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Abstract: Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable 

cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first 

identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding 

helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) 

encoding two small polypeptides representing an RNA-binding protein and a membrane protein. 

These findings indicated that movement gene modules composed of two or more cistrons may 

encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The 

same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus 

Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport 

modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of 

the families Closteroviridae and Potyviridae. However, membrane proteins are always found among 

MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane 

MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell 

movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is 

regarded as an important pre-requisite for understanding of the evolution of the existing plant virus 

transport systems. This paper represents the first comprehensive review which describes the whole 

diversity of small membrane MPs and presents the current views on their role in plant virus 

movement. 
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1. Introduction 

As plant cells contain a tough, rigid cell wall, virus cell-to-cell movement occurs through 

plasmodesmata (PD), the channels in cell walls interconnecting neighboring cells. In the PD pore, 

the plasma membrane (PM) is continuous between the two cells, and the endoplasmic reticulum (ER) 

traverses the pore as a tightly appressed tube called the desmotubule [1–7]. It has been suggested that 

filaments composed at least partly from actin are located in the PD cytoplasmic sleeve between PM 

and desmotubule [3–6]. The size exclusion limit (SEL) of the unmodified PD channel is near 1000 

daltons, thus allowing intercellular passage of only small molecules. The size of virions or virus-

specific ribonucleoproteins (RNPs) (>10 nm) exceeds the PD SEL [3,8–11]. Thus, modification of 

PD SEL by plant viruses is absolutely required for their movement from cell to cell. To perform their 

intercellular transport via Pd, viruses have evolved to encode specialized transport systems that usurp 

pre-existing host pathways for symplastic macromolecular communication in plants [12–18]. 

Retrospectively, over 40 years have passed since the hypotheses were put forward that consider the 

virus movement in plants as an active process used by plant viruses (particularly, tobacco mosaic 

virus) to spread both locally and systemically throughout plant bodies with the aid of specialized 

movement proteins (MPs, or transport proteins-TPs) [19–22]. The first evidences suggesting that 

cell-to-cell movement is controlled by a single movement protein have been provided by studies of a 30-

kDa protein of Tobacco mosaic virus (TMV) [23–26]. It has been found that this MP can alter the 

size exclusion limit of PD and bind ssRNAs, and may move through PD as an RNP complex 

comprising virus genomic RNA. Some MPs in single MP-encoding viruses, similar to the TMV 30-

kDa protein, possess all required protein domains (motifs) to perform cell-to-cell movement 

independently from other virus-specific proteins. Moreover, such single MP-encoding viruses are 

generally capable of sequence non-specific RNA binding and can assist the movement of other 

transport-deficient viruses [9,12,18,27–29].  

However, there is a special protein class of ‘30-kDa’-like MPs [30], which use an alternative 

mechanism for cell-to-cell transport. This mechanism includes the displacement of the Pd internal 

structures including the desmotubule by a tubular structure formed by viral MP and the transfer of 

whole virions inside the tubule from infected cells to neighboring cells [9,12,18,31]. Virions can pass 

Pd inside MP-formed tubule in some positive strand RNA viruses, namely, comoviruses and 

nepoviruses (family Secoviridae) [31,32], and pararetroviruses [18,33–37]. Analogously, plant 

negative strand RNA viruses representing families Tospoviridae and Aspiviridae encode ‘30-kDa’-

like MP performing tubule-guided cell-to-cell movement of capsid RNPs [38–41].  

A number of taxonomic groups of plant RNA viruses encode several MPs, acting in concert, to 

move viral genomes from cell to cell [18]. Viruses belonging to families Potyviridae [42–44] and 

Closteroviridae [45–48] are shown to have several proteins functioning together with capsid 

proteins (CPs) to enable virus cell-to-cell movement in infected plants (Figure 1) (see below for more 

details). Other functionally similar MPs are encoded by evolutionarily conserved gene modules including 
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double gene block (DGB), triple gene block (TGB) and binary movement block (BMB) [18,49–58]. 

DGB and BMB encode two proteins, whereas TGB codes for three proteins.  

Among the above mentioned plant virus movement systems, which do not depend on the ‘30-

kDa’-like MPs, all encode one or two small hydrophobic proteins comprising vital components of 

virus movement machinery. Here we review the latest discoveries in relation to the small 

hydrophobic MPs. Specifically, this review will discuss common sequence properties of these 

proteins related to their movement functions and evolutionary aspects of their origination and 

adaptation to the role in viral movement systems. We also discuss some novel discoveries of 

additional potential examples of putative small hydrophobic MPs.  

2. Potyviruses 

2.1. Proteins of potyviral movement system 

The best-studied genus of the family Potyviridae, Potyvirus, includes viruses with monopartite 

plus-RNA genome (ca. 10–11 Kb size), which, after generation of two alternative viral RNA 

templates by transcriptional slippage with a +1 A insertion in the motif GAAAAA, produces two 

overlapping polypeptides. After proteolytic processing by three viral-encoded proteinases, the main 

polyprotein gives rise to ten proteins, which include P1, HC-Pro (helper component proteinase), P3, 6K1, 

CI (cylindrical inclusion protein), 6K2, NIa (nuclear inclusion protein with two parts, genome-linked 

protein VPg and protease), NIb (large nuclear inclusion protein with the function of RNA-dependent 

RNA polymerase, RdRp), and capsid protein (CP) (Figure 1). Notably, the number of proteins 

produced after polyprotein cleavage may vary in other genera of Potyviridae. The smaller 

polyprotein in genus Potyvirus include P1, HC-Pro and P3N-PIPO (Pretty Interesting Potyviridae 

ORF) [43,58–65].  

