptor
expressed on Natural Killer (NK) cells and cytotoxic T cells [1,22]. Indeed, CD155 up-regulation renders
tumor cells more sensitive to elimination by immune cells. Noteworthily, cytotoxic lymphocytes also
express inhibitory receptors able to bind to CD155 [23], adding an additional level of complexity to the
clinical significance of CD155 expression in cancer.

In this scenario, it is likely that the role of CD155 will change during tumor progression: In the
early phases of transformation CD155 surface expression on tumor cells mainly promotes anti-tumor
immune function while in the late phases it supports tumor growth and immune escape (Figure 1).
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Figure 1. Model depicting CD155 multiple roles in tumor progression. Anti-tumoral and pro-tumoral
CD155 roles are indicated with white and gray background, respectively. Temporal evolution of tumor
is highlighted in shades of gray. CD155 represents an advantage for tumor cells (thick gray line) because
its engagement initiates intracellular signals that favor proliferation, invasiveness and metastasis.



Int. ]. Mol. Sci. 2020, 21, 922 3of 14

However, in early phases of tumor transformation CD155 also plays an anti-tumorigenic role facilitating
target recognition and killing by Natural Killer (NK) cells (light pink). For this reason, tumor cells
employ different strategies (e.g., SUMOylation/Degradation) to reduce CD155 surface expression and
to counteract DNAM-1-mediated recognition. In late phases, DNAM-1 down-modulation from NK cell
surface and a concomitant up-regulation of inhibitory CD155 receptors (TIGIT and CD96) contribute to
dampen anti-tumor immune responses.

In this review, we will summarize data that have contributed to shedding light on the multifaceted
roles of CD155 as pro-oncogenic adhesion molecule favoring tumor progression but also as a ligand
for immune receptors regulating tumor immune surveillance.

2. CD155-Mediated Signals Promote Tumor Progression

Several studies reported that cancer development is accompanied by up-regulation of CD155
expression that mainly occurs at transcriptional level in response to different stimuli [24,25].

Among signals implicated in malignant transformation, stimulation of Fibroblast Growth Factor
receptor or oncogenic ras mutation activates a transcriptional program involving the Ras-Raf-MEK-ERK
signaling pathway, ultimately leading to the induction of CD155 transcription [24].

Similarly, Sonic Hedgehog pathway, that is aberrantly active in many different tumors, has been
shown to induce CD155 expression through the action of the transcription factor Gli [25].

Asrevealed by several lines of in vitro evidence, CD155 up-regulation may represent an advantage
for tumor growth [5,6,26-28]. Accordingly, in Ras-mutated cells CD155 overexpression shortens the
GO0/G1 phase and contributes to tumor cell proliferation [26]. Although the signaling molecules involved
have not been identified, yet, the cytoplasmic ITIM is required for CD155-induced proliferative signals,
indicating that this function is exclusive for the CD155« isoform.

CD155-mediated signaling may also cooperate with signals derived from growth factors to
ultimately control tumor growth. For example, in NIH3T3 cells, CD155 enhances platelet-derived
growth factor (PDGF)-induced cell proliferation potentiating the Ras-Raf-MEK-ERK signaling
pathway [27].

In accordance with these findings, CD155 has been involved in proliferation and survival abilities
of human colorectal cancer cells [28]. Indeed, CD155 knockdown suppresses proliferation of colon
cancer cells and promotes apoptosis by affecting the ratio between Bax and Bcl-2 expression [28].

Regarding cell adhesion/migration, the ITIM domain of CD155 is responsible for the recruitment
of SHP-2 which is activated and in turn dephosphorylates the focal adhesion kinase (FAK), ultimately
resulting in increased cell motility [15,29].

In migrating cells, CD155 is recruited to the leading edge, colocalizes with actin and ov 33 integrin,
and activates CDC42 and Rac promoting actin reorganization, filopodia and lamellipodia formation [30].
In line with these evidences, CD155 expression on glioma cells enhances cell dispersal both in vitro
and in primary brain tissue by the disassembly of focal adhesions [31].

