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Purpose: Despite the availability of commercial artificial intelligence (AI) tools

for large vessel occlusion (LVO) detection, there is paucity of data comparing

traditionalmachine learning and deep learning solutions in a real-world setting.

The purpose of this study is to compare and validate the performance of two

AI-based tools (RAPID LVO and CINA LVO) for LVO detection.

Materials and methods: This was a retrospective, single center study

performed at a comprehensive stroke center from December 2020 to June

2021. CT angiography (n = 263) for suspected stroke were evaluated for LVO.

RAPID LVO is a traditional machine learning model which primarily relies on

vessel density threshold assessment, while CINA LVO is an end-to-end deep

learning tool implemented with multiple neural networks for detection and

localization tasks. Reasons for errors were also recorded.

Results: There were 29 positive and 224 negative LVO cases by ground truth

assessment. RAPID LVO demonstrated an accuracy of 0.86, sensitivity of 0.90,

specificity of 0.86, positive predictive value of 0.45, and negative predictive

value of 0.98, while CINA demonstrated an accuracy of 0.96, sensitivity of 0.76,

specificity of 0.98, positive predictive value of 0.85, and negative predictive

value of 0.97.

Conclusion: Both tools successfully detected most anterior circulation

occlusions. RAPID LVO had higher sensitivity while CINA LVO had higher

accuracy and specificity. Interestingly, both tools were able to detect some,

but not all M2 MCA occlusions. This is the first study to compare traditional

and deep learning LVO tools in the clinical setting.
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Introduction

Acute ischemic stroke (AIS) remains a leading cause of

disability and death worldwide (1). Large vessel occlusions

(LVOs) in particular are associated with more severe presenting

deficits and contribute disproportionately to higher rates

of functional dependence and mortality (2). The impact

of endovascular treatment for LVO is profound, with the

number needed to treat to reduce disability for one patient

as 2.6 (3). Expedited thrombectomy is critical, as every

15min of improvement in door to revascularization times

results in better rates of independent ambulation and

functional outcomes (4). Thus, prompt diagnosis of an

LVO is critical to select eligible patients and to allow for

greater flexibility in patient transfer and treatment. The time

dependence of acute stroke triage can be challenging for

radiologists who may have busy worklists, but automated

detection tools hold promise of screening and prioritizing

positive LVO cases at the top of the worklist, allowing

radiologists to diagnose the most time-sensitive patients

first (5).

Commercial software for automated detection of LVO are

increasingly being utilized in the clinical workspace. Some

tools are based on traditional machine learning algorithms,

while others use deep learning (6, 7). RAPID LVO (RAPID

4.9, iSchemaView, Menlo Park, CA) is a traditional machine

learning model with demonstrated sensitivity and specificity of

97 and 74%, respectively (6). CINA LVO (Avicenna.ai, La Ciotat,

France) is a deep learning model with demonstrated sensitivity

and specificity of 98.1 and 98.2%, respectively (7).

Despite the availability of these commercial artificial

intelligence tools for LVO detection, there is a lack of data

comparing traditional machine learning and deep learning

solutions in a real-world setting. To our knowledge, this is the

first study to compare LVO tools in a comprehensive stroke

center. The specific aim of this study is to compare and validate

the performance of both RAPID LVO and CINA LVO for LVO

detection in anterior circulation stroke and to characterize the

limitations of each.

Materials and methods

Subjects

This was a retrospective, single center study performed

at University of California, Irvine, a comprehensive stroke

center, using anonymized data from December 2020 to June

2021. Inclusion criteria was as follows: (1) suspected acute

stroke patients who had CT angiography (CTA) performed, (2)

imaging done within 24 h of symptom onset, and (3) RAPID

LVO output included with CTA acquisition. Patients who had

either (1) imaging acquired at outside facilities or (2) technically

inadequate CTA (e.g., poor contrast bolus, significant motion, or

other artifact that would preclude evaluation by both human and

automated assessment) were excluded. The study was HIPAA

compliant and was approved by the local institutional review

board (IRB). A waiver of written consent was granted by

the IRB.

A total of 263 CTA cases (median age [IQR]= 68 years [IQR

56–79]; 122 females) for suspected stroke met the inclusion and

exclusion criteria. Ten of these patients had isolated M2 middle

cerebral artery (MCA) occlusions and were analyzed separately.

A total of 253 CTA cases were included in the analysis.

