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Abstract
This	 study	 aimed	 to	 develop	 a	 model	 for	 predicting	 the	 completion	 of	 clinical	
trials	involving	pregnant	women	using	the	Cox	proportional	hazard	model	and	
neural	network	model	 (DeepSurv)	and	 to	compare	 the	predictive	performance	
of	both	methods.	We	collected	data	on	819	clinical	trials	performed	on	pregnant	
women	 and	 intervention	 studies	 using	 at	 least	 one	 drug	 as	 intervention	 from	
2009	 to	 2018	 from	 ClinicalTrials.gov.	 The	 Cox	 proportional	 hazard	 model	 and	
DeepSurv	were	used	to	develop	models	that	predict	clinical	trial	completion.	The	
concordance	 index	(C-	index)	was	used	 to	evaluate	 the	predictive	performance.	
The	Cox	proportional	hazard	model	revealed	that	a	sample	size	of	n	≥	329	(hazard	
ratio	[HR]	=	0.53),	very	high	human	development	index	(HDI)	country	(HR	=	
0.28),	abortion	(HR	=	3.30),	labor	(HR	=	2.16),	and	iron	deficiency	anemia	(HR	=	
2.29)	were	significantly	related	to	the	probability	of	clinical	trial	completion	(all	
p	value	<	0.01).	The	C-	index	of	the	model	development	dataset	and	test	dataset	
were	0.72	and	0.73,	respectively.	DeepSurv	model	consisted	of	one	hidden	layer	
with	16	nodes.	DeepSurv	showed	the	C-	index	comparable	to	the	Cox	proportional	
hazard	model.	The	C-	index	of	the	training	dataset	and	test	dataset	were	0.76	and	
0.72,	respectively.	Further	a	nomogram	that	calculate	a	probability	of	clinical	trial	
completion	at	1 year,	3 years,	and	5 years	was	developed.	Both	the	Cox	propor-
tional	hazard	model	and	DeepSurv	yielded	sufficient	predicting	performance.	We	
hope	 that	 this	 study	will	 contribute	 to	 the	execution	of	 future	clinical	 trials	 in	
pregnant	women.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Machine	learning	algorithms	have	been	applied	to	predict	completion	or	termi-
nation	of	clinical	trials.	However,	previous	studies	have	not	considered	the	time	
after	clinical	trials	begin,	an	important	factor	of	completion	or	termination.
WHAT QUESTION DID THIS STUDY ADDRESS?
Based	on	the	characteristics	of	clinical	trials	in	the	stage	of	planning	clinical	tri-
als,	can	we	predict	when	clinical	trials	for	pregnant	women	will	be	completed?	
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INTRODUCTION

Pregnant	women	may	require	treatment	for	chronic	dis-
eases	 or	 acute	 conditions.	 Special	 medical	 conditions,	
such	 as	 preterm	 labor,	 pre-	eclampsia,	 and	 gestational	
diabetes,	 also	 require	 treatment.	 Not	 treating	 pregnant	
women	may	be	more	dangerous	 than	drug	 side	effects.1	
More	than	80%	of	pregnant	women	have	used	at	least	one	
drug	 during	 their	 pregnancy.2	 However,	 treatment	 for	
pregnant	women	is	often	difficult	due	to	a	 lack	of	 infor-
mation	about	efficacy	and	safety	based	on	clinical	trials.

Clinical	 trials	 involving	 pregnant	 women	 have	 been	
limited	due	to	ethical	issues	surrounding	potential	adverse	
effects	 (teratogenicity	or	genotoxicity).3,4	Many	pregnant	
women	are	reluctant	to	participate	in	clinical	trials	for	this	
reason.	A	study	reported	that	95%	of	industry-	sponsored	
clinical	 studies	 including	 female	subjects	excluded	preg-
nant	 women.5	 Another	 study	 analyzed	 the	 difficulty	 of	
recruiting	patients	in	an	obstetric	trial.6	Only	22%	partic-
ipated	 in	 the	study,	with	 the	rest	excluded	due	 to	exclu-
sion	criteria	(47%),	patient	refusal	(21%),	and	obstetrician	
refusal	 (10%).	 For	 these	 reasons,	 the	 rationale	 for	 medi-
cation	 usage	 for	 pregnant	 women	 generally	 came	 from	
observational,	retrospective,	or	epidemiological	studies.7