During infection, RNA viruses re-organize cell membranes into ‘viral factories’ that are 

intracellular virus-specific compartments serving as sites of virus replication. These virus replication 

compartments (VRCs) contain viral RNA as well as virus and host proteins involved in genomic 

RNA replication [66–72]. In potyviruses, almost all virus polypeptides forming VRCs are involved 

in intercellular RNA genome movement as well. The VRC vesicles represent remodeled ER 

membranes serving as the membranous scaffold for potyvirus RNA replication. In potyviruses, a 

small viral membrane protein 6K2 is involved in the local spatial re-arrangement of the ER 

membrane and the formation of vesicular VRC at the ER exit sites [59,65,73–76]. Several other viral 

proteins including CI (replicative SF2 RNA helicase), 6K1, 6K2, NIa, HC-Pro, P3, and P3N-PIPO 

have been shown to be functional protein elements of VRC in addition to NIb [65,72,77,78]. The VRC 

with incorporated viral CP may work as the motile vesicles moving along actin filaments and involved in 

virus replication, the genome intercellular movement and localization on chloroplasts [42,65,76,79,80]. 

Moreover, 6K2, VPg, CP, and CI proteins are known to interact with Arabidopsis thaliana dynamin-

like protein AtDRP2 [81], which belongs to a protein family playing an essential role in membrane 

re-modelling and fusion, therefore it is possible that the potyviruses may use co-optation of AtDRP2 

and 6K2 for VRC assembly.  

The N-terminal cytoplasmic tail of 6K2 is important for the interaction, via a conserved di-

acidic D(X)E motif, with the COPII subunit Sec24A and further ER export of VRC [75,82]. As an 

additional factor, which may influence VRC vesicle formation on the ER membrane, P3 can bind a 
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reticulon-like protein known to re-shape ER membranes [83]. Further movement of VRC to cell 

periphery and PD requires a nonconventional pathway bypassing ER-Golgi trafficking and involving 

VTI11, a pre-vacuolar compartment SNARE protein [84]. P3N-PIPO, which binds to VRC through 

P3-P3N interactions [72], is a critical component of VRC vesicles specifically required for the PD 

targeting, and the PD association of P3N-PIPO depends on the PIPO domain [85].  

 

Figure 1. Comparison of plant virus RNA genomes encoding multicomponent cell-to-

cell transport systems. Genes are shown as boxes with the names of the encoded proteins. 

Genes of proteins involved in cell-to-cell movement are shown in green. Genes encoding 

small hydrophobic proteins are shown in blue. Replicative genes are shown in yellow. 

Arrows indicate read-through codons. PVY, Potato virus Y; BYV, Beet yellows virus; 

PVX, Potato virus X; BSMV, Barley stripe mosaic virus; BNYVV, Beet necrotic yellow 

vein virus; HGSV, Hibiscus green spot virus; CarMV, Carnation mottle virus; RAVA, 

Ribes americanum virus A; BYDV, Barley yellow dwarf virus. 

As revealed by ultrastructural analyses, the CI protein is associated with the formation of cone-

shaped structures, which are localized at the PD entrance and include also CP and viral RNA [86], 
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and the PD localization of CI has been shown to depend on its interaction with P3N-PIPO [79]. 

These inclusion bodies at structurally modified PDs may serve as docking and conducting structures 

coordinating different viral proteins in the intercellular movement of viral replication vesicles and 

virions. In addition, VPg also may positively influence cell-to-cell potyvirus movement inducing 

proteasome-mediated degradation of plant protein remorin, thus preventing formation of remorin-

specific plasma membrane nanodomains, which reduce membrane plasticity, and subsequent PD 

closure [5–7,44,60,86–90].  

6K2-induced vesicles are the main containers involved in cell-to-cell and long-distance 

systemic movement of potyvirus genomic RNAs [42,72,80,91,92]. It is still debated how VRC 

vesicles can be used for systemic transport through the conducting elements of the phloem. It is 

possible that individual vesicles in Pd between companion cells and sieve elements can merge and 

form large membrane complexes that are stationary, but are able to produce large amounts of 

genomic RNA, which is used in the presence of a capsid protein for assembly of virions. The latter 

are then released to the conducting elements for long distance transport [80,92].  

Unexpectedly, experimental evidences suggest the possibility of movement of potyvirus 

replicative vesicles in xylem vessels. The vesicles may enter the protoxylem by intercellular 

transport to immature cells of the xylem elements, where the virus replicates in the cytoplasm before 

programmed cell death occurs and the xylem becomes a hollow vessel; then vesicles may travel long 

distances via the xylem network [92]. Another novel striking route of potyvirus movement within 

plant bodies is suggested by recently discovered extracellular VRC location, which is preceded by 

fusion of VRC aggregates with the plasma membrane and requires plant protein VTI11 [76,84].  

