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Abstract
During the last (15) years, improved omics sequencing technologies have expanded the scale and resolution of various

biological applications, generating high-throughput datasets that require carefully chosen software tools to be processed.

Therefore, following the sequencing development, bioinformatics researchers have been challenged to implement align-

ment algorithms for next-generation sequencing reads. However, nowadays selection of aligners based on genome char-

acteristics is poorly studied, so our benchmarking study extended the ‘‘state of art’’ comparing 17 different aligners. The

chosen tools were assessed on empirical human DNA- and RNA-Seq data, as well as on simulated datasets in human and

mouse, evaluating a set of parameters previously not considered in such kind of benchmarks. As expected, we found that

each tool was the best in specific conditions. For Ion Torrent single-end RNA-Seq samples, the most suitable aligners were

CLC and BWA-MEM, which reached the best results in terms of efficiency, accuracy, duplication rate, saturation profile

and running time. About Illumina paired-end osteomyelitis transcriptomics data, instead, the best performer algorithm,

together with the already cited CLC, resulted Novoalign, which excelled in accuracy and saturation analyses. Segemehl

and DNASTAR performed the best on both DNA-Seq data, with Segemehl particularly suitable for exome data. In

conclusion, our study could guide users in the selection of a suitable aligner based on genome and transcriptome char-

acteristics. However, several other aspects, emerged from our work, should be considered in the evolution of alignment

research area, such as the involvement of artificial intelligence to support cloud computing and mapping to multiple

genomes.
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1 Introduction

Starting from Sanger sequencing 40 years ago, more pre-

cise and rapid sequencing technologies expanded scale and

resolution of various biological applications, including the

detection of genome-wide single nucleotide polymor-

phisms (SNPs) and structural variants [1], quantitative

analysis of transcriptome (RNA-Seq) [2], identification of

protein binding sites (ChIP-Seq) [3], understanding

methylation patterns in DNA [4], the assembly of new

genomes or transcriptomes [5], determining species com-

position using metagenomic workflows. However, the huge

amount of generated data explains almost nothing about the

DNA without the appropriate analysis tools and algorithms.

Therefore, bioinformatics researchers started to think about

new ways to efficiently manage and analyze such enor-

mous amount of data. The first crucial step in the analysis

of next-generation sequencing (NGS) data, posterior to

quality control and filtering steps, is alignment (mapping)

of generated sequencing reads to the respective reference

[6]. However, this step is biased by many errors due to the

following reasons [7]: (1) a reference genome is generally

long (* billions) and presents complex regions such as

repetitive elements (repetitive regions are usually masked

because there is no consensus about how to deal with them,
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yet), (2) reads are short in length (typically, 50–150 bp),

causing issues with efficiency and accuracy, aligning more

likely in multiple locations rather than to unique positions

in the reference genome, (3) the subject genome could

inherently be different from the reference genome due to

acquired alterations over time. In order to face the above

challenges, many new alignment tools have been devel-

oped during the last years. Such tools exploit the specific

advantages of each new sequencing technology, such as the

short sequence length of Helicos (range of read length =

25–1000 bp), Illumina (range of read length = 36–300 bp)

and SOLiD reads (range of read length = 35–75 bp), the

high base quality toward the 5’-end of Illumina and 454

reads [8, 9], the di-base encoding of SOLiD reads, the low

InDel error rate of Illumina reads (InDel rate =

0.000005%) [10], the low substitution error rate of Helicos

reads (substitution rate = 0.2%) [11] and the Pacific Bio-

sciences (PacBio) or Oxford Nanopore Technologies

(ONT) third generation sequencing technologies, superior

in long-read assembly (PacBio Maximum Read Length =

up to 40 Kb; ONT Maximum Read Length = 10 kb), with

respect to accuracy and completeness [12]. The common

alignment tools are based on (1) spaced-seed indexing or

(2) Burrows–Wheeler transform [13, 14]. The first are

slow, use more memory but correctly maps long gaps [15].

The second, instead, based on heuristic approaches, are

fast, consume less memory and can be used to map short

reads [16]. Spliced aligners such as GEM [17] and Tophat

[18] are most frequently used for aligning transcripts.

BWA [19], BLAT [20] and Bowtie2 [21] are frequently

used for aligning DNA sequences. BWA and Bowtie2 are

index-based aligners exploiting Burrows–Wheeler index-

ing algorithm. NovoAlign [22] uses dynamic program-

ming, taking advantage of Needleman–Wunsch algorithm

with affine gap penalties to score the alignment. Many

other algorithms have been developed [23]. Selecting

mapping tool, based on the characteristics of the organism,

shall be a fundamental focus of bioinformatics, because the

choice may affect downstream analysis. Several bench-

marking analyses guided users in choosing aligners, but

although several studies have been published for evaluating

sequence mapping tools, the problem is still open and

further perspectives were not faced [24–27]. Limitations of

such works regard the focus on tool group classifications

rather than evaluations of their own performance on

selected settings [28], the use of small and unrealistic data

sets (e.g., 500,000 reads) jointly with small reference

genomes (e.g., 500 Mbps) [29], the use of simulated data

only [30], as well as the mis-usage of the aligner options

and algorithmic features. Therefore, selection of aligners

based on genome characteristics is poorly studied, and a

quantitative evaluation to systematically compare mapping

tools in multiple aspects is still needed. We extend the

‘‘state of art’’ evaluations of mapping algorithms, com-

paring 17 different aligners (BBMap (sourceforge.net/pro-

jects/bbmap/) [31], Bowtie2, BWA, BWA-MEM [19, 32],

Qiagen CLC Genomics Workbench (https://www.qiagen

bioinformatics.com) [33–36], DNASTAR Lasergene Suite

[37, 38], GEM [39], Hisat2 [40], Magic-BLAST [41],

Minimap2 [42], Novoalign [43], YARA [44], RUM [45],

Segemehl [46], STAR [47], Subread [48], TopHat2

[18, 49]) applied on empirical and simulated DNA- and

RNA-Seq human and mouse datasets. Our study provides

guidelines for the selection of a suitable aligner based on

genome and transcriptome characteristics.

2 Materials and methods

2.1 Simulated data

In order to realize a complete evaluation of aligning tools,

minimizing the possible bias coming from real sequenced

data, we firstly produced simulated NGS reads, mapped

them to the human and murine reference genomes and

assessed read alignment accuracy using a tool evaluating if

each individual read has been aligned correctly. In order to

take in account the genomic features for following map-

ping analyses, we decided to simulate data from two

organisms with two different read lengths (50 bp and

150 bp) using five different reads simulators. Each used

read simulator introduced mutations within the homo

sapiens GRCh38.p13 (RefSeq assembly accession:

GCF_000001405.39, downloaded on January 4, 2021) or

within the mus musculus Genome Reference Consortium

Mouse Build 39 (GRCm39) (RefSeq assembly accession:

GCF_000001635.27, downloaded on January 4, 2021)

FASTA reference genomes and produced reads as genomic

substrings with randomly added sequencing errors. Such

simulations of artifacts and errors observed in real data

were generated by different statistical models, mainly

based on coverage, read sequencing errors and genomic

mutations distributions, as well as CG-content. Finally, the

origin of each read (generated for a given simulator) is

encoded in a read group specific for each algorithm, and

the reads were saved into FASTQ files. In order to enforce

the usefulness of simulations, we used 5 different simula-

tors, each one with own features: (1) ART [50]; (2)

DWGSIM (http://github.com/nh13/dwgsim); (3) WGSIM

(http://github.com/lh3/wgsim); (4) MASON [51]; (5)

CURESIM [52]. The average Phred score over all simu-

lated reads was of 29. Details of each algorithm, such as

type of simulated data (Illumina or Ion Torrent), are

available in Table 1.
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Table 1 List of simulation tools with main features

Sim.

Algorithm

Version Technology Run

types

Read Length Error Rate (%) Processing RAM

(Gb)

Time

(min)

Input

MASON Mason, v.0.1.2 ILLUMINA PE 50 bp and 150 bp

(both Mouse and

Human)

0.004 – 0.0285 P 30 43 (Mouse,

50 bp)

FASTA

(Ref.

Gen.),

VCF
87 (Mouse,

150 bp)

47

(Human,

50 bp)

106

(Human,

150 bp)

DWGSIM DwgSim,

v.0.1.12

ION

TORRENT

PE 50 bp and 150 bp

(both Mouse and

Human)

0.0037 – 0.034 P 30 17 (Mouse,

50 bp)

FASTA

(Ref.