All together these findings implicate CD155 as a negative regulator of adhesion signaling and a
promoter of an invasive phenotype.

Interestingly, even though CD155 is involved in cell movement, its binding to Nectin3 on
adjacent cells may facilitate cell-cell interactions [32]. Accordingly, we demonstrated that on Multiple
Myeloma (MM), a hematopoietic tumor in which malignant plasma cells proliferate in the bone
marrow niche, CD155 promotes MM cell adhesion to bone marrow stromal cells (BMSCs) (Figure 2).
In particular, we found that shRNA-mediated CD155 knock-down dramatically decreases the number
of MM/BMSC adherent cells (Figure 2A,B). Moreover, we also provided evidences that the only ligand
of CD155 expressed on BMSCs is Nectin3 (Figure 2C), strongly suggesting its involvement in MM cell
adhesion to stromal cells. Whether CD155/Nectin3 interaction also contributes to MM cell survival is
under investigation.
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Figure 2. CD155 promotes Multiple Myeloma (MM) cell binding to bone marrow stromal cells
(BMSCs). (A) CD155 knock-down in the Multiple Myeloma cell line ARK was achieved by means
of lentiviral-mediated shRNA targeting (pLKO vector, MISSION™ Sigma-Aldrich). CD155 surface
expression was analyzed by FACS in cells infected with shCD155 (code SHCLND-NM_006505, sequence
TRCN0000062911) (empty red histogram) or non-targeting shRNA (Mock, filled gray histogram) by
mean of a PE-conjugated anti-CD155 monoclonal Ab (clone SKII.4, Biolegend). Isotype control staining
is also shown (Ctrl Ig, empty black histogram). Data from one representative experiment out of
three independent experiments is shown. (B, left panel) CD155-silenced or mock-infected ARK cells
were labeled with the red fluorescent dye PKH26 and left to adhere to a monolayer of HS5 bone
marrow-derived stromal cells for 2 h at 37 °C. Cells were washed three times with PBS and fixed.
Adherent cells were visualized with IX73 microscope equipped with a 10 X objective (Olympus).
An overlay image mixing red fluorescence and brightfield is shown, scale bar: 50 um. (B, right panel)
Adherent cells were quantified with FIJI software. Means + SD of 15 randomly acquired fields from
two independent experiments are shown. ** p < 0.01, Unpaired t-test. (C) HS5 stromal cell line were
stained for Nectin3 (clone N3.12.4, Millipore), DNAM-1 (clone DX11, Serotec), CD96 (clone NK92.39,
Biolegend) and TIGIT (clone A15153G, Biolegend) (empty red histograms) or with isotype matched
Ctrl Ig (black histograms) followed by an APC-conjugated goat anti-mouse Ab (Jackson Laboratories)
and analyzed by flow cytometry. Data from one representative experiment out of three independent

experiments is shown.

Previous data obtained on fibroblastic cells demonstrate that trans-interaction between CD155 and
Nectin3 is rapidly followed by CD155 internalization resulting in contact inhibition of cell movement,
thus promoting stable adhesion [32].

Although these in vitro evidences support a proto-oncogenic role for CD155 in tumor progression,
the contribution of CD155 during tumor development in vivo is scarcely understood.

CD155 deficient mice show reduced tumor development in a murine model of colitis-induced
colorectal cancer [33]. Moreover, silencing of CD155 reduces proliferation of melanoma cells compared
to control cells upon in vivo injection [34]. These findings, together with the high CD155 expression in
advanced clinical stage of human malignancies including melanoma, glioblastoma, pancreatic, colon
and lung cancers [16-21], support a role for CD155 as pro-tumorigenic molecule.