2.2. 6K2 transmembrane domain and membrane re-modelling  

In many members of genus Potyvirus, 6K2 protein is 53–54 amino acids long [60], and its 

transmembrane domain encompasses amino acids 25–43 (19 residues in length) (Table 1). This 

transmembrane domain overlaps alpha-helices H2 and H3 (H2 correspond to residues 15–32, and H3–to 

residues 36–45) [93,94]. Importantly, 6K2 protein can induce the formation of VRC-like vesicles even 

when it is transiently expressed in plants in the absence of other viral proteins [44,76,93,95]. The 

transmembrane domain (TMD) of 6K2 contains a well-known GxxxG motif of protein membrane-

bound domains, mutations of which disturb intracellular localization of 6K2 and inhibit virus 

replication as well as cell-to-cell movement [84,93]. This motif is conserved in the members of 

several genera among Potyviridae (Table 1). Generally, it was shown that TMD helices of different 

membrane proteins in animals and plants can mediate protein hetero- and self-oligomerization 

involving intramembrane close inter-helical contacts and carbon-hydrogen bond formation inside 

GxxxG and GxxxG-like sequence motifs (GxxxG, GxxxA, SxxxG, etc.) consisting of small amino 

acids (Gly, Ala, and Ser) with intercalating any three amino acids (Table 1) [96–99].   

In view of these data, it can be proposed that functional VRC vesicles are formed due to intra-

ER oligomerization of 6K2 itself, or because of 6K2 interactions with some plant membrane-bound 

proteins. Recent data, however, strongly suggest that the main role of the 6K2 GxxxG-like motif can 

involve interaction with plant dynamin-like proteins of ROOT HAIR DEFECTIVE3 (RHD3) family 

(including AtDRP2), as trans-membrane segments of these proteins also may contain GxxxG-like 

motifs [76,84,94,99]. Dynamins represent one of the major protein components of eukaryotic cells 

involved in membrane re-shaping [6,100].  
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Table 1. Hydrophobic motif comparisons among the small 6K2 proteins encoded by 

some virus genomes in family Potyviridae. 

Virus name and 

motif position 

Motif sequence Proportion of 

hydrophobic 

residues 

Charged 

residues 

accession number  

Turnip mosaic virus 

(1890–1918) 

TLITRDVLVLCGVLGGGLWMVIQHLRSK 16/28 4/28  BBA07459 

 

Potato virus Y 

(1829–1863) 

SLVAKDLIIAGAVAIGGIGLIYSWFTQSVETVSHQ 20/35 3/35 AAB50573 

Ryegrass mosaic 

virus (1770–1806) 

QTLIASDLLLGTAVLIGGGAMLYKTFMSAVSTQVCL

E 

21/37 3/37 QJD15034 

Alpinia oxyphylla 

mosaic virus (2497–

2529) 

QFASIPISIFVDPAIEFGGLRKIMRHLSDVTSK 18/33 7/33 AWO77093 

Chinese yam 

necrotic mosaic virus 

(2495–2523) 

IPIQIFVEPAIQHGGLRKVMRHFSGITSK 15/29 5/29 YP_006590058 

Narcissus latent virus 

(2495–2527) 

KVQEVPIAIFVNPAVENGGLRKIMRHFSGITYE 17/33 8/33 ATO58458 

Oat necrotic mottle 

virus (1970–2001) 

QVILVEDNQQLNGLIVGNILLAPFHFTRGMRD 17/32 5/32 QGT40982 

Wheat eqlid mosaic 

virus (2041-2070) 

QVIITNPVQSLCGLITGNKLLVPYHLARGV 20/30 2/30 YP_001468087 

Brome streak mosaic 

virus (2058–2085) 

QVLLAGPSGYLNGLITGSKLLAPYHFVK 16/28 2/28 NP_612585 

Yellow oat grass 

mosaic virus (1963–

2001) 

KHIHQNQVMLVHGTNSLYGLIVGNILFTPYHFTRRIE

DG 

21/39 5/39 YP_009047077 

Tall oatgrass mosaic 

virus (1987–2023) 

IHQNQVILVGNSQLNGLIVGNILFAPYHFTRGIGEKG 19/37 3/37 YP_008766766 

Motif position means coordinates of the sequences presented in the table, and proportions are 

related only to the sequences included into the table. GxxxG-like sequence motifs are shown in 

yellow. Transmembrane segments predicted by (http://www.cbs.dtu.dk/services/ TMHMM-2.0/) are 

underlined. Note that A, H, P and C residues are often regarded as hydrophobic in TMD segments.  