Gen.)24 (Mouse,

150 bp)

32

(Human,

50 bp)

41

(Human,

150 bp)

WGSIM WgSim,

v.1.0.2

ILLUMINA PE 50 bp and 150 bp

(both Mouse and

Human)

0.0092 – 0.0336 P 30 19 (Mouse,

50 bp)

FASTA

(Ref. Gen

26 (Mouse,

150 bp)

34

(Human,

50 bp)

43

(Human,

150 bp)

ART ART

v.2016–06-

05

ILLUMINA PE 50 bp and 150 bp

(both Mouse and

Human)

0.0095 – 0.06 P 30 21 (Mouse,

50 bp)

FASTA

(Ref.

Gen.)26 (Mouse,

150 bp)

29

(Human,

50 bp)

39

(Human,

150 bp)

CURESIM Customized

Read

Simulator,

v.1.3

ION

TORRENT

SE 50 bp and 150 bp

(both Mouse and

Human)

0.005 – 0.215 P 30 13 (Mouse,

50 bp)

FASTA

(Ref.

Gen.)17 (Mouse,

150 bp)

21

(Human,

50 bp)

29

(Human,

150 bp)
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3 Real data samples

In order to cover popular sequencing platforms in

biomedical science, a heterogeneous group of four samples

(datasets unpublished) was chosen to perform the bench-

mark analysis. One RNA-Seq and one whole-genome

sequencing (WGS) outputs, resulting from separate single-

end experiments on Ion Torrent platform, came from the

whole transcriptome analysis of retinal pigmented epithe-

lial (RPE) cells and from the whole-genome sequencing of

a patient affected by an orphan form of retinitis pigmen-

tosa, respectively. Then, another one RNA-Seq and one

whole-exome sequencing (WES) outputs, resulting from

separate paired-end experiments on Illumina platform,

came from the whole transcriptome analysis of exudate of a

patient affected by osteomyelitis and from the whole-ex-

ome sequencing of a patient affected by an atypical form of

retinitis pigmentosa, respectively. Produced raw data were

quality checked by FastQC (v.0.11.7) (http://www.bioin

formatics.babraham.ac.uk/projects/fastqc) and 50 end-trim-

med according to Phred score threshold of 30. Residual

adaptor sequences have been removed (min read length for

a read to be kept = 50 bp). Detailed features of analyzed

samples, characterized by read length ranging from 100 to

200 bp after trimming, and by total read number ranging

from about 22 million to 88 million, are available in

Table 2.

4 Aligner selection

The 17 benchmarked aligners were selected to represent

different algorithms, many of them which are indexing-

based (e.g., Bowtie2, BWA), hashing based (e.g.,

NovoAlign) and exploiting suffix array approaches (e.g.,

STAR). Main elements we considered to choose aligners

were the number of citations (the highest cited, well-ex-

ploited aligners. and the lowest, already fully explored

ones) and the continuously updating of algorithm code. All

alignments were realized using the GRCh38.p13 and the

GRCm39 reference genomes, for human and mouse,

respectively. The list of all chosen mappers, along with

their salient features, is highlighted in Table 3. Aligner

parameters used during evaluations are listed in Table 4.

About real data, YARA alignment was only completed on

single-end RPE cells transcriptome, probably due to com-

putational hardware limitations. Additionally, RUM map-

ping on WGS and simulated data outputted errors, probably

due to conflicts between algorithmic specific features and

qualities of real sample data.

Table 1 (continued)

Sim.

Algorithm

Version Technology Output Prog.

Lang

Description Docs Bib

MASON Mason,

v.0.1.2

ILLUMINA FASTQ,

SAM

C ? ? Starting from a genome, Mason can simulate

variants and optionally also methylation

levels. Optionally, it can simulate bisulfite

treatment

Y Holtgrewe

(2010)

DWGSIM DwgSim,

v.0.1.12

ION

TORRENT

FASTQ,

VCF

C, Perl,

Python

Based on WgSim originally released in the

SAMtools software package (Danacek et al.,

2021), it was modified to handle ABI SOLiD

and Ion Torrent data

Y Heng Li

et al.

(2011)

WGSIM WgSim,

v.1.0.2

ILLUMINA FASTQ,

VCF

C WgSim is able to simulate diploid genomes

with SNPs and insertion/deletion (InDel)

polymorphisms, and simulate reads with

uniform substitution sequencing errors

Y Heng Li

et al.

(2011)

ART ART,

v.2016–06-

05

ILLUMINA FASTQ,

ALN,

MAP,

SAM,

BED

C ?? ,

Perl

ART consists of a set of tools supporting

genome and amplicon sequencing simulation

of SE, PE and MP reads of Illumina’s Solexa,

Roche’s 454 and Applied Biosystems’

SOLiD. ART

Y 50

CURESIM Customized

Read

Simulator,

v.1.3

ION

TORRENT

FASTQ Java CuReSim supports read simulation for major

letter-base sequencing platforms. Wrappers to

integrate CuReSim in Galaxy are also

available

Y 52

Each reads simulator showed different features, considering both mouse (Mus musculus, GRCm39) and human (Homo sapiens, GRCh38.p.13)

reference genomes.

PE paired end, SE single end, P parallel processing (accepts multithreading). The error rate is the mean value of error rates of all samples for

each simulator. Ref. Gen. = reference genome. Prog. Lang. = programming language. Docs = documentation. Bib. = bibliography.
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5 Benchmarking workflow design

The mapping is a string-matching problem. It needs to

integrate the known properties of the DNA sequences with

the sequencing technologies, increasing complexity to the

mapping procedure. To speed up the alignment process,

most tools (and especially all the benchmarked tools we

assess in this paper) pre-build an index on the reference

genome to query faster the origin of each read. Several

algorithms build index on the reads, but the most recent

ones create index on the reference genome [53]. The latter

method depends on the fact that the same index once built

on a reference genome can be used repeatedly for aligning

different read sets. After realized alignments, we used the

Picard command line tool suite (https://broadinstitute.

github.io/picard/) for processing and analyzing obtained

data, especially focusing on internal control metrics,

alignment summary metrics, GC bias metrics, quality by

cycle, quality distribution, duplication metrics, insert size

and deletion metrics. Additionally, clipped reads were also

analyzed by the specific ExtractSVReads module of Gen-

ome Rearrangement IDentification Software Suite

(GRIDSS) [54]. As regards the simulated datasets, where

we have a gold standard for the origin of each read in the

reference genome, we used the evaluation tool Alfred [55]

to assess if any read has been affected to the correct

location in the reference genome (and, possibly, with the

appropriate edit operations). Final statistics strongly

depended on the definition of a correctly mapped read,

mapping qualities and multimapped reads.

6 Estimation of aligners’ sensitivity
and efficiency

Mapping task can represent a bottleneck in the NGS

analysis pipeline due to the ever-increasing volume of the

sequencing data, giving above approaches the need to

adopt a trade-off between accuracy and speed, e.g., based

on gaps allowed. Consequently, it is important to assess the

performance of the aligners on both accuracy and compu-

tational efficiency of read alignment, particularly because

mapping accuracy directly influences the results of many

downstream tasks and the running time could potentially be

a computational burden. Sensitivity (S) is determined as the

ratio of reads mapped correctly to the reads mapped

incorrectly at a particular threshold (S = number of reads

mapped correctly/number of reads mapped incorrectly)

[27]. We take the advantage of having simulated reads with

known biases (considered as gold standard) to assess the

performance of the 17 aligners and then test them on the

empirical datasets. We decided to compare alignment

performance firstly by stratifying against all reported

MAPQ and Alignment Scores (AS), found in SAM format

[56], then analyzing mapping efficiency (E), as accounted

for other authors [57], and bearing in mind that the MAPQ

assumes specific ranges for each alignment algorithm. AS

is a score describing sequence similarity between a query

and a reference. AS increases with the number of matches

and decreases with the number of mismatches and gaps

(rewards and penalties for matches and mismatches depend

on the used scoring matrix). MAPQ is a metric affected by

position. It equals 10 log10 of probability that mapping

position is wrong, rounded to the nearest integer. Based on

quantiles from AS and MAPQ distributions (Table S1), we

considered high AS and low MAPQ if reads aligned per-

fectly at multiple positions (‘‘non-uniquely mapped

reads’’), while low AS and high MAPQ if reads aligned

with mismatches but the reported position is still much

more probable than any other (‘‘uniquely mapped reads’’).