However, CD155 overexpression may be exploited as a means to selectively target and eliminate
malignant cells. Indeed, brain tumors overexpressing CD155 may become a target for oncolytic
immunotherapy [35]. To this regard, an attenuated form of poliovirus that retains high cytolytic
activity only in mitotically active cells is currently being tested for its ability to target and destroy
CD155-positive glioblastoma cells [36].
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3. CD155 is a Ligand for Immunoreceptors Implicated in Tumor Surveillance

CD155 also exerts an anti-tumorigenic role participating in immune response to tumors. Indeed,
it is considered a stress-induced molecule able to activate a danger signal, alerting the immune system
against tumor transformation. In particular, CD155 once up-regulated on different types of tumor cells
is recognized by a group of receptors expressed on T and NK cells: The activating receptor DNAM-1
(CD226) and the inhibitory receptors TIGIT and TACTILE (CD96) [22,23,37].

It has been proposed that in the tumor microenvironment the balance between CD155/DNAM-1
and CD155/TIGIT/CD96 contrasting signals contributes to regulate NK cell effector functions [37].

3.1. Interaction of CD155 with DNAM-1 Activating Receptor

DNAM-1 (also known as CD226) is an activating receptor that belongs to the Ig superfamily and
is expressed on NK cells but also on T cells, monocytes and B cells. In this context, in addition to
CD155 it also recognizes Nectin-2/CD112 [22]. DNAM-1 interaction with its ligands promotes serine
phosphorylation of receptor cytoplasmic tail and the association with the integrin LFA-1 responsible
for the activation of the Src family kinase Fyn [38], thus initiating signal transduction. Engagement
of DNAM-1 co-stimulates CD8* T cell and promotes NK cell cytotoxicity and cytokine production.
In particular, on freshly isolated human NK cells, DNAM-1 requires the co-aggregation with at least
another activating receptor to efficiently trigger the NK cell functional program [39].

DNAM-1/CD155 axis has raised interest in the context of anti-tumor immune response since
DNAM-1-deficient mice are more prone to develop carcinogen-induced tumors compared to their wild
type counterparts and exhibit accelerated CD155-positive transplanted tumor growth [40,41].

Additional in vivo evidences demonstrate a clear role for CD155 recognition by DNAM-1 in tumor
immune surveillance in several murine models [42—47]. In mice injected with the RMA lymphoma
cell line, the over-expression of CD155 results in DNAM-1-mediated tumor rejection by NK cells [42].
In addition, in a murine model of spontaneous MM development, DNAM-1 expression on both NK and
T cells plays a prominent role in the control of tumor progression [47]. Instead, mice lacking DNAM-1
are more susceptible to lung metastases than wild-type mice [44,46], demonstrating a critical role for
DNAM-1 in the control of tumor metastasis. Moreover, in a genetic model of spontaneous Burkitt
lymphoma development, CD155 expression at early malignant stages mediates DNAM-1-dependent
tumor cell elimination by NK and CD8" T cells [45].

In humans, high CD155 levels on the surface of both solid and hematological tumors render
them more susceptible to NK cell-mediated elimination in a DNAM-1-dependent manner [43,48-52].
Both CD155 and Nectin2 expression were found on neuroblastoma cells isolated from patients, and
their levels correlate with tumor cell sensitivity to NK cell-mediated cytotoxicity [48]. However, only an
anti-CD155 blocking antibody is able to interfere with NK cell killing, demonstrating that CD155 is the
major DNAM-1 ligand. CD155 is also expressed by other solid tumors such as metastatic melanoma [43]
and ovarian carcinoma [50] where it mediates NK cell recognition and tumor elimination.

In hematological malignancies, a dominant role of DNAM-1 receptor has been reported. Indeed,
the NK cell activating ligands preferentially expressed in myeloid and lymphoid leukemias are the
DNAM-1 ligands. Accordingly, NK cell-mediated leukemia cell elimination is largely impaired by the
addition of an anti-DNAM-1 blocking antibody [49].