There	 is	 increasing	 global	 agreement	 that	 pregnant	
women	 should	 be	 included	 in	 clinical	 studies	 to	 collect	
evidence	 about	 treatment	 options	 during	 pregnancy.8,9	
Pregnant	women	sometimes	must	use	drugs	without	sci-
entific	evidence	of	the	potential	dangers	to	themselves	and	
the	fetus.1	Clinical	research	can	help	to	establish	safe	and	
effective	treatment	options	and	dosing	regimens	for	preg-
nant	 individuals.10	 The	 2002	 Council	 for	 International	
Organizations	 of	 Medical	 Sciences	 (CIOMS)	 guidelines	
state	that	pregnant	women	should	be	presumed	to	be	el-
igible	for	participation	in	biomedical	research.11,12	There	
have	 been	 many	 efforts	 to	 include	 pregnant	 women	 in	

clinical	trials	over	the	last	2 decades.	In	2018,	the	US	Food	
and	Drug	Administration	(FDA)	announced	draft	guide-
lines	for	scientific	and	ethical	considerations	for	including	
pregnant	women	in	clinical	trials.10

Nevertheless,	 studies	 on	 pregnant	 women	 are	 still	
difficult	 to	 complete.	 Researchers	 and	 sponsors	 must	
predict	whether	a	clinical	trial	will	be	completed	during	
planning.	Recently,	two	predictive	models	using	machine	
learning	algorithms	have	been	developed	to	determine	if	
clinical	trials	will	be	completed	or	terminated.	Follet	et	al.	
used	a	random	forest	algorithm	and	found	features	asso-
ciated	with	clinical	trial	termination	(enrollment	group,	
study	phase,	intervention	assignment,	primary	purpose,	
and	 the	 appearance	 of	 some	 keywords	 [“‘treat’,”	 “‘che-
motherapy’,”	 “‘cancer’,”	 “‘patients’,”	 and	 “‘tumor”‘]).13	
However,	 the	 model’s	 predictive	 performance	 was	 not	
excellent	(sensitivity	=	0.56;	specificity	=	0.71;	accuracy	
=	 0.71;	 precision	 =	 0.07;	 and	 F1	 score	 =	 0.12).13	 Elkin	
et	al.	 trained	 four	 types	of	 classifiers	 (neural	networks,	
random	 forest,	 XGBoost,	 and	 logistic	 regression)	 and	
found	 features	 related	 to	 clinical	 trial	 termination	 (i.e.,	
eligibility	 words,	 study	 phase,	 industry	 sponsor,	 and	
cancer-	related	 words).14	 The	 model’s	 predictive	 perfor-
mance	of	the	model	was	satisfactory	(balanced	accuracy	
=	0.67	and	area	under	the	curve	=	0.73).14

However,	 previous	 studies	 have	 not	 considered	 the	
time	after	clinical	trials	begin,	an	important	factor	in	trial	
completion	 or	 termination.	 The	 time-	to-	event	 analysis	
allows	 researchers	 to	 predict	 the	 probability	 of	 clinical	
trial	 completion	 at	 a	 specific	 time	 after	 the	 clinical	 trial	
begins.	 The	 Cox	 proportional	 hazard	 model	 is	 a	 tradi-
tional	method	of	time-	to-	event	analysis,	which	allows	the	
development	of	survival	functions	using	multiple	predic-
tors.15	However,	 this	model	 is	not	 suitable	 for	nonlinear	
survival	data,	as	it	assumes	linear	proportional	hazards.16	
Recently,	DeepSurv,	which	incorporates	neural	networks	