In order to make comparable MAPQ and AS across

aligners, we evaluated the percentages of reads beyond the

two parameters thresholds, mainly focusing on MAPQ. The

mapping efficiency, corresponding to the total number of

reads that align, generally depends on various factors such

as (1) the read length, (2) quality of the reads, (3) the

absence of contaminants (such as other species or adapter

contamination), (4) the mapping software used and (5) the

Table 2 Description of datasets analyzed in our benchmarking study

Datasets NGS Platform Sequencing

Strategy

Read Length

(bp)

Expected

Coverage

Number of Raw

Reads

RPE Cell Transcriptome Ion Torrent Proton SE 200 20X 22,266,648

RP WGS Ion Torrent Proton SE 150 15X 44,755,937

Osteomyelitic Exudate

Transcriptome

Illumina HiSeq

2500

PE 100 9 2 40X 36,851,618

RP WES Illumina HiSeq

2500

PE 100 9 2 75X 88,068,730

Table presents description of the four datasets used during benchmark analyses. M reads = million reads. RPE = retinal pigment epithelial.

RP = retinitis pigmentosa. PE = paired end. SE = single end.
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Table 3 List of alignment tools with salient features

ALIGNER Version Designed for

(Type of

Data)

Prog.

Lang

Algorithm Input Output Mode Clip Mismatch

Evaluation

Max

InDels

Gaps

BBMAP 38.90 DNA, RNA Java SW FASTA,

FASTQ

BAM Global Soft Simple Score

(Levenshtein

distance model)

8 Y

BOWTIE2 2.4.2 DNA, RNA C?? BWT FASTA,

FASTQ

SAM Local Soft Substitutional

Matrices Score

8 Y

BWA 0.7.17 DNA C?? BWT FASTA,

FASTQ

SAM Local Soft

and

Hard

Simple Score

(Levenshtein

distance model)

8 Y

BWA-MEM 0.7.17 DNA C?? BWT FASTA,

FASTQ

SAM Local Soft

and

Hard

Simple Score

(Levenshtein

distance model)

8 Y

CLC

GENOMICS

WORKBENCH

21.0.3 DNA, RNA Java BWT FASTA,

FASTQ

BAM Global,

Local

Soft

and

Hard

Substitutional

Matrices Score

8 Y

DNASTAR

LASERGENE

SUITE

17.2.1 DNA, RNA Java NW FASTA,

FASTQ

BAM Global,

Local

Soft

and

Hard

Simple Score

(Levenshtein

distance model)

8 Y

GEM 3.6 DNA, RNA Python BWT FASTA,

FASTQ

SAM Global,

Local

Soft Substitutional

Matrices Score

8 Y

HISAT2 2.2.1 DNA, RNA Python BWT FASTA,

FASTQ

SAM Local Soft Substitutional

Matrices Score

8 Y

MAGICBLAST 1.5.0 DNA, RNA C?? BWT FASTA,

FASTQ

SAM Local Soft Substitutional

Matrices Score

8 Y

MINIMAP2 2.16 DNA, RNA C,

Python

BWT FASTA,

FASTQ

SAM Global Soft Substitutional

Matrices Score

8 Y

NOVOALIGN 4.03.02 DNA, RNA C?? NW FASTA,

FASTQ

BAM Global,

Local

Soft

and

Hard

Substitutional

Matrices Score

8 Y

YARA 1.0.3 DNA C?? BWT FASTA,

FASTQ

BAM Global Soft Substitutional

Matrices Score

8 Y

RUM 2.0.5 DNA, RNA Perl BLAT FASTA,

FASTQ

BAM Local Soft Substitutional

Matrices Score

8 Y

SEGEMEHL 0.3.4 DNA, RNA C BWT FASTA,

FASTQ

SAM Local Soft

and

Hard

Substitutional

Matrices Score

8 Y

STAR 2.7.0f RNA C?? BWT FASTA,

FASTQ

SAM Local Soft Substitutional

Matrices Score

8 Y

SUBREAD 2.0.1 DNA, RNA C BWT FASTA,

FASTQ

BAM Local Soft Substitutional

Matrices Score

8 Y

TOPHAT2 2.1.1 RNA C?? BWT FASTA,

FASTQ

BAM Global Soft Substitutional

Matrices Score

8 N

ALIGNER Version Designed

for (Type

of Data)

MAPQ

Cut-off

AS

Cut-off

Index/

Hash

Salient Features Bib N�
Cit

BBMAP 38.90 DNA,

RNA

40 0.76 (Min.

Aligner

Identity)

Hashing Rapidly indexes genome using short

kmers, without size or scaffold count

limit. Higher sensitivity and specificity

than Burrows–Wheeler aligners, with

comparable or increased speed. Could

operate on Sanger, 454, PacBio, Illumina

and Ion Torrent data. Splice-aware

Bushnell et al.

(2017)

218

BOWTIE2 2.4.2 DNA,

RNA

42 51

(50 bp),

60

(150 bp),

62

(200 bp)*

FM index Modified Ferragina and Manzini matching

algorithm, quality aware backtracking.

Its sensitivity is high for reads[ 50 bp

when compared with Bowtie

Langmead et al.

(2009)

25,200
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Table 3 (continued)

ALIGNER Version Designed

for (Type

of Data)

MAPQ

Cut-off

AS

Cut-off

Index/

Hash

Salient Features Bib N�
Cit

BWA 0.7.17 DNA 37 51

(50 bp),

60

(150 bp),

62

(200 bp)*

FM index BWT-based aligner that uses the Ferragina

and Manzini matching algorithm to find

seeds, followed by a backtracking

algorithm which searches for matches

between a substring of the reference

genome and the query within a specific

defined distance. Generally used for

mapping less divergent sequence

19 27,425

BWA-MEM 0.7.17 DNA 40 51

(50 bp),

60

(150 bp),

62

(200 bp)*

FM index Conceptually based on BWA, but able to

handle long reads and considered to be

faster and more accurate

19 27,425

CLC

GENOMICS

WORKBENCH

21.0.3 DNA,

RNA

40 51

(50 bp),

60

(150 bp),

62

(200 bp)*

Suffix Array Based on CLC Assembly Cell 5.0 (CLC5),

employs a BWT of the reference genome

rather than using a memory-intensive

Suffix Array. In contrast to BWA

algorithm, CLC5 parallelizes the

transformation of individual

chromosomes

QIAGEN

(2012)

36,500

DNASTAR

LASERGENE

SUITE

17.2.1 DNA,

RNA

70 160 Hashing Performed by DNASTAR’s SeqMan

NGen� software, it aligns reads against

a database of genomic templates,

performing reference-guided assemblies

and de novo assemblies of up to 30

million sequence reads (genome sizes up

to 50 megabases)

DNASTAR

(2012)

26,300

GEM 3.6 DNA,

RNA

40 51

(50 bp),

60

(150 bp),

62

(200 bp)*

FM index More accurate and efficient than Bowtie2

or BWA, it is characterized by high-

quality alignment engine (exhaustive

mapping with substitutions and

INDELs). Various standalone biological

applications (mappability, mapper and

other) provided

39 495

HISAT2 2.2.1 DNA,

RNA

42 51

(50 bp),

60

(150 bp),

62

(200 bp)*

Hierarchical

Graph FM

index

(HGFM)

Based on an extension of BWT for graphs,

the HGFM implements a global graph

FM index (GFM), that represents a

population of genomes, along with a

large set of small GFM indexes (local

indexes) that collectively cover the

whole genome

40 6245

MAGICBLAST 1.5.0 DNA,

RNA

42 51

(50 bp),

60

(150 bp),

62

(200 bp)*

Hashing Each read alignment optimizes a

composite score, taking into account

simultaneously the two reads of a pair,

and in case of RNA-Seq, locating the

candidate introns and adding up the score

of all exons. It performs hit extensions

by local walk and jump, and recursive

clipping of mismatches near 5’- and 3’-

ends

Boratyn et al.

(2019)

50

MINIMAP2 2.16 DNA,

RNA

60 51

(50 bp),

60

(150 bp),

62

(200 bp)*

Hashing It is faster and more accurate on simulated

long reads and produces. For[ 100 bp

Illumina short reads, it is several times as

fast as BWA-MEM and Bowtie2, and as

accurate on simulated data

42 1757

NOVOALIGN 4.03.02 DNA,

RNA

67 90 Hashing Alignment quality scores uses posterior

alignment probability (Allison et

Wallace, 1994). It could report multiple

alignments per read

NOVOCRAFT

(2014)

3880
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quality of the reference genome assembly. Additionally,

the type of library may impact the aligner efficiency: for

instance, some library protocols [58] tend to enrich for

repeated sequences, possibly due to a high number of PCR

cycles and/or starting from a small amount of material, and

would display lower mapping efficiency than others.