CD155 is also expressed on malignant plasma cells derived by the majority of MM patients
and its recognition by DNAM-1 receptor contributes to NK cell-mediated malignant plasma cell
elimination [51]. In this regard, strategies aimed to improve NK cell ability to kill MM cells, are based
on the use of chemotherapeutic drugs that activate the DNA Damage Response (DDR) pathway and
increase CD155 surface expression potentiating its transcription/expression [52-56]. However, whether
CD155 « and 4 transmembrane isoforms are equivalently able to bind DNAM-1 and activate cytotoxic
program remains uninvestigated.
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The importance of CD155/DNAM-1 interaction is also supported by different tumor strategies
aimed to counteract DNAM-1-mediated cancerous cell elimination. As mentioned above, tumor cells
express different isoforms of CD155 including two soluble forms (sCD155), namely {3 and 'y, both lacking
the transmembrane region encoded by exon 6. CD155y completely lacks exon 6, while CD155f3 contains
a small exon fragment and for this reason is longer than the sCD155y [13]. Since the extracellular
domain of both soluble isoforms are identical to the extracellular domain of transmembrane CD155
forms, they are supposed to compete for DNAM-1 binding decreasing the efficacy of CD155/DNAM-1
activating signals and facilitating tumors to escape immune detection. In support to this hypothesis,
sCD155 isoforms were found in blood serum, cerebrospinal fluid, and urine of patients with epithelial
cancers at higher concentrations compared to healthy donors and correlate positively with disease
stage [21]. Therefore, the presence of sCD155 isoforms can be considered a potential biomarker of
tumor progression. In accordance with these findings, the amount of sCD155 produced by implanted
cancerous cells in mice strongly correlates with the size of the resulting tumor [21]. However, whether
the two CD155 soluble forms differ in their function is currently unknown.

CD155 surface expression on tumor cells may also be down-regulated by post-translational
modifications [57], as previously shown for several immune receptors [58-60]. In hepatocellular
carcinoma cells, the activation of the unfolded protein response promotes CD155 constitutive
degradation and results in a defective NK cell activation against tumor cells [61]. Although not
determined, it is likely that CD155 degradation depends on protein ubiquitination, as formally
demonstrated for Nectin2 [62]. CD155 can also be covalently linked to the small ubiquitin-like modifier
(SUMO) in different tumor cell lines, and this modification promotes CD155 intracellular retention [63].
Accordingly, inhibition of CD155 SUMOylation in tumor cells increases CD155 surface expression
and improves NK cell surveillance [63]. Moreover, we provide evidence that silencing the SUMO
conjugating enzyme UBC9 increases MM adhesion to BMSCs in a CD155-dependent manner (Figure 3).
Indeed, the addition during the adhesion assay of the anti-CD155 monoclonal antibody D171, which
reduces the binding to Nectin3 [10], partially inhibits tumor adhesion to stromal cells (Figure 3A).
Several other adhesion molecules are implicated in MM adhesion to BMSCs including the « and 3
chain integrins [64]. However, their expression remains unchanged upon UBC9 silencing (Figure 3B).
Thus, inhibition of the SUMO pathway in addition to potentiate NK cell-mediated recognition and
killing of CD155 positive tumor cells [63] also promotes the CD155-mediated adhesion of MM cells to
stromal cells (Figure 3C).

Even though CD155 expression is recognized as a danger signal by cytotoxic lymphocytes,
reduced DNAM-1 levels were found on the surface of NK cells from peritoneal fluids of ovarian
carcinoma patients as a consequence of chronic stimulation by CD155-bearing tumor cells [50].
Moreover, in Acute Myeloid Leukemia patients, CD155 and Nectin2-expressing leukemic blasts
induces DNAM-1 down-modulation leading to an impairment of NK cell cytotoxicity [65]. In line
with these results, NK cells derived from patients with advanced MM show low DNAM-1 expression
respect to precancerous stages [51,66]. Accordingly, DNAM-1 has been shown to be up-regulated
in T lymphocytes derived by CD155 deficient mice [67]. Relevant to this, CD155 expression on
tumor-infiltrating myeloid suppressive cells induces DNAM-1 down-modulation from the surface of
NK and T lymphocytes and impairs their ability to reject CD155-positive transplanted tumors [34].