Imaging and automated LVO detection
parameters

CTAs were acquired using three scanners from two

vendors (Phillips & Siemens), including two 256-slice

scanners with 128 detectors and a 128-slice scanner

with 64 detectors. All CTA studies were performed

as a single arteriovenous phase contrast study with a

60mL intravenous contrast injection, injection rate of 5

mL/second using bolus tracking triggered from the aortic

arch, slice thickness 1mm, and coverage of the aortic arch

to vertex.

RAPID LVO is an FDA approved tool for detection

of intracranial internal carotid artery (ICA) and M1 MCA

occlusions. The RAPID LVO algorithm is a traditional machine

learning model which primarily relies on vessel density

threshold assessment. After identifying the relevant anatomy

with an anatomic template, the total sum of voxel densities for

both large and small vessels are calculated and compared for

anomaly detection (6).

CINA LVO is also an FDA approved LVO detection tool for

ICA andM1MCA occlusions. CINA LVO is an end-to-end deep

learning tool implemented with multiple neural networks for

detection and localization tasks.

Study design

Ground truth was based off interpretation of the raw data

from the CTA by radiology reports and confirmed by two

neuroradiologists (9 and 10 years experience, respectively). For

discrepancies, a third neuroradiologist provided adjudication

(11 years experience).

Scans were evaluated by RAPID LVO and CINA LVO, and

the output and location of LVO (ICA, M1 MCA, or both)

were recorded. Example positive LVO cases evaluated by both

tools are shown in Figure 1. Performance metrics including

accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) were calculated from

the output of both tools. For type 1 (false positive) and
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FIGURE 1

Positive LVO detected by RAPID LVO (A, yellow arrow, left M1 MCA) and CINA LVO (B, red box, right M1 MCA).

type 2 (false negative) errors, a visual inspection by the

neuroradiologists was conducted to evaluate the potential reason

for the error.

Results

There were 29 positive and 224 negative LVO cases. For

overall performance, RAPID LVO demonstrated an accuracy of

0.86, sensitivity of 0.90, specificity of 0.86, PPV of 0.45, and

NPV of 0.98, while CINA demonstrated an accuracy of 0.96,

sensitivity of 0.76, specificity of 0.98, PPV of 0.85, and NPV of

0.97 (Figures 2A,B).

Out of the 29 positive LVO cases, there were 6

isolated ICA LVOs and 18 isolated M1 LVOs. There were

5 patients who were observed as having both an ICA

and M1 LVO. For ICA LVOs, RAPID demonstrated a

sensitivity of 0.82, while CINA demonstrated a sensitivity

of 0.55. For M1 LVOs, RAPID demonstrated a sensitivity

of 0.91, while CINA demonstrated a sensitivity of 0.87

(Figures 2C–F).

There were 10 M2 LVOs analyzed separately. RAPID

successfully detected 8/10, while CINA successfully

detected 3/10, for a demonstrated sensitivity of 0.8 and

0.3, respectively.

Errors

RAPID had 32 false positives (12.6%) and 3 false negatives

(1.2%) for overall LVO detection. CINA had 4 false positives

(1.6%) and 7 false negatives (2.7%). The possible reasons for

errors are detailed in Table 1. Examples of false positives for both

tools are shown in Figure 3.

The most common false positive reasons for RAPID were

vessel caliber change (47% of all non-LVO cases), contrast bolus

timing (2.7%), and mass effect or postprocessing error (1.3%

each). The most common false positive reasons for CINA were

stenosis (0.9%) and caliber change (0.9%).

The most common false negative reasons for RAPID

were cases with bilateral occlusions/moyamoya (6.9%

of total true LVO cases) and the ICA reconstituting

at the terminus of the patient (3.4%). The most

common false negative reasons for CINA were

unexplained misses (17.2% of true LVO cases), bilateral

occlusions/moyamoya (3.4%), and the ICA reconstituting at the

terminus (3.4%).

Discussion

This is one of the first studies to compare the

performance of traditional and deep learning LVO detection

tools in the clinical setting. RAPID had overall higher

sensitivity while CINA had overall higher accuracy and

specificity. Both tools successfully detected the majority

of ICA and M1 MCA occlusions. Interestingly, both

tools were able to detect some, but not all M2 MCA

occlusions even though neither is FDA approved for M2

LVO detection.