Additionally, regardless of the limitations related to both

reads and the quality of the reference, several aligners are

able to reach high mapping efficiencies by performing

‘‘clipping’’ of the reads. With this procedure, the portions

of the read that do not align to the reference on either side

of the read are ignored, though label in the CIGAR string.

This process usually comes along with a small penalty for

each clipped base within the read, but aims to maximize the

alignment score and thus amounts to a significantly smaller

alignment penalty than mismatched bases. Mapped reads

clipping profile, representing the distribution of clipped

nucleotides across reads were compared for all algorithms.

7 Read distribution

Different aligned data coming from different aligners were

analyzed to calculate how mapped reads were distributed

over genome feature (like CDS exon, 5’UTR exon, 30 UTR

exon, Intron, Intergenic regions), using the Human GEN-

ECODE annotation v.36 (www.gencodegenes.org). When

genome features were overlapped (e.g., a region could be

Table 3 (continued)

ALIGNER Version Designed

for (Type

of Data)

MAPQ

Cut-off

AS

Cut-off

Index/

Hash

Salient Features Bib N�
Cit

YARA 1.0.3 DNA 40 51

(50 bp),

60

(150 bp),

62

(200 bp)*

Hashing Exhaustive enumeration of sub-optimal

end-to-end alignments under the edit

distance; excellent speed, memory

footprint and accuracy; support for

reference genomes consisting of millions

of contigs

44 22

RUM 2.0.5 DNA,

RNA

42 20 FM index It exploits the advantages of both genome

and transcriptome mapping as well as

combining the speed of Bowtie with the

sensitivity and flexibility of Blat (Kent,

2002). It also has a strand specific mode

45 359

SEGEMEHL 0.3.4 DNA,

RNA

40 51

(50 bp),

60

(150 bp),

62

(200 bp)*

Enhanced

suffix array

It is able to detect not only mismatches but

also insertions and deletions. It is not

limited to a specific read length and is

able to detect primer- or polyadenylation

contaminated reads correctly

Hoffmann et al.

(2009)

522

STAR 2.7.0f RNA 240 51

(50 bp),

60

(150 bp),

62

(200 bp)*

Uncompressed

suffix array

Designed to align the non-contiguous

sequences, originally due to intron–exon

boundaries, directly to the reference

genome, it consists of two major steps:

seed searching step and clustering/

stitching/scoring step

47 15,763

SUBREAD 2.0.1 DNA,

RNA

40 51 (50 bp),

60

(150 bp),

62

(200 bp)*

Hashing Superfast and accurate read aligner,

employs a novel mapping paradigm

named seed-and-vote

Liao et al.

(2013)

1535

TOPHAT2 2.1.1 RNA 50 51

(50 bp),

60

(150 bp),

62

(200 bp)*

FM index It aligns RNA-Seq reads to mammalian-

sized genomes using the ultra-high-

throughput short read aligner Bowtie,

and then analyzes the mapping results to

identify splice junctions between exons

18 9819

In this table are shown all tools exploited for alignment comparison with their own specific features. Prog. Lang. = programming language.

Clip = clipping. Bib. = bibliography. SW = Smith–Waterman. BWT = Burrows–Wheeler transform. NW = Needleman–Wunsch. Max

InDels = maximum n� allowed InDels for read (default). Gaps = gapping alignment. MAPQ = mapping quality score (its main value and range

differ across mappers). AS = alignment score. N� Cit. = number of citations by January 2021. * This score is calculated on the basis of ‘‘Local

Alignment = 20 ? 8.0 * ln(L),’’ where ‘‘L’’ is the read length.
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Table 4 Aligner parameters used in the evaluation

ALIGNER Command line used

BBMAP bbmap.sh ref = genome.fa -Xmx20g

bbmap.sh in1 = sequence.R1.fq in2 = sequence.R2.fq out = alignment.bam -Xmx20g

BOWTIE2 bowtie2-build -f reference.fa reference

bowtie2 -x reference.fa -U sequence.fastq -S alignment.sam

BWA bwa index reference.fa

bwa aln -t 4 reference.fa sequence.fastq | bwa samse reference.fa - sequence.fastq[ alignment.sam

BWA-MEM bwa index reference.fa

bwa mem -t 4 reference.fa sequence.fastq[ alignment.sam

CLC GENOMICS

WORKBENCH

Index automatically produced within software

No Command Line, but GUI, with the following parameters: Match score = 1; Mismatch cost = 2; Cost of

insertion and deletions = Linear gap cost; Insertion cost = 3; Deletion cost = 3; Length fraction = 0.5;

Similarity fraction = 0.8; Global alignment = no; Auto-detect paired distances = yes; Non-specific match

handling = Map randomly

DNASTAR LASERGENE

SUITE

Index automatically produced within software

No Command Line, but GUI, with the following parameters: Minimum aligned length = 35; Maximum gap

size = 20; Minimum match percentage = 93; Match score = 10; Mismatch penalty = 15; Gap penalty = 40; Gap

extension penalty = 5; Alignment cutoff = 160

GEM gem-indexer -i reference.fa -o reference

gem-mapper -I reference4.gem -1 sequence.R1.fq -2 sequence.R2.fq -o alignment.sam -t 4 –report-

file = alignment

HISAT2 hisat2-build -f reference.fa reference

hisat2 -f -x reference-1 sequence_R1.fq -2 sequence_R2.fq -S alignment.sam

MAGICBLAST makeblastdb -in reference.fa -dbtype nucl -parse_seqids -out reference

magicblast -query sequence.R1.fq -query_mate sequence.R2.fq -db reference -infmt fastq -out alignment.sam -

num_threads 4

MINIMAP2 minimap2 -d reference.mmi reference.fa

minimap2 -a reference.mmi sequence.fq[ alignment.sam

NOVOALIGN novoindex reference.nix reference.fa

novoalign -d reference.nix -f sequence.R1.fq sequence.R2.fq -o BAM[ alignment.bam

YARA yara_indexer reference.fa -o reference.index

yara_mapper reference.index sequence.R1.fq sequence.R2.fq -o alignment.bam

RUM perl create_indexes_from_ucsc.pl NAME_genome.txt NAME_refseq_ucsc

rum_runner align

–index $RUM_INDEXES/REFERENCE \

–output data/Lane1\

–name Lane1\

–chunks 1\

data/Lane1/forwardreads.txt data/Lane1/reversereads.txt

SEGEMEHL segemehl.x-x reference.idx-d reference.fa

segemehl.x-i reference.idx-d reference.fa -q sequence_R1 -p sequence_R2[ alignment.sam

STAR STAR–runThreadN 4 –runMode genomeGenerate –genomeDir Genome_data/star\

–genomeFastaFiles Genome_data/reference.tar.gz

STAR --readFilesIn sequence.fastq\--alignIntronMax 1\

--genomeLoad LoadAndKeep\--genomeDir /path/to/genomeFasta/\--runThreadN 4 \

--outStd SAM[ alignment.sam

SUBREAD subread-buildindex-o reference.fa

subread-align -d 50 -D 600 -t 1 -T 4 -i mm10 -r sequence.R1.fq -R sequence.R2.fq -o alignment.bam
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annotated as both exon and intron by two different tran-

scripts), they were prioritized as: CDS exons[UTR exons

[ Introns [ Intergenic regions. Tags assigned to

‘‘TSS_up_1kb’’ were also assigned to ‘‘TSS_up_5kb’’ and

‘‘TSS_up_10kb,’’ tags assigned to ‘‘TSS_up_5kb’’ were

also assigned to ‘‘TSS_up_10kb.’’ Therefore, ‘‘Total

Assigned Tags’’ = CDS_Exons ? 5’UTR_Exons ?

3’UTR_Exons ? Introns ? TSS_up_10kb ? TES_-

down_10kb. When tags were assigned to genome features,

each one was represented by its middle point. Reads were

unassigned if: (1) hit to regions covered by both 50- and 30

UTR, when two head-to-tail transcripts are overlapped in

UTR regions; (2) hit to intergenic regions that beyond

region starting from TSS upstream 10Kb to TES down-

stream 10Kb; (3) hit to regions covered by both TSS

upstream 10Kb and TES downstream 10Kb.