Can	Cox	proportional	hazard	and	neural	network	models	predict	completion	of	
clinical	trials	successfully?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Sample	size,	study	country,	and	target	medical	conditions	(abortion,	labor,	and	
iron	deficiency	anemia)	were	significant	predictor	of	completion	of	clinical	trials	
on	 pregnant	 women.	 The	 Cox	 proportional	 hazard	 model	 and	 neural	 network	
model	 (DeepSurv)	 showed	 good	 performance	 (concordance	 index	 [C-	index]	
>0.7)	in	predicting	completion	of	clinical	trial	on	pregnant	women.
HOW	 MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Using	the	developed	model	and	nomogram,	researchers	can	calculate	the	prob-
ability	of	completion	of	clinical	trials	before	clinical	trials	for	pregnant	women	are	
conducted.	This	allows	researchers	to	anticipate	the	completion	of	clinical	trials	
and	help	plan	clinical	trials.
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into	 time-	to-	event	analysis,	has	 improved	nonlinear	sur-
vival	data	over	the	Cox	proportional	hazard	model.16

Both	methods	can	be	applied	to	predict	the	probability	
of	clinical	trial	completion	over	time.	This	study	aimed	to	
develop	a	model	for	predicting	the	completion	of	clinical	
trials	 involving	 pregnant	 women	 using	 the	 Cox	 propor-
tional	hazard	model	and	DeepSurv	and	compared	the	pre-
dictive	performance	of	both	methods.

METHODS

Data source

Clinical	trial	data	were	collected	from	ClinicalTrials.gov,	
a	publicly	available	registry	of	clinical	studies.17	A	trial	re-
cord	manager	provides	trial	registration	before	enrolling	
the	 first	 subject	and	administers	each	 trial	 record	 in	 the	
database.	ClinicalTrials.gov	is	the	largest	clinical	trial	da-
tabase	and	has	been	used	in	previous	studies.13,14	Search	
terms	used	in	the	“condition	or	disease”	field	of	the	web-
site	 were	 “pregnant,”	 “pregnancy,”	 “maternal,”	 “prena-
tal,”	and	“gestational.”	Clinical	studies	that	were	initiated	
between	 January	 1,	 2009,	 and	 December	 31,	 2018,	 were	
collected.	The	search	was	conducted	on	May	10,	2021.

We	 used	 the	 following	 selection	 criteria	 for	 analysis:	
studies	 performed	 on	 pregnant	 women	 (during	 preg-
nancy	 to	 child-	birth)	 and	 intervention	 studies	 using	 at	
least	 one	 drug	 as	 intervention.	 Observational	 studies	 or	
intervention	studies	on	surgical	or	medical	devices	were	
excluded.	The	selection	process	was	conducted	by	two	re-
searchers	and	any	discrepancy	was	solved	through	discus-
sion.	Because	this	study	involved	analysis	of	pre-	existing,	
non-	human	data,	it	was	exempt	from	institutional	review	
board	approval.

Data preprocessing and feature 
engineering

In	 this	 time-	to-	event	 analysis,	 an	 event	 was	 defined	
as	 “completed”	 in	 the	 recruitment	 status	 field	 on	 the	
ClinicalTrials.gov	website,	which	means	the	study	ended	
normally.	Other	recruitment	statuses	were	considered	as	
censored	data.	Time	was	defined	as	 the	period	 from	the	
study	start	date	to	the	study	completion	date	or	the	date	of	
the	last	update	posted	(whichever	comes	first).

Features	included	quartile	value	of	sample	size,	preg-
nancy	 stages,	 number	 of	 study	 countries,	 human	 devel-
opment	 index	 (HDI)	 of	 the	 study	 country,	 study	 phase,	
sponsor,	 randomization,	 intervention	 assignment,	 par-
ticipant	blinding,	primary	purpose,	placebo	group,	target	
medical	condition,	and	number	of	eligibilities.

Preplanned	 sample	 size,	 not	 actual	 enrollment,	 was	
categorized	into	quartiles	(0	≤	n	<	80,	80	≤	n	<	150,	150 ≤	
n < 329,	and	n	≥	329).	Information	on	the	pregnancy	stages	
required	by	clinical	trials	was	collected	from	the	eligibility	
criteria	field.	Pregnancy	stage	was	defined	as	first	trimes-
ter	(0	to	13	6/7 weeks	of	gestational	age),	second	trimester	
(14	0/7	to	27	6/7 weeks	of	gestational	age),	and	third	tri-
mester	(beyond	28	0/7 weeks	of	gestational	age).18	A	plus	
or	 minus	 1  week	 difference	 was	 allowed.	 Some	 clinical	
trials	 involved	more	 than	one	pregnancy	stage	 (i.e.,	 first	
and	second	trimester),	so	each	stage	was	designated	as	a	
binary	feature.