Prior RAPID LVO’s validation reported a sensitivity and

specificity of 97 and 74%, respectively, based on a cohort of 877
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FIGURE 2

Confusion matrices for overall performance of RAPID LVO (A) and CINA LVO (B), ICA occlusions detected by RAPID LVO (C) and CINA LVO (D),

and M1 MCA occlusions detected by RAPID LVO (E) and CINA LVO (F).
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patients, 346 of which had a positive LVO (excluding M2 and

M3/M4 occlusions) (6). By comparison, our study demonstrated

RAPID LVO to have a sensitivity and specificity of 90 and

86%, respectively, based on a cohort of 253 patients. CINA

LVO’s validation reported a sensitivity and specificity of 98 and

98%, respectively, based on a cohort of 378 patients, 156 of

which had a positive LVO (7); whereas, our study demonstrated

CINA LVO to have a sensitivity and specificity of 76 and

98%, respectively.

The discrepancies for both tools could potentially be

explained by the lower prevalence of LVOs in our real-world

sample size, as compared to the samples used in both RAPID

and CINA’s validation papers (11% prevalence vs. 42 and

31%, respectively). Limitations of these tools in pathologies

such as moyamoya and intracranial atherosclerotic disease

(ICAD) may also explain discrepancies in performance at

our institution.

Both tools mislabeled cases of moyamoya steno-occlusive

disease with prominent leptomeningeal collaterals, contributing

to both false positive and false negative cases. This is a

potential limitation of these tools, particularly in areas that

serve large Asian populations, as East Asian populations have

a marked increase in incidence of moyamoya (8). Both tools

also missed a case of ICA occlusion that reconstituted at

the carotid terminus. Vessel caliber change from stenosis was

the most common reason for false positives in both RAPID

and CINA. This points to ICAD as a current limitation

of both tools and could potentially result in higher rates

of false positives when deployed at locations serving high-

ICAD populations.

As both tools successfully detected most occlusions,

their deployment could improve radiology workflow

by shortening CTA report turnaround times and more

importantly, door-to-treatment times through earlier

notification of LVO results. These tools could make

a difference at transfer centers and resource-limited

sites, expediting transfer and triage for life-saving

stroke therapies.

Future directions for these tools could include improving

M2 and posterior circulation stroke detection, which would

further improve patient triage. However, it is critical for

these tools to balance sensitivity and specificity, as the

dangers of increasing one at the cost of the other could

lead to alert fatigue or missing patients with LVOs,

respectively. There are ways for both tools to improve

their detection and increase their PPV. A previous

paper demonstrated RAPID’s PPV could be improved by

incorporating a relative vessel density threshold (9). No

similar paper has demonstrated this for CINA LVO to the

authors’ knowledge and remains a potential opportunity

for study.

TABLE 1 RAPID LVO and CINA LVO errors as evaluated by ground

truth.

False positive

reason

RAPID LVO

(n)

CINA LVO

(n)

Vessel caliber change

(e.g., aneurysm, stenosis)

15 4

Contrast bolus timing 6 0

Mass effect 3 0

MCA asymmetry 2 0

Motion artifact 1 0

Bilateral occlusions,

moyamoya

1 0

Postprocessing error

(Bone)

3 0

Unknown reason 1 0

False negative reason RAPID LVO CINA LVO

ICA reconstitutes at

terminus

1 1

Bilateral occlusions,

moyamoya

2 1

Unknown reason 0 5

One limitation of this study is that we did not evaluate

the impact of these tools on clinical outcomes. Other

studies have previously shown a significant improvement

in transfer times of LVO patients (10), but there are

mixed results at comprehensive stroke centers (9, 11–13).

This study included a relatively small sample size at a

single institution which may limit generalizability. It is

also important to note we were unable to compare the

code-level mechanisms behind the decision-making process

for each tool, as the code is proprietary. As a result of

this, we were unable to identify the reasons for some

errors, and the errors were interpreted in the context

of the patient’s pathology. Furthermore, it is important

to acknowledge that our ground truth, defined as two

board-certified neuroradiologists (in addition to a third for

adjudication), could have made the wrong judgement call due

to human error.

Both RAPID and CINA LVO demonstrate high negative

predictive values, as well as high sensitivity and specificity. This

study compared both tools using real-world clinical data to

highlight the differences in performance between traditional

machine learning and deep learning-based programs. As more

automated LVO detection tools become commercially available,

it will be paramount to conduct comparison studies to evaluate

their performance in the clinical setting.
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FIGURE 3

False positive LVO from RAPID LVO (A, blue arrow, right M1 MCA) and CINA LVO (B, red box, left M1 MCA). These type 1 errors were likely due to

stenosis.
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