8 Deletion and insertion profiles

Sequencing reads covering InDels typically map with more

difficulties since their correct alignment involves complex

gapped alignment. Software tools needed during high-

throughput sequencing focus their improvements on InDel

detection analysis. Several studies described the effects of

different alignment tools on detection’s efficiency [59].

These works recommend the use of gap-aware aligners.

Nevertheless, further knowledge on the effects of these

tools is still required. Distributions of deletions and inser-

ted nucleotides across reads were calculated for all con-

sidered algorithms, distinguishing the effects of gapped

alignments.

9 GC content distribution of reads

The GC content distribution was evaluated by FastQC [60].

Among the challenges, GC bias in NGS data is known to

aggravate genome assembly/alignment [61–66]. However,

it is not clear to what extent GC bias affects genome

assembly or mapping in general. The average GC% along

the reads indicates, for example, if considered reads are

properly trimmed, in order to avoid residual adapter

sequences. The whole distribution of GC content is shown

as a function of the position in each read. In an unbiased

library, the mean GC per read distribution must be Gaus-

sian and centered on expected GC% (the GC% for humans

is known and is 41%), if no contamination/technical bias is

present. An unusually shaped distribution could indicate a

contaminated library or some other kinds of biased subset,

possible emerging from incorrect alignment. Warning is

raised if the sum of the deviations from the normal distri-

bution represents more than 15% of the reads.

10 Duplication profiles

Duplicate reads are defined as originating from a single

fragment of DNA. Duplicates can arise during sample

preparation (e.g., library construction using PCR) or result

from a single amplification cluster, incorrectly detected as

multiple clusters by the optical sensor of the sequencing

instrument (optical duplicates). They were detected with

Picard MarkDuplicates tool [67], which compares the

anchors of mapped reads from a SAM/BAM file. After

duplicate reads are collected, the tool differentiates the

primary and duplicate reads using an algorithm that ranks

reads by the sums of their base-quality scores. It is still

unclear whether removing read duplicates computationally

improves accuracy and precision by reducing PCR bias and

noise or whether it decreases accuracy and precision by

removing genuine information. Generally, we mark dupli-

cates (e.g., do not remove them) only for data from WGS/

exome experiments or from analyses where amplification

artifacts might be a problem (ChIP-Seq for example), while

should never be removed in any quantitative experiment,

such as RNA-seq, because they may be part of small highly

expressed transcripts [68, 69]. Two strategies were used to

determine read duplication rate: (1) sequence based: reads

with identical sequence are considered duplicated reads. (2)

mapping based: reads mapped to the exactly same genomic

location are evaluated as duplicated reads. For spliced

reads, reads mapped to the same starting position and

splice the same way are regarded as duplicated reads.

Table 4 (continued)

ALIGNER Command line used

TOPHAT2 bowtie2-build -f reference.fa reference

tophat -o alignment reference sequence.R1.fq sequence.R2.fq

The first point refers to genome indexing creation, while the second to the read mapping task. All other arguments are set to default if not

specified. reference.fa = reference genome in FASTA format. sequence_R1.fq and sequence_R2.fq = input paired-end reads
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11 Saturation profiles

Restricted to RNA-Seq data, saturation profiles highlight

how the precision of any summary statistics (Reads Per

Kilobase Million, RPKM) is affected by sample size (se-

quencing depth). Such profiles are obtained by taking

random sub-samples (repeated 20 times) of a given number

of reads every 5th percentile up to the total library size and

then by calculating the RPKM value of each subsample.

Such curve allows to check if the RPKM estimates pla-

teaus, allowing to adjust for differences in sample sizes. In

this way, it is possible to check if the current sequencing

depth was saturated or not (or if the RPKM values were

stable or not) in terms of gene expression estimation. If

sequencing depth was saturated, the estimated RPKM

value will be stationary or reproducible. For each tran-

script, we recorded at which bin the saturation is reached

and used this percentage to classify the transcripts. In

details, twenty RPKM values (using 5%, 10%,…,

95%,100% of total reads) were calculated for each tran-

script, and the ‘‘percent relative error,’’ used to measure

how the RPKM estimated from subset of reads (i.e.,

RPKMobs) deviates from real expression level (i.e.,

RPKMreal), was derived and plotted. As a proxy, the

RPKM estimated from total reads was used to approximate

RPKMreal.

Percent relative error ¼ RPKMobs � RPKMrealj j = RPKMrealð Þ
� 100

Then all transcripts were sorted in ascending order

according to expression level (RPKM) and finally divided

into 4 groups:

• Q1 (0–25%): transcripts with expression level ranked

below 25 percentile.

• Q2 (25–50%): transcripts with expression level ranked

between 25 and 50 percentile.

• Q3 (50–75%): transcripts with expression level ranked

between 50 and 75 percentile.

• Q4 (75–100%): transcripts with expression level ranked

above 75 percentile.

12 Estimation of computational time
and mean RAM usage for alignment

We performed all analyses on a high-end MacBook Pro

with Intel� CoreTM (Intel Core i7-8750H CPU @ 2.2 GHz

with Turbo Boost to 4.1 GHz six-core) processor and a

maximum memory of 32 GB of RAM with AMD Radeon

Pro 555X graphics and MacOS Big Sur 11.2.0/Ubuntu

20.04 LTS OS for alignment jobs. The scalability of the

mapping tools may be different under different parallel

settings. Many tools support multithreading, which is

expected to yield linearly increasing speedup with an

incremented number of CPU cores. However, using mul-

tiprocessing is more general and may improve the

throughput even for tools that do not support multithread-

ing, where multiprocessing refers to using more than one

process in a distributed memory fashion while communi-

cating through a message passing interface. All our used

tools support multithreading/multiprocessing, except

YARA and RUM.

13 Evaluation of simulated data statistics

Alfred (https://www.gear-genomics.com/alfred) allowed a

complete integration of high-throughput settings, enabling

the monitoring of sequence data quality and characteristics

across samples. It parsed the aligned BAM files only once

and pre-allocated data structures for counting primary,

secondary, supplementary and spliced alignments.

Sequencing error rates were elaborated separately for

mismatch, insertion and deletion errors. InDel size distri-

bution was estimated and potential homopolymer sequence

regions and a fragment-based GC bias curve were esti-

mated from the reference context. Evaluated parameters of

Alfred alignment metric are available in Table 5.

14 Results

14.1 Simulated data highlight 7 potential best-
performer aligners

Alignment of simulated data by all 17 considered algo-

rithms showed that the best mapping was reached by

BBMAP, BWA-MEM, Novoalign, DNASTAR, YARA,

Segemehl and TopHat2 for all paired-end simulated data,

while the worst one was Subread. Only Mason data showed

a high-quality alignment for BWA. A different situation

resulted from mapping of CuReSim data, due to the ability

of tool to generate single-end reads only. Thus, this time

the best outputs emerged from BBMAP, YARA and

DNASTAR, while non-optimal alignments were performed

by Bowtie2, BWA, Hisat2, Minimap2, CLC and STAR.

Distributions of mapped and unmapped reads by selected

aligners on simulated data are shown in Fig. 1, while

detailed statistics of each simulated data alignment is

available in Table S2.

Neural Computing and Applications (2021) 33:15669–15692 15679

123

https://www.gear-genomics.com/alfred


15 Accuracy and efficiency of mapping
evaluation on real data

We evaluated the tools on four types of data sets, namely

two DNA-Seq samples (paired-end WES and single-end

WGS). During an evaluation procedure, it is essential to

choose the right data set type to improve the applicability

of the tools. We concatenated our 4 datasets in a single file

and added a read group to find back the origin of each read.

The uniquely mapped reads were separated from multiple

mapped (the percentage of reads mapped to more than one

location with the same number of mismatches, highlighting

that these reads could fall in repetitive regions) and

unmapped ones by Alfred. Furthermore, we reported the

distribution of mapped reads over genomic features, as

number of mapped tags per kb (tags/kb) of reference

genome. Indexing and matching times for selected tools

were split (see further). Figure 2 reports the percentage of

mapped (uniquely and multiple) and unmapped reads of

various sizes aligned using all chosen 17 different aligners.

Figure 3 highlights distribution of reads assigned to specific

genome features for each selected aligner in all samples.

CLC, BWA-MEM, GEM and Magic-BLAST mapped the

highest number of reads in all samples (% of mapped reads

[ 90%), while the smallest fraction of aligned reads was

realized by TopHat2 in three samples of four (only single-

end RNA-Seq data saw BWA and Bowtie2 worse than it).