The	 number	 of	 study	 countries	 was	 classified	 as	 ei-
ther	single	or	multicountry.	Study	country	was	classified	
as	very	high,	high,	medium,	or	low	HDI	countries.19	The	
study	phase	included	phase	I	(also	including	early	phase	
I),	phase	II,	phase	III,	and	phase	IV.	There	were	clinical	
trials	 involving	 more	 than	 one	 phase	 (i.e.,	 phases	 I	 and	
II),	 so	 each	 phase	 was	 designated	 as	 a	 binary	 feature.	
The	sponsor	was	categorized	as	government,	industry,	or	
nonprofit.20,21

Randomization	 (randomized	 or	 nonrandomized),	 in-
tervention	assignment	(single	group,	parallel,	cross-	over,	
sequential,	or	 factorial	assignment),	participant	blinding	
(participant	 blinded	 or	 non-	blinded),	 and	 primary	 pur-
pose	 (treatment,	 prevention,	 and	 others)	 were	 collected	
from	the	study	design	 field.	 In	 this	 study,	we	also	chose	
whether	the	clinical	trials	 included	a	placebo	group	as	a	
feature.

Target	medical	condition	meant	the	disease,	disorder,	
syndrome,	 illness,	 or	 planned	 surgery,	 which	 is	 why	 in-
vestigational	drugs	are	used	in	a	clinical	trial.	Target	med-
ical	condition	consisted	of	binary	features	(1	or	0)	for	14	
diseases,	including	noninfectious	diseases	(hypertension/
pre-	eclampsia,	 diabetes,	 iron	 deficiency	 anemia,	 and	
other	 noninfectious	 diseases),	 infectious	 diseases	 (ma-
laria,	human	immunodeficiency	virus,	viral	hepatitis,	and	
other	 infectious	 diseases),	 pregnancy-	specific	 conditions	
(abortion	 [induced	 termination	 of	 pregnancy],	 miscar-
riage	 [spontaneous	 loss	 of	 a	 fetus	 before	 the	 20th	 week	
of	pregnancy],	preterm	birth,	labor,	and	other	pregnancy-	
specific	 conditions),	 and	 others.	 In	 the	 case	 of	 multiple	
target	medical	conditions,	for	example,	HIV	and	viral	hep-
atitis,	each	feature	was	coded	as	1.

The	number	of	eligibilities	was	defined	as	 the	num-
ber	of	total	criteria	in	the	eligibility	criteria	field	because	
some	 clinical	 trials	 did	 not	 clearly	 distinguish	 between	
inclusion	and	exclusion	criteria.	The	number	of	eligibil-
ities	is	a	binary	feature	divided	by	its	median	value	(n	≤	
10	and	n	>	10).

The	 dataset	 was	 randomly	 divided	 into	 a	 dataset	 for	
model	development	(80%)	and	an	unseen	dataset	for	test-
ing	(20%).	Clinical	 trial	completion	rates	of	 two	datasets	
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were	 compared	 using	 Kaplan-	Meier	 curves	 and	 the	 log	
rank	test.	The	difference	in	feature	distributions	between	
the	 two	 datasets	 was	 evaluated	 by	 a	 chi-	square	 test	 and	
t-	test.