3. Closteroviruses  

The plant viruses belonging to the family Closteroviridae may encode a dozen of proteins and 

possess very large positive-stranded RNA genomes (near 20 kilobases in length), which could be 
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compared only with those of animal nidoviruses [101–105] whose genomes, however, can reach an 

unprecedented size of more than 41 kilobases, as it has been found in planarian nidovirus [106]. This 

virus family includes four genera: Closterovirus, Velarivirus, Ampelovirus and Crinivirus. The 

latter genus is represented by bi- and tripartite viruses in contrast to other monopartite 

closteroviruses [103,105]. In genus Closterovirus, five genes represent a unique gene module found 

to participate in virus intercellular movement and named quintuple gene block (QGB) [101,107]. QGB 

codes for (from 5’ to 3’) a ∼6-kDa hydrophobic protein (p6), an Hsp70 homologue (Hsp70h), a ∼60-kDa 

protein (p60), the minor capsid protein (CPm), and the major capsid protein (CP) (Figure 1). Variations 

of QGB in different closteroviruses include duplication, shuffling and divergence of the CP and CPm 

genes, as well as acquisition of additional ORFs within QGB of criniviruses and certain 

ampeloviruses [102,103,105,108–110]. 

CP coats ∼95% of the viral RNA, and assembly results in formation of a long helical flexuous 

virus particles. The remaining 5% of the RNA genome contains a packaging signal recognized by 

CPm, and the resulting ‘rattlesnake structure’ represents an unusual particle architecture with a short 

virion tail, which can be assembled independently of the main virion body [101,103,110]. The tail 

assembly requires Hsp70h and p60 proteins, which represent minor tail components and act 

cooperatively to facilitate incorporation of CPm. Like cellular chaperones of the Hsp70 family, 

closteroviral Hsp70h possesses a highly conserved, N-terminal ATPase domain, whereas p60 

contains the C-terminal domain close to the closterovirus CP and CPm. Moreover, this domain is 

conserved in almost all capsid proteins of filamentous viruses, thus suggesting that p60 may directly 

interact with RNA [101–103,110,111]. It has been proposed that the tail of closteroviral virions 

evolved to facilitate cell-to-cell and systemic transport of the large closterovirus encapsidated 

genomic RNAs [111,112]. Indeed, virions and Hsp70h were found in PD [112,113]. It is important 

that each of the four structural proteins of the closteroviral virions is also required for virus 

movement [110,111].  

Hydrophobic p6 is a single-span transmembrane protein that functions in virus cell-to-cell 

movement. Because p6 is not required for virus replication or assembly, it is regarded an MP 

[102,103,114]. Analogs of p6 in genera Closterovirus and Crinivirus possesses certain common features 

found in a number of small hydrophobic movement proteins of other plant viruses: these small proteins 

localize to the ER and Pd, and are capable to influence Pd size exclusion limit [102,103,114–118]. 

Despite probable common function, p6 analogs throughout members of the family Closteroviridae 

are not well conserved (Table S1). It should be noted that some members of genus Crinivirus show 

remarkable deviations connected to peculiarities of p6 coding details. First, tripartite genome of 

Potato yellow vein virus contains the gene for the p6 analog in the 3’-terminal region of RNA1 but 

not in RNA2 as it was found for other criniviruses [119]. Second, the 5’-terminal region of Lettuce 

chlorosis virus genome contains two short genes coding for hydrophobic proteins, thus it is not clear 

whether one or both these proteins are required for virus cell-to-cell movement [120,121].  

4. Triple gene block  

Many positive-stranded RNA plant viruses contain a conserved module of three overlapping 

genes termed ‘triple gene block’ (TGB). Comparative genome sequence analysis revealed that the 

TGB is present in a large number of viruses belonging to families Alphaflexiviridae and 

Betaflexiviridae (genera Potexvirus, Allexivirus, Mandarivirus, Lolavirus, Foveavirus, Carlavirus 
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and Robigovirus) [122–124], Virgaviridae (genera Hordeivirus, Pomovirus, Goravirus and 

Pecluvirus) [125–127] and genus Benyvirus [128]. The three TGB-encoded proteins referred to as 

TGB1, TGB2 and TGB3 act in concert to deliver viral genomes to and through PD into adjacent cells. 

Interestingly, many genomes of viruses belonging to the genus Allexivirus includes a TGB3-like 

protein-encoding sequence lacking an AUG initiator codon. This TGB3 gene is translated from a 

non-AUG initiator codon [129]. Two cassava-infecting viruses of the genus Potexvirus (family 

Alphaflexiviridae), namely Cassava virus X (CsVX) and Cassava new alphaflexivirus (CsNAV) 

having a gene arrangement typical for potexviruses, but lack the TGB3 gene [130]. CsVX is rather 

inefficiently transmitted to Nicotiana benthamiana, whereas CsNAV causes no infection of this plant 

host [130]. These data support our earlier hypothesis [129,131,132] that a TGB3-related gene could 

be an accessory, rather than essential, TGB component, which can be necessary in certain hosts 

species or plant tissues at least in potexviruses [133,134].  

TGB1 contains the domain of an RNA helicase of superfamily 1 (SF1), whereas TGB2 and 

TGB3 represent small membrane-associated proteins [18,29,52,54]. The TGB modules are 

subdivided into several different groups based on the structural properties of the encoded proteins. 