All these findings provide evidence that prolonged exposure to CD155 promotes DNAM-1
down-modulation leading to an impairment of NK and T cell cytotoxicity.
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Figure 3. Inhibition of small ubiquitin-like modifier (SUMO) pathway increases MM adhesion to
BMSCs. Knock down of the UBC9 SUMO conjugating enzyme in ARK cell line was obtained through
shRNA-expressing lentiviral vectors, as previously described [63]. (A) UBC9 silenced or infected with
the control vector pLKO non-targeting sShRNA (Mock) ARK cells were labeled with the red fluorescent
dye PKH26 and incubated for 20 min at 4 °C with anti-CD155 monoclonal Ab (clone D171, Thermo
Scientific) or with isotype matched control Ab. After washing, cells were left to adhere to a monolayer
of HS5 bone marrow-derived stromal cells for 2 h at 37 °C. Cells were washed three times with PBS
and fixed. Adherent cells were visualized with IX73 microscope equipped with a 10X objective and
quantified with FIJI software. Means + SD of 10 randomly acquired fields from each experiment of
three independent experiments are shown. **** p < 0.0001, ** p < 0.01, Two-way ANOVA. (B) UBC9
silenced (empty red histogram) and mock-infected (filled gray histogram) cells were analyzed by FACS
for surface expression of CD155 and «/f3 integrin subunits using the following Abs: anti-«4 (clone P4G9,
Telios Pharmaceuticals), anti-a5 (clone SAM-I, Immunotech), anti-av (clone AMF7, Immunotech),
anti-pB1 (cloneTS2.16, generous gift from Dr. F. Sanchez-Madrid), anti-p2 (clone TS1.18, generous gift
from Dr. E Sanchez-Madrid) and anti-B3 (clone BB10, Chemicon) Abs. Isotype control staining is
also shown (Ctrl Ig, empty black histogram). Data from one representative experiment out of two
independent experiments is shown. (C) Working model illustrating how SUMO modification regulates
CD155 expression and functions in MM cells.

3.2. Inhibitory CD155 Receptors: TIGIT and CD96

Accumulating data demonstrate that in advanced tumor stages two inhibitory receptors
structurally related to DNAM-1 are up-regulated on NK and cytotoxic T cells: T-cell immunoreceptor
with immunoglobulin and ITIM domains (TIGIT) and T cell-activated increased late expression (Tactile),
also known as CD96 [68]. They both share with DNAM-1 the ability to bind CD155 but contain an
ITIM motif that can transduce inhibitory signals and counterbalance the DNAM-1 mediated activating
signals [46,69]. Moreover, they show a higher affinity for CD155 than DNAM-1 [70,71].

Regarding mouse CD96 (mCD96), it appears that it mainly controls the extent of cytokine
production by NK cells that critically depends on an interaction with the mature dendritic cells (DCs) [46]
while direct killing tested in vitro is almost unaffected. Moreover, Smyth’s group demonstrated that
disrupting the interaction between mCD96 and mCD155 by using anti-CD96 blocking antibodies,
metastatic spread was inhibited in several tumor models [72]. Interestingly, despite this evidence
documenting the involvement of mCD96 as an inhibitory NK cell receptor, human CD96 (hCD96) was
initially described as an NK cell activating receptor [73]. However, NK cell efficiency to kill in vitro
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CD155 positive ovarian carcinoma cells [50] or myeloma cell lines [51] was not affected in the presence
of neutralizing anti-CD96 monoclonal antibodies. Thus, whether hCD96 activates human NK cells is
still a matter of debate.

The functional differences between human and mouse CD96 may reflect their structural diversity:
Only the cytoplasmic tail of human CD96 contains a YXXM domain that has the capability to recruit
the p85 subunit of PI3 kinase [74]. Moreover, in human but not in mouse, two splice isoforms of CD96
exist that differ in their Ig-like extracellular domains and their binding affinity to hCD155 [75].