Cox proportional hazard model

The	 univariable	 Cox	 proportional	 hazard	 models	 were	
estimated	to	investigate	the	statistical	significance	of	the	
association	 between	 each	 feature	 and	 the	 completion	 of	
the	 clinical	 trials.	 Next,	 multivariable	 Cox	 proportional	
hazard	models	were	estimated.	A	stepwise	selection	pro-
cedure,	 based	 on	 likelihood	 ratio	 tests	 for	 nested	 mod-
els,	 was	 used	 to	 select	 a	 set	 of	 significant	 features.22	 A	
strict	 cutoff	 for	 significance,	an	alpha	of	0.01,	was	used.	
R	version	4.0.2	(R	Foundation	for	Statistical	Computing,	
Vienna,	Austria)	and	a	survival	package	was	used	for	the	
Cox	 proportional	 hazard	 model.	 R	 code	 for	 Cox	 propor-
tional	 hazard	 model	 is	 presented	 in	 the	 supplementary	
documents	(Methods S1).

Neural network model for survival analysis

To	develop	a	model	that	predicts	clinical	trial	completion	
using	DeepSurv,	the	dataset	for	model	development	(80%	
of	 the	 overall	 dataset)	 was	 further	 divided	 into	 an	 80%	
training	 dataset	 (Table  S1)	 and	 a	 20%	 validation	 dataset	
(Table S2).

We	 used	 Python	 version	 3.7	 (Python	 Software	
Foundation,	Delaware,	United	States)	and	pycox,	a	Python	
package	for	time-	to-	event	analysis.	The	hyperparameters	
that	yielded	the	largest	concordance	index	(C-	index)	were	
identified	 by	 a	 grid	 search.	 DeepSurv	 was	 then	 trained	
with	 an	 adaptive	 moment	 estimation	 (Adam)	 optimizer	
on	three	NVIDIA	Quadro	RTX	8000	Graphical	Processing	
Units	(GPUs).	Python	code	for	DeepSurv	is	presented	in	
the	 supplementary	 documents	 (Methods  S2).	 DeepSurv	
does	 not	 need	 prior	 feature	 selection,	 so	 we	 trained	 a	
model	 including	 all	 features.	 To	 check	 for	 unnecessary	
features,	 we	 removed	 each	 feature	 from	 the	 final	 model	
and	identified	the	change	in	C-	index.	Because	the	C-	index	
can	 be	 unstable	 if	 the	 dataset	 is	 not	 large,	 we	 averaged	
the	C-	index	after	 five	 final	models	were	constructed	per	
dataset.

Comparison of performance

The	 C-	index	 was	 used	 to	 evaluate	 the	 performance	 of	
the	 Cox	 proportional	 hazard	 model	 and	 DeepSurv.	 The	
C-	index	 indicates	 the	 proportion	 of	 samples	 that	 are	

correctly	ranked	when	the	samples	are	listed	in	the	order	
of	predicted	survival	time.23	A	value	of	0.5	indicates	that	
the	model	is	no	better	at	predicting	an	outcome	than	ran-
dom	chance,	and	a	value	of	1	means	that	the	model	per-
fectly	predicts	an	outcome.

RESULTS

Dataset

A	total	of	6020	clinical	trials	were	obtained	from	the	da-
tabase,	3602	of	which	included	pregnant	women.	There	
were	 2308	 (64.1%)	 intervention	 studies,	 and	 819	 clini-
cal	 trials	 (35.5%	of	 intervention	studies)	which	used	at	
least	one	drug	as	an	 intervention	were	selected	for	 the	
analysis.

Among	 the	 819	 clinical	 trials,	 52.9%	 (n	 =	 433)	
were	 completed	 during	 the	 median	 follow-	up	 time	 of	
22 months	(0–	144 months)	and	106	(12.9%)	were	stopped	
early	 (terminated	 or	 withdrawn).	 Figure  1	 shows	 the	
causes	 of	 early	 termination	 of	 the	 clinical	 trials.	 Poor	
enrollment	was	 the	biggest	cause	 (39%),	but	other	rea-
sons	 were	 insufficient	 funding	 or	 a	 drug	 supply	 prob-
lem	 (16%)	 and	 principal	 investigator	 or	 organization	
changes	(7%).

There	 was	 no	 difference	 in	 clinical	 trial	 completion	
rates	between	the	dataset	for	model	development	and	the	
test	dataset	(Figure 2;	p	=	0.24).	There	was	also	no	signifi-
cant	difference	in	the	distribution	of	clinical	trial	features	
contained	in	each	dataset	(Table S3).