TGB3 proteins form two distinct groups, potex-like and hordei-like TGBs, depending on the 

presence of a single (genera Potexvirus, Carlavirus, Foveavirus and Allexivirus) or two (genera 

Hordeivirus, Pomovirus, Goravirus and Pecluvirus) TMDs (Tables S2 and S3). Recently, we have 

revealed two additional TGB classes, one of which combines TGBs of several related viruses 

belonging to the genus Benyvirus (see below), whereas another one is represented by the TGB of 

virus-like RNA assembly in the transcriptome of Colobanthus quitensis (Cq-VLRA) resembling a 

plant virus genome fragment encoding proteins distantly related to the respective proteins of the 

genus Benyvirus [131,132] (Table S4). Like the hordei-like TGB3 proteins, the benyvirus TGB3 has 

two transmembrane domains; however, the benyvirus TGB3 protein differs from hordei-like proteins 

by the location of N-terminal transmembrane domain very close to the protein terminus and a 

conserved sequence signature found only in the genus Benyvirus [52,131,132,135] (Table S4). In Cq-

VLRA, the central hydrophilic region of Cq-VLRA TGB3 protein exhibits conservation of most 

amino acid residues found to be invariant in TGB2 proteins, and we have proposed that Cq-VLRA 

encodes an evolutionary early variant of TGB [131]. Generally, it is accepted that TGBp2 and 

TGBp3 proteins are involved in both homologous and heterologous protein-protein interactions and 

can be involved in TGBp1 targeting to PD [136–138].  

4.1. Alphaflexiviridae and Betaflexiviridae   

The genome organization of viruses belonging to families Alphaflexiviridae and 

Betaflexiviridae are quite similar ) [122–124] (Figure 1). Accordingly, two different families have 

been found to use similarly organized TGB proteins and likely share the cell-to-cell transport 

mechanism, which has been extensively studied for Potato virus X (PVX, family Alphaflexiviridae). 

Early in potexvirus infection, TGB2 is incorporated into ER-derived membranous vesicles that 

possibly represent early VRCs and contain replicase, TGB1 and TGB3 [3,54,139–143]. After 

replication, VRCs may travel to the cellular periphery along the ER-actin network. Some VRCs 

anchor at the PD entry where progeny RNA chains may be encapsidated by synthesized CP. These 

newly formed virions may interact with TGB1; and this complex can be delivered to and through PD 

with the aid of TGB2 and/or TGB3 [3,54,56,143–145]. Accordingly, the potexvirus virions were 
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shown to reside inside PD [146]. Importantly, TGB1 is capable of destabilizing potexvirus virions 

and might act as a factor that enables translation of virion-derived RNAs after the virus has moved 

from cell to cell [112,147,148].  

The potexvirus TGB1 is a multifunctional protein. TGB1 possesses an RNA helicase activity, 

and contains a set of canonical SF1 helicase motifs that are necessary to unwind double-stranded 

RNA [54,149,150]. In addition to RNA helicase activity, the TGB1 proteins may participate in 

gating Pd [133,151,152]. Additionally, TGB1 proteins of Alphaflexiviridae and Betaflexiviridae have 

been shown to act as suppressors of RNA silencing. Mutations that inhibited silencing suppressor 

activity also blocked virus cell-to-cell movement, suggesting that silencing suppression could be 

linked to virus transport [142,153–156].  

It should be noted that previously distinguished two types of TGBs, namely potex-like and 

hordei-like TGBs, have similarly organized TGB2 proteins with two TMDs (Tables S2 and S3) and a 

highly conserved central region between them in contrast to more significantly diverged TGB1 and 

TGB3 [52,54,132]. We have suggested that the TGB3 cistron could emerge in the transport gene module 

including TGB1 and TGB2 as a result of horizontal gene transfer, and/or duplication of the TGB2 gene 

and subsequent divergence of the two TGB3 gene lineages with a single or two TMDs [131].  

4.2. Virgaviridae   

Most studies of hordei-like TGB movement systems were concentrated on genera Hordeivirus 

and Pomovirus [18,29,54,157,158] (Figure 1). In contrast to viruses with potex-like TGB, the viral 

movement mediated by the hordei-like TGB does not require no the viral CP [54]. As an alternative 

to the virion as a genome transport form of viruses with potex-like TGB, the RNAs of viruses with 

hordei-like TGB form RNP complexes with TGB1 [159–161]. In hordei-like TGBs, the TGB3 

interacts with TGB2 and the TGB1/RNA complexes to form a movement-competent form of virus 

genome that is directed to PD in connection with the ER [18,127,137,138,158]. It has been suggested 

that TGB2 and TGB3 proteins may be recycled from PD-associated sites to the cytoplasm by 

endocytic vesicles [18,127,158].  

Hordei-like TGBs have similarly organized TGB2 and TGB3 proteins, each of which has two 

TMDs (Table S3) and a highly conserved central region between them [52,54,132]. Hordeiviral 

TGB3 possesses an oligomerization signal, and its C-terminal TMD has been shown to contain a 

targeting motif responsible for TGB3 trafficking to PD-associated membrane compartments [162]. TGB2 

in hordei- and pomoviruses is found either to be essential for TGB3-mediated transport of TGB1 to PD-

associated sites, or to increase the efficiency of such transport. The intracellular transport of TGB3 most 

probably uses a lateral diffusion in the ER membranes [18,126,127,137,138,157,159,163].   