Interestingly, paired-end samples showed a high mapping

percentage ([ 99%) for DNASTAR, BBMap and RUM,

while a lower percentage was evidenced by STAR (\45%

in osteomyelitis sample). About accuracy, it was globally

high for both DNA-Seq samples and more variable through

different aligners in RNA-Seq ones. Novoalign and

DNASTAR showed the highest accuracy in all alignments,

followed by CLC algorithm. Segemehl reached the highest

result for exon mapping (591 tags/kb), while BBMap

obtained the worst result in all samples (12 tags/kb repre-

sented its peak, in WES sample). Additionally, only for

WGS sample, Novoalign got the highest value of total read

mapping parameter (160 tags/kb). Considering the read

distribution, the best aligner varies with the analyzed

sample: RPE transcriptome showed that Segemehl, BWA-

MEM, Magic-BLAST and Minimap2 reached the best

results aligning exon sequences; the same results were

achieved by Hisat2, STAR, TopHat2 and RUM in

osteomyelitis sample (here RUM also highlighted a peak

for intron aligned sequences). RUM itself, with Segemehl,

reached the best mapping score for uniquely aligned coding

sequences in WES analysis, similarly for Novoalign in

WGS sample. The mapping tool which performed the

worst results in exon alignment was BWA.

16 Clipped reads

Commonly used aligners perform ‘‘clipping,’’ excluding

the unalignable portion of a read which was not mapped in

its full length. With soft-clipping, highlighted in the

CIGAR string with the letter ‘‘S,’’ the clipped sequence

bases will not be used by variant callers or other down-

stream tools. As expected, Bowtie2, Segemehl and

TopHat2 showed no clipped reads during alignment in all

samples, as YARA for RPE transcriptome and BBMap for

retinitis pigmentosa WES. Very interestingly, all other

mappers reached a very high percentage of non-clipped

reads in both DNA-Seq data ([98% in WES and[92% in

WGS analyses, respectively). An increased number of

clipped reads are, instead, revealed by both RNA-Seq data,

especially by RPE cell transcriptome. About the latter,

BWA-MEM, Magic-BLAST and CLC did not pass the

value of 82% non-clipped reads until read position 35 for

the first two, and 60 for the third, respectively. A similar

trend was shown by Minimap2, Subread and Novoalign

that reached the same value after 35 bp across the mapped

reads, with an additional decrease to 75% on non-clipped

reads around 150 bp. Regarding osteomyelitis sample, the

only noticeable variation was highlighted by BWA-MEM,

in which the percentage of 92% was obtained only in read

length range of 20-80 bp. Detailed clipping profiles are

represented in Figs. S1–S4.

17 Insertions and deletions

The ‘‘highest’’ insertion percentage was detected by GEM

in RPE transcriptome sample, with a value of about 2%,

while in the osteomyelitis data all tools reached a very little

percentage (about 0.02%). In DNA-Seq samples, the

insertion percentage remained very low, ranging from the

0.002% of Magic-BLAST, BWA, CLC, Minimap2 and

TopHat2 to 0.010% of GEM in WES data, and ranging

from 0.15% of Bowtie2, BWA and TopHat2 to 0.5% of

GEM and Segemehl in WGS one. About distribution of

deletions across the reads, the compared analysis was more

complex, because alternative transcripts could create

InDels. The only tool which outputted common results for

all samples was BBMap, which did not detect any deletion.

RPE cell transcriptome data showed a huge growing trend

for the most of aligners, with a little decrease only for

Subread, and lower peaks (value about 20) for Bowtie2,

BWA and TopHat2, the last of whom also presented a very

irregular deletion distribution along the read. About Illu-

mina aligned data, both showed a stable trend around a

specific deletion number for the most of mappers, mainly

distributed around 30 bp of read length. The highest peak
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was reached by CLC (5500 in osteomyelitis and RPE

samples, at 30 bp and 70 bp, respectively) and the lowest

by Subread (0 in osteomyelitis data and 1800 in WES),

while an irregular ‘‘up and down’’ distribution was high-

lighted by GEM (between 15,000 at 25 bp and 1,500 at

38-70 bp in osteomyelitis sample; 4,100 at 18, 30 and 50

bp, 4,500 at 65 bp and 5,500 at 85 bp). Finally, whole-

genome sequencing data presented an increasing deletion

distribution throughout the entire read length for all map-

ping tools, with the highest value ranging from 600 for

BWA-MEM to 3200 for Segemehl, both at 120 bp. The

exception was represented by Subread and TopHat2, which

Table 5 Alignment metrics

used in the evaluation
Alignment Metric DNA-Seq WGS DNA-Seq WES RNA-Seq

Mapping Statistics Duplicate 4 4 4

Statistics Sequencing Error Rates 4 4 4

Base Content Distribution Read 4 4 4

Length Distribution Base Quality 4 4 4

Distribution Coverage Histogram 4 4 4

Insert Size Distribution InDel Size 4 4 4

Distribution InDel Context 4 4 4

GC Content 4 4 4

On-Target Rate 4

Target Coverage Distribution 4

Spliced Alignments 4

Feature Counting 4 4 4

Feature Annotation 4 4 4

The absence of tick indicates that the specific metric is not available for that aligner

Fig. 1 Distribution of mapped and unmapped reads by selected

aligners on simulated data. Normalized bar plots indicate the

partitioning of unmapped and mapped (uni- vs multimapped) reads,

based on MAPQ and AS scores, for all selected aligning algorithms in

five simulated datasets. A = Mason. B = DwgSim. C = WgSim.

D = Art. E = CuReSim. Refer to Table 3 for MAPQ and AS

thresholds for each aligner

Neural Computing and Applications (2021) 33:15669–15692 15681

123



exhibited a very particular behavior, with many and

irregular peaks across the reads. Results of insertion and

deletion analyses are plotted in Figs S5–S12.

18 GC content

In this work, we also conducted a systematic analysis on

the effects of GC bias on genome mapping. In represented

plots, the presence of double peaks in GC distribution

could reflect some noise at the start of the per-base

nucleotide distribution due to not-so-random hexamers. In

the case of RNA samples, the second peak could also refer

to an incomplete rRNA depletion during library prepara-

tion. Finally, the theoretical GC curve should be centered

closer to the expected mean GC% value of the studied

organism. If the read GC distribution is nonsignificantly

different to the GC distribution of the reference genome,

that implies no bias, assuming all of the reads originated

from that reference genome. High and low GC tails, rela-

tive to the expected GC% of the organism, are more likely

to represent repetitive regions and tandem repeats. So,

using a poor mapper or a highly-repetitive organism

determines that the seemingly higher coverage of extreme

GC areas is actually due to the fact that they are collapsed

repeats. Mapping with high error rates is not an issue, but

there could be edge effects if you are mapping to short

contigs. In RNA-Seq samples, BWA-MEM, CLC and

Novoalign shown a normal distribution very close to the

theoretical normal one. Moreover, the same result was

obtained for Magic-BLAST, Minimap2 and Subread for

RPE cell transcriptome data, and for BBMap and Hisat2 for

osteomyelitis one. In the latter sample, interestingly, sev-

eral tools (Bowtie2, BWA, GEM, Minimap2, STAR and

Subread) highlighted a double peak, and two algorithms

(Magic-BLAST and Segemehl) presented even irregular

trend. About DNA-Seq data, Magic-BLAST and Segemehl

show the most normal distribution of GC in WES sample,

where all the other tools revealed a double peak in their

trends, with the second higher than the first. In WGS data,

instead, no algorithm could reach an approximal normal

distribution, probably due to sequencing biases: all aligners

shown a left-skewed distribution, with Magic-BLAST and

Segemehl also characterized by a lower density of reads.

GC distribution emerged from all alignments are repre-

sented in Figs. S13–S16.

Fig. 2 Distribution of mapped and unmapped reads by selected

aligners on empirical data. Normalized bar plots indicate the

partitioning of unmapped and mapped (uni- vs multimapped) reads,

based on MAPQ and AS scores, for all selected aligning algorithms in

four analyzed samples (a–d). Refer to Table 3 for MAPQ and AS

thresholds for each aligner. YARA results are only available for RPE

RNA-Seq sample, probably due to computational hardware

limitations
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19 Duplication profiles

As expected, read duplication rates are very high in RNA-

Seq samples and almost paltry in DNA-Seq ones, espe-

cially in WGS data. Read duplicates are not normally

removed from the RNA-Seq data, because PCR duplicates

are not distinguishable from the same fragments that are

highly expressed. In RPE transcriptome, BBMap, BWA-

MEM, Magic-BLAST and Segemehl detected the highest

number of total duplications in the highest number of

reads. Duplicate sequences detection resulted more diver-

gent from duplicate mapped reads in BBMap, CLC and

Magic-BLAST alignments. The same deviating trend is

shown by Magic-BLAST and by Segemehl in the other

three samples, with the latter aligner able to detect the most

consistent number of duplicated mapped reads in WGS

data. Figures S17–S20 highlight duplication rates from

selected tools.