Cox proportional hazard model

The	results	of	the	univariable	Cox	proportional	hazard	
models	 are	 presented	 in	 the	 Table  S4.	 In	 the	 univari-
able	analysis,	first	trimester	(hazard	ratio	[HR]	=	0.74),	
second	trimester	(HR	=	0.72),	a	sample	size	of	n	≥	329	
(HR	 =	 0.63),	 and	 very	 high	 HDI	 country	 (HR	 =	 0.39)	
were	 significantly	 related	 to	 a	 low	 likelihood	 of	 clini-
cal	 trial	 completion.	 Abortion	 (HR	 =	 2.21),	 labor	 (HR	
=	 1.82),	 and	 iron	 deficiency	 anemia	 (HR	 =	 2.32)	 were	
significantly	related	to	a	high	likelihood	of	clinical	trial	
completion.

Table  1	 shows	 the	 results	 of	 the	 multivariable	 Cox	
proportional	 hazard	 model.	 A	 sample	 size	 of	 n	 ≥	 329	
(HR	 =	 0.53)	 and	 very	 high	 HDI	 country	 (HR	 =	 0.28)	
were	significantly	related	to	a	 low	likelihood	of	clinical	
trial	completion,	while	abortion	(HR	=	3.30),	labor	(HR	
=	 2.16),	 and	 iron	 deficiency	 anemia	 (HR	 =	 2.29)	 were	
significantly	related	to	a	high	likelihood	of	clinical	trial	
completion.
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F I G U R E  1  Causes	of	early	clinical	
trial	termination

F I G U R E  2  Distribution	of	clinical	trial	completion	of	training	
and	test	datasets.	Colored	areas	represent	95%	confidence	interval

T A B L E  1 	 The	multivariable	Cox	proportional	hazard	model	for	
clinical	trial	completion

Variable HR 99% CI p value

Sample	size

0	≤	n	<	80 Reference

80	≤	n	<	150 0.59 0.39–	0.87 <0.01

150	≤	n	<	329 0.56 0.38–	0.84 <0.01

n	≥	329 0.53 0.36–	0.77 <0.01

HDI	of	study	country

Low Reference

Medium 0.84 0.46–	1.53 0.45

High 0.55 0.29–	1.04 0.02

Very	high 0.28 0.15–	0.49 <0.01

Targeted	medical	conditions

Abortion 3.30 1.92–	5.69 <0.01

Labor 2.16 1.55–	3.03 <0.01

Anemia 2.92 1.44–	5.92 <0.01

Abbreviations:	CI,	confidence	interval;	HDI,	human	development	index;	
HR,	hazard	ratio.
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The	 C-	index	 of	 model	 development	 dataset	 was	 0.72	
(standard	error	[SE]	=	0.014)	and	that	of	the	test	dataset	
was	0.73	(SE	=	0.027).

Neural network model for survival analysis

Final	 neural	 network	 model	 was	 one	 hidden	 layer	 with	
16	nodes.	Hyperparameter	spaces	and	optimal	values	are	
shown	in	the	Table S5.	The	C-	index	of	training	dataset	was	
0.76	(SE	=	0.006)	and	that	of	test	dataset	was	0.72	(SE	=	
0.003).	When	DeepSurv	was	performed	with	only	the	se-
lected	features	in	the	Cox	proportional	hazard	model,	the	
C-	indices	were	0.73	 (SE	=	0.003)	and	0.71	 (SE	=	0.005),	
respectively	(Table 2).

Three	 features	 decreased	 the	 C-	index	 when	 added	 in	
the	 final	 model.	 Feature	 of	 phase	 III,	 malaria,	 and	 first	

trimester	 decreased	 the	 C-	index	 by	 0.004,	 0.003,	 and	
0.0005,	respectively	(Figure 3).

Nomogram

We	 used	 the	 Cox	 proportional	 hazard	 model	 to	 develop	 a	
nomogram	for	predicting	clinical	trial	completion	because	pre-
diction	performance	was	comparable	to	DeepSurv.	The	prob-
ability	of	clinical	trial	completion	at	1 year,	3 years,	and	5 years	
can	be	obtained	using	the	nomogram	shown	in	Figure 4.