4.3. Family Benyviridae and Nicotiana velutina mosaic virus  

RNA1 of benyviruses contains one large ORF coding for a replication-associated protein that 

includes methyltransferase (MET) motif in the N-terminal part, helicase (HEL) and papain-like 

protease motifs (PROT) in the central part, and RdRp motif in the C-terminal part (Figure 1). RNA2 

of a typical benyvirus exemplified by that of Beet necrotic yellow vein virus (BNYVV) possesses six 

ORFs; namely, the CP gene terminated by a suppressible stop codon, the CP readthrough protein 

gene, the TGB coding for TGB1, TGB2 and TGB3 and a cistron coding for the cysteine-rich protein 
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having the silencing suppressor activity (Figure 1) [128,164,165]. The N-terminal region of the 

benyvirus TGB1 has nucleic acid binding activity and contains consensus sequence motifs 

characteristic of an ATP/GTP-dependent SF1 helicase [165]. The three TGB proteins are found in 

the peripheral membrane bodies that seem to be derived from ER; TGB1 is targeted by TGB2 and 

TGB3 to peripheral punctate bodies associated with PD [128,165].  

Unassigned RNA virus Nicotiana velutina mosaic virus (NVMV) has a genome consisting of 

RNA1 (8 Kb) and RNA2 (3 Kb), which are encapsidated in rigid, rod-shaped particles [166]. The 

RNA2-encoded ORF1 encodes a protein showing relatively weak but significant similarity to coat 

proteins (CPs) of viruses of the genus Benyvirus whereas the ORF2 protein was found to have closest 

similarity to benyvirus TGB1 helicases [52,132,166]. NVMV ORF3 protein is a TGB2 protein with 

two hydrophobic regions and hydrophilic signature in the central part, which is highly similar to that 

of benyvirus TGB2 (Table S4). The NVMV ORF4-encoded protein has the benyvirus-like TGB3 

organization with two hydrophobic regions at N- and C-termini [131,132] (Table S4).  

5. Binary movement block   

A novel transport gene module consisting of two genes and termed ‘binary movement block’ 

(BMB) has been found in the genome of Hibiscus green spot virus (HGSV, genus Higrevirus, family 

Kitaviridae) [58,167]. BMB2 protein is a small integral ER protein and capable of trafficking to Pd-

associated sites associated with the formation of ER-derived bodies at the cell periphery. Moreover, 

BMB2 directs BMB1, having helicase activity, to the membrane bodies, to the Pd interior cavity and 

to neighboring cells [58]. The BMB2 intracellular transport to Pd-associated sites does not involve 

the secretory pathway, but requires the functional ER/actin network [168]. 

HGSV RNA1 has a single ORF encoding the replicase protein, which contains MET, PROT, 

SF1 HEL and POL domains (Figure 1). This replicative protein shows significant similarity to 

replicases of plant cileviruses, furoviruses, and pomoviruses as well as insect negeviruses [167,169]. 

The HGSV BMB1 helicase shows evident similarity to the SF-I replicative helicases of the genus 

Benyvirus [132]. HGSV BMB2 is distantly related to TGB2 proteins and contains two long 

hydrophobic segments [131] (Table S4).  

Our recent data revealed significant similarity to two BMB-like proteins in polypeptides encoded by 

three long virus-like RNA assemblies (VLRAs) of dicot plants Lathyrus sativus (7970 nucleotides), 

Quercus castanea (7776 nucleotides) and Litchi chinensis (7388 nucleotides) [131,132] (Table S4). It 

should be noted that three revealed VLRAs show a different, compared to HGSV, type of genome 

organization (monopartite vs multipartite). Similarity of HGSV BMB1 helicase to the SF-I 

replicative helicases of the genus Benyvirus as well as relationship of BMB2 to TGB2 proteins 

suggests that the important step of the TGB evolution could be the acquisition of TGB2-like protein 

and formation of a distinct, non-replicative, gene module with an autonomized helicase domain from 

replicative polypeptide [132,135].  

6. Double gene block  

Cell-to-cell movement of many viruses belonging to the family Tombusviridae requires the 

coordinated actions of two small proteins encoded in the central region of their genomes (Figure 1) 

[18,53,57,170–173]. After TGB, this gene block is referred to as the double gene block (DGB) [51]. 
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Most genera belong to the subfamily Procedovirinae, all of which express their RdRps via translational 

readthrough of a stop codon in the 5’-terminal ORF (Figure 1). DGB was found among members of the 

genera Alphacarmovirus, Alphanecrovirus, Betacarmovirus, Betanecrovirus, Gallantivirus, 

Gammacarmovirus,  Macanavirus, Machlomovirus, Panicovirus, and Pelarspovirus [173]. Among 

proteins encoded by these viruses, only the DGB proteins, DGB1 and DGB2, are required for the 

genome movement from cell to cell [170]. Carmovirus DGB1s are characterized by the presence of a 

basic central region with an alpha-helix fold shown to be involved in RNA binding [18,53,174,175], 

whereas motifs at the DGB1 C-terminus could be involved in interaction with host proteins and self-

interaction [176,177]. The above activities of DGB1 are shown to be directly associated with cell-to-

cell movement. This protein is suggested to form movement-competent RNP complexes with 

genomic RNA that moved along microfilaments and concentrated at the cell periphery in sites 

located close to PD [18,177].  