Unlike CD96, the role of TIGIT as an inhibitory NK cell receptor is well established in both
humans and mice [69,71,76] and several mechanisms may explain TIGIT mediated inhibition [71,76-79].
First, TIGIT is able to disrupt DNAM-1 binding to its ligands on both T and NK cells [71,77].
Furthermore, it has been proposed that TIGIT can also directly bind to DNAM-1 in cis interfering with
its homodimerization and blocking its co-stimulatory function in T cells [78]. Finally, upon interaction
with CD155, the ITIM domain of TIGIT directly recruits SHIP-1 that counteracts activating signals,
thus impairing NK cell-mediated cytotoxicity and IFN-y production [76,79]. While the ITIM domain is
exclusively responsible for TIGIT inhibitory function in human [69], additional signals are induced
by murine TIGIT in NK cells and involve the ITT domain in the cytoplasmic tail, which indirectly
activates SHIP-1 and inhibits PI3K-mediated signaling [76,79].

Both TIGIT and CD96 are significantly up-regulated on chronically stimulated tumor-infiltrating
NK and T cells, representing markers of exhausted cytotoxic cells [78,80,81]. Indeed, their blockade
achieved with monoclonal antibodies prevents exhaustion and promotes NK cell effector functions
in murine models of tumor progression [80,82]. Of note, high expression of hCD96 on cells within
the tumor microenvironment correlates with poor prognosis and resistance to chemotherapy [83,84],
indicating hCD96 as a diagnostic marker. Finally, the expression of TIGIT correlates with functional
NK and T cell impairment and poor prognosis in several types of cancers [85-87].

All together, this evidence demonstrates that during tumor progression the balance between
DNAM-1 and its inhibitory counterparts is deregulated by an up-regulation of TIGIT and CD96, and a
concomitant decrease of DNAM-1 expression. Therefore, in advanced clinical stages CD155 may
contribute to dampen NK and T cell activation by the engagement of inhibitory receptors, favoring
immune escape. Concurrently, CD155 could trigger intracellular signals in tumor cells upon interaction
with its receptors, as formally demonstrated in DCs in which TIGIT-mediated CD155 engagement
induces IL-10 secretion [70].

Regardless, both CD155 and its receptors represent promising targets for cancer immune therapy
aimed to prevent exhaustion of tumor infiltrating lymphocytes [82]. In this context, six anti-TIGIT
antibodies have entered clinical trials due to the promising results obtained in preclinical studies [85].

On the other hand, different chemotherapeutic drugs have been shown to increase CD155
expression and NK cell responsiveness, thus representing potential strategies aimed to improve tumor
immune surveillance [88,89].

4. Concluding Remarks

CD155 is an adhesion molecule up-regulated during tumor progression that may favor tumor cell
proliferative and migrating ability.

On the other hand, CD155 represents a danger signal for the activating receptor DNAM-1 expressed
on NK and T cells being implicated in tumor cell recognition and killing. Examples of tumor strategies
aimed to evade DNAM-1 recognition support the idea that in early phases of malignant transformation
the up-regulation of membrane CD155 isoforms could be a potential tool to improve the ability of
immune cells to fight cancers. To this regard, it can be useful to clarify whether DNAM-1 could equally
recognize the different transmembrane isoforms with the aim to preferentially up-regulate the CD1556
isoform that is unable to trigger pro-tumorigenic signals. However, it is important also to consider that
tumor progression facilitates the expression of the inhibitory receptors TIGIT and CD96 that compete
with DNAM-1 for CD155 binding and dampen cytotoxic response. Therefore, in advanced clinical
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stages, strategies aimed to improve CD155 expression need to be associated with the use of blocking
antibodies for inhibitory receptors in order to selectively promote DNAM-1 activating signaling in
cytotoxic lymphocytes.

A better understanding of CD155 role as well as of the molecular mechanisms underlying CD155
up-regulation on transformed cells may lead to the development of new therapeutic strategies aimed
to improve immune response against tumor cells.
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