DISCUSSION

This	 study	 developed	 models	 for	 predicting	 the	 comple-
tion	 of	 clinical	 trials	 with	 pregnant	 women	 using	 both	

C- index
Cox proportional hazard 
model (5 features)

DeepSurv  
(all features)

DeepSurv  
(5 features)

Training	dataset 0.72	±	0.014 0.76	±	0.006 0.73	±	0.003

Test	dataset 0.73	±	0.027 0.72	±	0.003 0.71	±	0.005

Note: Data	are	presented	as	mean	±	standard	error.
Abbreviation:	C-	index,	concordance	index.

T A B L E  2 	 Predictive	performance	
(C-	index)	of	the	Cox	proportional	hazard	
model	and	DeepSurv

F I G U R E  3  Effects	of	features	on	
concordance	index	(C-	index).	It	means	the	
amount	of	change	in	the	C-	index	when	
each	feature	is	included	in	the	model	at	
the	last	time
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the	 Cox	 proportional	 hazard	 and	 neural	 network	 mod-
els.	 DeepSurv	 showed	 a	 C-	index	 comparable	 to	 the	 Cox	
proportional	hazard	model,	although	the	value	was	high	
in	the	training	dataset.	Features	affecting	the	completion	
of	clinical	studies	include	the	study	location,	sample	size,	
and	some	target	medical	conditions	(abortion,	labor,	and	
iron	deficiency	anemia).

The	significantly	lower	probability	of	clinical	trial	com-
pletion	conducted	in	very	high	HDI	countries	compared	
to	those	conducted	in	low	HDI	countries	might	be	related	
to	subjects’	motivation	to	participate	in	the	study.	Most	pa-
tients	participate	in	clinical	trials	because	they	cannot	af-
ford	expensive	treatments.	Financially	stable	patients	may	
not	want	the	hassle	(i.e.,	visits,	blood	collection,	and	long	
questionnaires)	of	clinical	trials.8,24

The	estimated	sample	size	is	another	important	factor	
in	predicting	study	completion.	A	large	sample	size	makes	
it	hard	to	meet	target	recruitment	goals	and	leads	to	lon-
ger	study	periods.	In	this	study,	poor	enrollment	was	the	
biggest	reason	why	clinical	trials	were	terminated	early.

In	 the	 case	 of	 abortion	 or	 labor,	 participant	 recruit-
ment	would	be	easy	because	these	are	single,	preplanned,	

and	 essential	 procedures.	 Iron	 deficiency	 anemia	 is	 a	
common	 medical	 condition	 in	 pregnancy,	 and	 subjects	
can	 participate	 easily	 as	 the	 intervention	 is	 merely	 iron	
supplementation.

Previous	studies	have	shown	a	high	risk	of	 terminat-
ing	 clinical	 trials	 for	 cancer.	 In	 this	 study,	 clinical	 trials	
for	pregnant	women	were	analyzed,	resulting	in	different	
results	from	previous	studies.	Cancer	research	in	pregnant	
women	is	very	rare	(n	=	5;	0.6%)	and	could	not	be	desig-
nated	as	a	feature.	Instead,	pregnancy-	specific	conditions	
could	be	designated	as	features	in	this	study.	The	proba-
bility	of	clinical	trial	completion	over	time	was	predicted	
by	conducting	time-	to-	event	analysis	without	dichotomiz-
ing	the	clinical	trial	status.	These	are	the	strengths	of	this	
study.