The second MP in carmoviruses, DGB2, has been classified into two groups having one or two 

potential transmembrane domains (TMD) (Table S5) [18,178]. DGB2 proteins can be co-

translationally inserted in vitro into ER-derived microsomes and participate in a signal recognition 

particle-dependent and translocon-assisted processes [18,57,178–181]. The membrane topology of 

these proteins has been determined both in vitro and in vivo [18,179,180,182]. Detailed in vivo 

studies have confirmed that DGB2 proteins associate with plant ER membranes, whereas Melon 

necrotic spot virus DGB2 has been shown to be targeted to PD via the Golgi apparatus in a COPII-

dependent pathway [171,180,182].  

DGB2 proteins contain TMDs of about 19–20 amino acids in length (Table S5) crossing lipid 

bilayer in a single pass, and their ER export depends on specific sorting motifs located in both the 

cytoplasmic and luminal DGB2 domains [18]. A lateral diffusion of DGB2 along the ER membranes, 

probably driven by the ER-associated actin system, is required for the protein ER export [178]. The 

initially proposed model for carmovirus movement implies that the DGB2 cytosolic region can 

interact with DGB1/RNA complex, and this ternary complex is transported from the replication sites 

to PD through the endomembrane system [18,57]. However, some DGB1 proteins have a nuclear 

localization mediated by two nuclear localization signals that are necessary for virus cell-to-cell 

movement [18,57,176]. Thus, it seems that the mechanisms of the carmovirus cell-to-cell movement 

could be more complex and, possibly, different models should be considered for distinct viruses.  

7. Ribes americanum virus A  

A novel virus named Ribes americanum virus A (RAVA) has been recently found. Its genome 

organization resembles viruses from family Betaflexiviridae [183]. The RAVA genome consists of 

7106 nucleotides and includes the poly(A) tail. Five ORFs were identified in the sequence of RAVA 

genome (Figure 1). The 5’-terminal ORF codes for a betaflexivirus-related replicase that contains a 

methyl transferase, AlkB (a family of specific demethylases), RNA helicase and RdRp domains. 

Other 3’-proximal ORFs code for four proteins that exhibit no significant homology to other virus 

proteins [183]. However, the arrangement of the genes downstream of the first ORF formally resembles 

that in members of the family Betaflexiviridae. Nevertheless, it shows an unconventional positioning of 

two small ORFs encoding hydrophobic proteins just after replicase-coding ORF, and these small ORFs 

are followed by two additional cistrons coding for hydrophilic polypeptides (Figure 1). It was predicted 

that these four ORFs encode three MPs and the viral CP [183]. Our TBLASTn searches for 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/stop-codon
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sequences closely related to the RAVA replicase suggest that a VLRA (accession GFCU01057973) 

found in the NCBI transcriptome database of dicot plant Rhododendron delavayi encodes a novel 

virus evolutionarily close to RAVA (Table S5), suggesting that the RAVA-specific gene 

arrangement is not unique for this particular virus. 

8. Luteoviruses  

Most viruses in the family Luteoviridae belong to genera Luteovirus and Polerovirus. These 

viruses, which have monopartite positive-stranded RNA genomes of 5.3 to 5.9kb, are limited to the 

phloem in infected plants. Genomic RNAs contain 5–7 ORFs (Figure 1) that are expressed by 

frameshifting, leaky scanning, and termination codon readthrough [184–188]. Importantly, 

luteoviruses and poleroviruses share a gene module, which encodes the CP (ORF3), MP (ORF4 

nested into ORF3), and a carboxy-terminal extension to the CP (ORF5) (Figure 1). These three 

proteins participate in the phloem-specific movement of the viruses in plants and are translated from 

one subgenomic RNA [184–187]. Recently, it has been reported that this subgenomic RNA contains 

a novel 5’-proximal short ORF, termed ORF3a [189,190] Importantly, translation of this short ORF 

starts with non-AUG codons, as it has been previously found for some other plant virus genes, for 

example, TGB3 gene in allexiviruses [129,188]. Functional analysis of the ORF3a protein showed its 

involvement in virus movement through PD when this small protein works in concert with MP [189–

192]. Importantly, all 3a proteins include long hydrophobic TMD (Table S5), so that the organization 

of movement gene block (not counting CP gene) is formally similar to DGB and includes single 

hydrophilic protein and single small hydrophobic protein (see above).  

9. DNA-containing plant viruses 

Forty years ago single-stranded DNA (ssDNA) plant viruses were thought to have an exclusive 

genomic architecture for DNA viruses adopted to plants because of their small sizes allowing 

passage through PD [193,194]. However, more recent data have revealed that small circular ssDNA 

viruses encoding a homologous replication-associated protein (Rep) (Figure 2) are capable of replicating 

in the majority of eukaryotic multicellular and single cell organisms. Over the last decade, a considerable 

increasae in the number of discovered circular Rep-encoding ssDNA viruses (CRESS DNA viruses) 

allowed to delineate them as a special virus phylum Cressdnaviricota [195–196]. Currently, plant CRESS 

DNA viruses are included into two families Geminiviridae and Nanoviridae [197–199]. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/codons
https://www.sciencedirect.com/topics/medicine-and-dentistry/single-stranded-dna
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Figure 2. Comparison of plant virus DNA genomes encoding small hydrophobic MPs. 