20 Saturation profiles

Saturation analyses of both RNA-Seq samples highlighted

relevant differences between aligners in transcripts with

expression level ranked below 25 percentile (Q1). In detail,

RPE transcriptome data shown different RPKM saturations

distributed in five tool groups: (1) Bowtie2, BWA and

TopHat2, in which the median of percent relative error

decreases from 100 to 75% and, soon after, under 50%,

between 30 and 35 resampling percentage; (2) BWA-

MEM, Magic-BLAST, Minimap2 and Segemehl, charac-

terized by percent relative error median reaching 50%

around 10–15% of resampling percentage; (3) GEM and

Novoalign, whose median of percent relative error dropped

below 50% only after 20% of resampling rate; (4) Hisat2,

YARA and Subread, whose saturation plots reached the

50% of median of percent relative error at 25% of resam-

pling percentage; (5) STAR that highlighted a trend very

similar to group 4 aligners, but with first box-plots showing

shorter quartiles than their counterpart in group 4. BBMap

Fig. 3 Tag assigned to genome

features by chosen mappers. Bar

plot highlights distribution of

reads assigned to specific

genome features for considered

aligners in all samples. TSS_up:

upstream of the transcription

start site. TSS_down:

downstream from the

transcription terminal site.

Probably due to lack of

sufficient computational

resources or due to intrinsic

algorithmic peculiarities, few

mapping tools were unable to be

evaluated for this parameter

(CLC and DNASTAR in a;

CLC, DNASTAR and YARA in

b; DNASTAR and YARA in c;

CLC, DNASTAR, YARA and

RUM in d)
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and CLC gave errors during saturation analysis, so they are

not present in our results. Less intragroup differences were,

then, shown by aligners in osteomyelitis sample, clustering

tools into only 4 groups, one of which comprising the

highest number of algorithms: (1) BBMap that highlighted

a very strange trend, decreasing the median of percent

relative error under 50% only after 65% of resampling,

both in Q1 and Q2, and with incomplete box-plot repre-

sentation in the same quartiles; (2) Bowtie2 and STAR,

whose median of percent relative error fell below 50% after

20% of resampling rate; (3) BWA-MEM, BWA, GEM,

Hisat2, Magic-BLAST, Minimap2, Segemehl, Subread and

TopHat2 that reached the 50% of median of percent rela-

tive error at around 15 resampling percentage; (4)

Novoalign, which showed a trend very similar to group

four, but with the median of percentage error under 50%

already at 10% of resampling. About osteomyelitis sample,

data from CLC could not be analyzed. Sequencing satu-

ration profiles are plotted in Figs. S21–S22.

21 Computational performance comparison
of selected aligners

The computational time of read mapping of different

aligners was directly proportional to the size of the refer-

ence genome. In our analyses, because all four samples

were mapped against the same human reference genome,

the alignment time mainly depended on the read size and

number. A comparative analysis of alignment time showed

Subread was significantly faster in all samples (*1936 s

for single-end RPE transcriptome and *2314 s for single-

end WGS), followed by CLC and Minimap2 in RNA-Seq

data, and by DNASTAR and Minimap2 in DNA-Seq ones.

Segemehl, TopHat2 and Novoalign took the longest

alignment time (*295,200 s for WGS sample). About

memory consumption, all four samples showed a mean

RAM usage with a similar trend for all aligners. TopHat2,

BWA, BWA-MEM, Hisat2, Bowtie2 and GEM highlighted

the lowest RAM consumption (mostly \ 10 Gb, except

Subread which has slightly exceeded 15 GB in the WGS

sample). All other tools make maximum use of the avail-

able 32 Gb RAM. Indexing and alignment runtime, as well

as mean RAM usage comparisons, are shown in Fig. 4.

22 Discussion

NGS technology has grown very rapidly during the last

years, leading to huge data outputs of million sequences in

a single run. However, such enormous quantity of gener-

ated data gives no really useful information about DNA

[70] without the availability and the development of

specific analysis algorithms and tools. For this reason, the

bioinformatics research takes care to find new ways to

efficiently manage and analyze such big data [71]. One of

the most promising area that involves the most NGS

bioinformaticians deals with the mapping of generated

sequences [72]. Thus, selection of the correct aligner is

fundamental. Mapper performance and specificity are

determined by genome characteristics, so their evaluation

depends on various criteria such as read distribution,

properly paired, InDel and saturation profiles, duplications,

and incorrectly mapped reads. We benchmarked 17 dif-

ferent aligners, starting from artificial reads obtained by 5

reads simulators, and then focused on different types of real

data. Simulated data was obtained from both homo sapiens

and mus musculus, with different read lengths, in order to

widen the genomic features involvement into aligning

analysis. In this way, we wanted to provide guidelines for

the choice of the most suitable aligner [73–75]. The most

unique feature of our study consisted of the use of all

mappers on both RNA- and DNA-Sequencing data, even if

several aligners were specifically developed for only one of

them [76]. The idea of using an RNA-Seq mapping tool

deals with the ability to align across intron–exon junctions.

Whole genome/exome data consist of exon sequences

(maybe plus a little intronic sequence in WES, depending

on the probes), which are not supposed to be spliced

together. Since it is not necessary to align across junctions,

an RNA-designed aligner will not have an advantage over a

DNA-designed aligner, but there is no evidence regarding

why it could not be use either. Firstly, alignment perfor-

mance by stratifying against all reported MAPQ scores and

efficiency were evaluated. It is well known that they are

both affected by genome size, read size and distribution of

repeats [77]. Single-end long reads (150 bp and 200 bp)

increased the number of unmapped reads, but decreased the

number of multiple alignments, increasing the performance

of alignment for all the mappers. Paired-end short reads,

instead, showed the highest level of total mapped reads,

increasing efficiency, and also reaching the highest per-

centage of uniquely mapped reads in WES data, probably

the best compromise between mapping quality and effi-

ciency. Furthermore, the trade-off between mapping qual-

ity and efficiency also depends on clipping process, that in

our analyses evidenced the lowest number of clipped reads

in DNA-Seq data, probably shifting balances in favor of

align quality. Among different selected aligners, Magic-

BLAST was the one able to map the highest number of

reads in quite all samples, but at the expense of accuracy.

Novoalign and DNASTAR, instead, were found to have the

highest mapping quality with short and long reads, both in

RNA- and DNA-Seq data. Furthermore, CLC showed

similar pattern of align quality. The highest distribution of

reads assigned to specific genome features was, instead,
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reached by Segemehl and Novoalign, also able to map the

huge number of exon sequences. The other aspect we

focused on was the insertion/deletion profile, which use-

fully describe how downstream tools could correctly infer

InDels [78]. Gapped alignment-based InDel detection

algorithms require interpretation of the alignment results

from a gapped aligner [79] such as BWA. The major

obstacle of these methods is represented by the need that

InDels have to be entirely contained within a read and

correctly detected during the initial read mapping step

(identified, in the CIGAR string, as ‘I’ for insertion and ‘D’

for deletion [80]). Furthermore, even if it is sufficient for

small InDels detection, it becomes very difficult for InDels

longer than 15% of the read length. In this case, supporting

Fig. 4 Alignment computational performance comparison plots. Bar graphs show different runtime (in minutes) needed by analyzed mappers to

index genomes (A), to complete the alignment of four considered samples (B), as well as RAM usage (in Gb, C)
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reads will frequently present too few bases able to match

the reference genome or may contain only one end able to

map correctly to the reference genome but the rest of the

bases following the InDel get trimmed or soft-clipped by

the NGS aligner [81]. Therefore, the previously clipping

analysis resulted needed before interpreting data coming

from insertion and deletion profiles. The highest insertion

percentage was shown by GEM in RPE cell RNA-Seq

sample, while the same parameter was really low in all

other samples and aligners. Deletion percentage, instead,

reached its highest peak in both Illumina samples, thanks to

CLC algorithm, highlighting a basilar independency of this

parameter from NGS kind of experiment. Another inter-

esting side of alignment comparison deals with duplication

rate. High coverage due to repeats has been known [82],

and duplication in the genome plays a critical role in

determining the quality of the aligners. Moreover, dupli-

cation should not be removed from RNA-Seq data, because

they might be present due to high expression level [83].