Cox	 proportional	 hazard	 model	 and	 DeepSurv	 both	
have	a	C-	index	greater	than	0.7,	which	means	they	have	
sufficient	discrimination	ability.25	Random	survival	forest	
has	also	been	used	for	time-	to-	event	analysis,	but	we	did	
not	include	it	in	this	study	because	previous	research	did	
not	demonstrate	better	results	than	DeepSurv	or	the	Cox	
proportional	hazard	model.26,27	Contrary	 to	expectations	

F I G U R E  4  Nomogram	for	predicting	
clinical	trial	completion.	Quartile:	1	(0	≤	
sample	size	[n]	<80),	2	(80	≤	n	<	150),	3	
(150	≤	n	<	329),	and	4	(n	≥	329).	Country:	
1	(low	human	development	index	[HDI]),	
2	(medium	HDI),	3	(high	HDI),	and	4	
(very	high	HDI).	Abortion:	0	(no),	and	
1	(yes).	Labor:	0	(no),	and	1	(yes).	Iron	
deficiency	anemia:	0	(no),	and	1	(yes)
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for	 DeepSurv,	 its	 predictive	 performance	 was	 similar	 to	
the	Cox	proportional	hazard	model.	The	neural	network	
model	is	not	always	superior.	In	a	study	predicting	future	
fractures,	 the	 C-	index	 of	 DeepSulv	 was	 0.67	 and	 that	 of	
the	Cox	proportional	hazard	model	was	0.697.26	The	au-
thors	 attributed	 the	 use	 of	 45	 features	 and	 unbalanced	
datasets	 with	 an	 11%	 event	 rate.26	 Studies	 showing	 the	
superiority	of	DeepSurv	used	5–	14	 features	and	datasets	
with	 17–	68%	 of	 event	 rates.26	 In	 our	 study,	 52.9%	 of	 the	
clinical	trials	were	completed,	so	the	dataset	had	sufficient	
event	rates.	The	use	of	31	features	can	cause	comparable	
performances	for	DeepSurv	and	Cox	proportional	hazard	
model.	However,	because	both	the	Cox	proportional	haz-
ard	model	and	DeepSurv	results	were	good,	clinical	trial	
completion	is	thought	to	be	sufficiently	explained	by	the	
linear	model.

Several	limitations	exist	due	to	the	nature	of	registry-	
based	research.	First,	this	study	did	not	analyze	all	clini-
cal	studies	conducted	on	pregnant	women	but	analyzed	
a	subset	registered	at	ClinicalTrials.gov.	An	investigator	
or	sponsor	may	register	their	research	in	other	registries,	
which	 are	 excluded	 from	 this	 analysis.28	 Second,	 be-
cause	ClinicalTrials.gov	is	a	US	registry,	it	contains	many	
studies	conducted	 in	North	America,	which	 is	 likely	 to	
overestimate	the	percentage	of	studies	conducted	in	very	
high	HDI	countries.20,28	In	fact,	245	studies	(29.9%)	were	
conducted	in	the	United	States	and	Canada,	which	was	
higher	 than	 in	 other	 countries.	 If	 another	 registry	 was	
used,	there	may	be	differences	in	the	proportion	of	study	
location	and	study	characteristics,	such	as	target	medical	
conditions	 and	 trimesters.	 Last,	 the	 quality	 of	 the	 data	
entered	 in	 the	 database	 depends	 on	 study	 investigators	
or	sponsors.20,28	Some	sections	have	not	been	filled	out,	
and	 some	 information	 may	 not	 be	 correct.28	 However,	
this	 limitation	 is	 somewhat	 balanced	 by	 the	 fact	 that	
ClinicalTrials.gov	 is	 the	 biggest	 and	 most	 well-	known	
clinical	study	registry.

Both	the	Cox	proportional	hazard	and	neural	network	
models	yielded	sufficient	predicting	performance.	Those	
derived	 as	 predictors	 in	 this	 study	 may	 not	 be	 alterable	
when	 planning	 clinical	 trials.	 It	 is	 good	 to	 have	 a	 small	
sample	size	for	clinical	trial	completion,	but	we	can	only	
lower	the	sample	size	to	the	number	in	which	sufficient	
statistical	power	is	secured.	If	possible,	clinical	trials	may	
be	conducted	in	lower	HDI	countries.	Moreover,	predict-
ing	the	completion	of	clinical	trials	can	be	applied	to	deter-
mine	whether	to	proceed	with	clinical	trials	or	to	allocate	
resources	in	the	planning	stage.	We	hope	that	this	study	
will	contribute	to	the	execution	of	future	clinical	trials	in	
pregnant	women.
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