Genes are shown as arrows with the names of the encoded proteins. MSV, Maize streak 

virus. LIR–long intergenic region; SIR – short intergenic region. For Nanoviridae, only 

four DNA components (DNA-R, -S, -M and -C) encoding the functionally characterized 

proteins are shown, and hairpin marks replication origin. The numbers indicate the sizes 

of circular genomic DNAs. 

9.1. Geminiviruses  

The viruses of the family Geminiviridae contain monopartite or bipartite DNA genomes with 

coding regions being located in both virion-sense and complementary-sense strands. The family 

Geminiviridae is one of the largest families of plant viruses. Small, single-stranded DNA genomes of 

geminiviruses encode 5–7 proteins that redirect host machineries and processes to establish a 

productive infection. Transcription of geminivirus genomes is bi-directional, and mRNA synthesis is 

initiated within the long intergenic region (LIR) (Figure 2). Multiple overlapping transcripts are used 

by geminiviruses for gene expression, and primary transcript splicing is also used by members of the 

genus Mastrevirus and probably Capulavirus [193,197,198,200–202]. Among the best-characterized 

genomes of geminiviruses are those of members of genus Mastrevirus [197]. V1 (MP) and V2 (CP) 

ORFs are expressed from transcripts of the virion sense, while C1 and C2 ORFs are expressed from 

transcripts in the complementary sense. In contrast to CP and MP ORFs expressing from anti-sense 

transcripts, Rep is expressed from alternatively spliced sense transcript. MSV genome contains two 

intergenic regions, a smaller one (SIR) and a larger one (LIR) (Figure 2). The MSV MP is a small 

hydrophobic protein. In monopartite mastreviruses, the MP performs movement function in concert 

with CP, which is capable of nucleo-cytoplasmic shuttling and transport of viral DNA from the 

nucleus (site of replication) to cytoplasm, therefore being functionally equivalent to Nuclear Shuttle 

Proteins (NSP) of bipartite geminiviruses. Thus, the CP of monopartite geminiviruses can be 

regarded as an essential component in viral movement system [197,198,200–202]. It should be noted 

that putative MPs containing TMDs are also found in genus Capulavirus and some unclassified 

monopartite geminiviruses (Table S6). 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/geminiviridae
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/intergenic-region
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/geminiviridae
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mastrevirus
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/virion
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/intergenic-region
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9.2. Family Nanoviridae   

The viruses of family Nanoviridae (genera Nanovirus and Babuvirus) contain multipartite 

circular ssDNA genomes composed of 6 to 8 segments of about 1kb. The ssDNA segments have a 

common stem-loop region and are encapsidated in separate particles (Figure 2) [194,199]. One of the 

genomic components encodes a protein structurally and functionally homologous to geminivirus Rep 

protein. Another genomic segment encodes a small hydrophobic protein, which is found to localize 

exclusively to the ER and cell periphery [203–205]. Importantly, this TMD-containing protein (Table S6) 

is able to re-locate the NSP protein to the cell periphery. Thus, these results indicate that nanoviruses 

may utilize a system functionally similar to that of the bipartite geminiviruses, where the NSP 

protein acts to transfer ssDNA from nucleus to cytoplasm while the small hydrophobic MP protein 

transports the NSP-DNA complexes to the cell periphery for intercellular transport [204–206]. 

10. Conclusion 

Association of plant virus replication and cell-to-cell transport with cell endomembranes dictate 

the necessity for viruses to encode hydrophobic proteins enabling functional interaction of viral 

complexes involved in replication and movement with membrane structures and, often, in 

remodeling of cell membranes for the formation of virus-specific replication/movement membrane 

structures. Therefore, comparative analysis of plant virus-encoded hydrophobic proteins and 

elucidating their evolutionary links may shed a new light on basic questions related to the possible 

common activities and structural peculiarities allowing them to serve as movement proteins. 

Particularly, are the small hydrophobic MPs always responsible for PD targeting, and what are the 

specific peculiarities of their transmembrane domains related to this targeting? If consider whole 

diversity of small MPs, it is evident that the wide ranges of the transmembrane domain sizes and 

very low similarity of their hydrophilic segments makes this task quite uneasy. However, our very 

recent studies of BMB2 and TGB2 MPs representing integral ER proteins open a new field for 

potential comparative experimental analysis. Constrictions of ER tubules upon high-level expression 

of reticulons resulted from the ability of reticulons to generate membrane curvature. Our results are 

consistent with the hypothesis that BMB2 and TGB2 may use a similar mechanism to induce 

membrane curvature [207]. We proposed a model that the hydrophobic segments of these proteins 

participate in the induction of ER constrictions and, thus, contribute to the TGB2- and 

BMB2‐dependent increase in PD permeability and facilitating the virus intercellular spread. We 

hypothesize that this model can be applied to a broader range of plant virus small hydrophobic 

proteins [207]. 
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