BBMap, CLC, Magic-BLAST and, above all, Segemehl

were able to detect the most elevated number of mapping-

based duplications across all four samples, especially in

WGS one. Furthermore, several aligners were more sen-

sitive to several sequencing biases, like altered GC content

and unbalanced nucleotide composition of reads [84].

Among them, BWA-MEM, CLC and Novoalign have

suffered less from the effect of these errors in RNA-Seq

samples, while Magic-BLAST and Segemehl did the same

in WES data. Different situations appeared in WGS

abnormal results for all aligners, probably due to low

quality of the sample. Another interesting feature, this time

only evaluable on RNA-Seq data, is represented by

sequencing saturation, a measure of the fraction of library

complexity [85]. The inverse of the sequencing saturation

can be interpreted as the number of additional reads

requested to detect a new transcript. Sequencing saturation

is dependent on the library complexity and sequencing

depth. Novoalign showed the best performance during

evaluation of this parameter, highlighting the ability to

detect new transcript easier than other tools. Relevant

results in the same analysis were, also, reached by BWA-

MEM, Magic-BLAST, Minimap2 and Segemehl. Finally,

comparative analysis of computational performance

showed Subread was significantly faster in all samples,

followed by Minimap2. Interestingly, two of the commer-

cial tools, CLC Genomics Workbench and DNASTAR

Lasergene, resulted within the first three position in RNA-

Seq and DNA-Seq alignment, respectively. Segemehl,

TopHat2 and Novoalign, instead, evidenced the longest

computational time of read mapping, probably due to their

predisposition toward other parameters (e. g. accuracy). As

already cited in results, simulated data alignment corrob-

orated the mapping outputs of real data alignment. Data

summarizing which aligner excels in relationship with

input data (reads length and DNA- vs RNA-Seq) are

reported in Table 6.

In this table are shown all tools exploited for alignment

comparison with their own specific features. For each

empirical dataset, each aligner is scored using the follow-

ing criteria: Efficiency, Accuracy, Read Distribution,

Deletion Profile, GC Count, Clipped Reads, Runtime,

Duplication Profile and Saturation Profile. The reported

number indicates the criteria an aligner performs best.

23 Limitations

One limit of the study regards the comparison of Illumina

and Ion Torrent data, which could complicate the bench-

mark evaluation. A second problem was the need of suf-

ficient localized computing resources to analyze data that,

in our case, arrested the analysis of several resource-con-

suming algorithms (e.g., YARA). Another relevant issue

might deal with scaling results to other datasets, element

that should always keep in mind. Additionally, the choice

of the aligners could be not totally exhaustive, due to

practical reasons. Furthermore, we did not benchmark

machine learning algorithms, such as DAVI [86], DeepFam

[87], RLAlign [88] and DeepSF [89], namely neural net-

works and support vector machines, as well as the

emerging developments in artificial intelligence, that rep-

resent the most emerging analytic field. Nevertheless, the

major challenge is to deal with and interpret all the distinct

output coming from each algorithm parameters.

24 Perspectives: improving the SARS-CoV-2
genome sequencing and variant
discovery

Sequencing of genes and whole genomes has been recog-

nized as a powerful technique to investigate viral pathogen

genomes, understand outbreak transmission dynamics and

spill-over events and screen for mutations that potentially

play a pivotal role pathogenicity, transmissibility and/or

countermeasures (e.g., diagnostics, antiviral drugs and

vaccines). A standardized pipeline to characterize, name

and report SARS-CoV-2 sequences has not been estab-

lished yet, even if there are several methods available for

sequencing SARS-CoV-2 from clinical samples [90].

About data analysis, methods based on reference mapping

are most suitable for routine analysis, while minority

variant determination or structural genomic variants

detection are technically challenging and can often not be

fully automated. Alignment of on-target reads to a canon-

ical reference genome, such as the genome NCBI reference
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Table 6 Scoring of aligners for each empirical dataset

ALIGNER SCORING

SYSTEM

DNA-SEQ RNA-SEQ

WES WGS Total RPE Osteo Total

BBMAP Score 1 0 1 2 2 4

Parameters Efficiency – Deletion and Duplication

Profiles

Efficiency,

Clipped

Reads

BOWTIE2 Score 1 1 2 1 1 2

Parameters Clipped Reads Clipped Reads Clipped Reads Clipped Reads

BWA Score 0 0 0 0 0 0

Parameters – – – –

BWA-MEM Score 0 1 1 6 1 7

Parameters – Efficiency Efficiency, Read Distribution,

Deletion Profile, GC Count,

Duplication and Saturation

Profiles

GC Count

CLC

GENOMICS

WORKBENCH

Score 2 2 4 4 4 8

Parameters Accuracy, Deletion

Profile

Efficiency,

Accuracy

Efficiency, Accuracy, GC

Count, Runtime

Accuracy,

Deletion

Profile, GC

Count,

Runtime

DNASTAR

LASERGENE

SUITE

Score 3 2 5 2 2 4

Parameters Efficiency, Accuracy,

Runtime

Accuracy,

Runtime

Accuracy, Deletion Profile Efficiency,

Accuracy

GEM Score 0 1 1 3 0 3

Parameters – Efficiency Efficiency, Insertion and

Deletion Profiles

–

HISAT2 Score 0 0 0 1 1 2

Parameters – – Deletion Profile Read

Distribution

MAGICBLAST Score 2 2 4 5 1 6

Parameters GC Count,

Duplication Profile

Efficiency,

Duplication

Profile

Efficiency, Read Distribution,

Deletion, Duplication and

Saturation Profiles

Duplication

Profile

MINIMAP2 Score 1 1 2 4 0 4

Parameters Runtime Runtime Read Distribution, Deletion and

Saturation Profiles, Runtime

–

NOVOALIGN Score 1 2 3 3 3 6

Parameters Accuracy Read

Distribution,

Accuracy

Accuracy, Deletion Profile, GC

Count

Accuracy, GC

Count,

Saturation

Profile

YARA Score 0 0 0 2 0 2

Parameters – – Clipped Reads, Deletion Profile –

RUM Score 2 0 2 1 2 3

Parameters Efficiency, Read

Distribution

– Deletion Profile Efficiency,

Read

Distribution

SEGEMEHL Score 4 3 7 5 2 7

Parameters Read Distribution,

Clipped Reads, GC

Count, Duplication

Profile

Clipped Reads,

Deletion and

Duplication

Profiles

Read Distribution, Clipped

Reads, Deletion, Duplication

and Saturation Profiles

Clipped Reads,

Duplication

Profile
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sequence NC_045512, is generally realized by Bowtie2,

Minimap2, BWA or BWA-MEM [91–94]. Regardless of

the pipeline, nucleotide variants should not be called if the

number of unique supporting reads at the site is lower than

the required depth for confidence. Thus, in practice, such

alignment-based methods are prone to bias ranging from

false positives [95] to false negatives [96, 97]). In these

scenarios, alignment-based methods may be not specific or

sensitive enough. Such alignment-based methods are also

computationally intensive and therefore not particularly

fast or efficient. Thus, our study could shed new lights on

more suitable alignment algorithms for SARS-CoV-2

analysis, permitting the bioinformaticians to evaluate the

introduction of new mapping procedures inside their in-

house pipelines, trying to improve the output of sequencing

and reduce all types of just cited bias.

25 Conclusions

In conclusion, there is no best aligner among all of the

analyzed ones; each tool was the-best in specific condi-

tions. For Ion Torrent single-end RNA-Seq samples, the

most suitable aligners resulted CLC and DNASTAR, while

both DNA-Seq samples showed as ‘‘best performers’’

Segemehl and DNASTAR, with the first particularly per-

forming well for WES data. Even if many studies have

deeply evaluated and, then, improved actual algorithms,

alignment still remains an active challenge. However, for

the first time, we tried to analyze different NGS data

(RNA-Seq and DNA-Seq ones) with 17 different mapping

algorithms created for specific kind of experiment, showing

possibilities of such attempt and limitations. We believe

that also with machine learning algorithms support, the

NGS technique will help scientists and clinicians to solve

complex biological challenges, thus improving clinical

diagnostics and opening new avenues for novel therapies

development.
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