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Abstract: Cancer is a major global health issue and is a leading cause of mortality. It has been docu-
mented that various conventional treatments can be enhanced by incorporation with nanomaterials.
Thanks to their rich optical properties, excellent biocompatibility, and tunable chemical reactivities,
gold nanostructures have been gaining more and more research attention for cancer treatment in
recent decades. In this review, we first summarize the recent progress in employing three typical
gold nanostructures, namely spherical Au nanoparticles, Au nanorods, and atomically precise Au
nanoclusters, for cancer diagnostics and therapeutics. Following that, the challenges and the future
perspectives of this field are discussed. Finally, a brief conclusion is summarized at the end.

Keywords: gold nanostructures; spherical nanoparticles and nanorods; atomically precise gold
nanoclusters; cancer treatment; challenges and perspective

1. Introduction

Cancer is a worldwide health concern and one of the leading causes of mortality. In
the past two decades, tremendous efforts have been dedicated to finding a competent
treatment strategy against cancer, but only a few successes are achieved to date. Therefore,
there is a huge demand for developing novel strategies for diagnostics and treatments of
cancer. With the emergence and booming of nanoscience and nanotechnology, exceptional
growth in research and applications of nanomaterials toward cancer treatment has been
witnessed, bringing hope that the disadvantages of using conventional cancer therapies
can be circumvented.

Among all kinds of nanomaterials for cancer treatment, gold nanostructures have
shown great promise as emerging agents, mainly thanks to their unique advantages, such as
tunable optical properties, easily functionalized surface, and excellent biocompatibility [1–3].
For instance, small gold nanoparticles are able to passively accumulate and remain at the
tumor site through permeability and retention effects [4]. In addition, the surface of
gold nanoparticles can be readily functionalized with active moieties such as peptides,
proteins, monoclonal antibodies, and small drug molecules to avoid non-specific uptake
and realize tumor-specific targeting [4]. Previous studies have shown that the structure
of the gold nanomaterials can play a critical role. In an early comparative study of Au
nanorods, nanocages, and nanohexapods for photothermal treatment, Au nanohexapods
showed superior performance in both photothermal destruction and contrast-enhanced
diagnosis [5]. In another investigation, Ma et al. evaluated the radio-sensitization effect
in X-ray radiotherapy of three types of Au nanostructures (gold nanoparticles, spherical
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shape, AuNPs; gold nanorods, AuNRs; and gold nanospikes, AuNSs) and found that the
efficiency of cellular internalization followed the order AuNPs > AuNSs > AuNRs [6].

It is worth noting that gold nanostructures include various types, and from the size
and morphology, plus the consideration of employing in biomedical research, in this
review, three major types of gold nanostructures, namely spherical gold nanoparticles, gold
nanorods, and atomically precise gold nanoclusters, for cancer treatment are discussed.
Notably, the three gold nanostructures have some common yet differentiated advantages
for curing cancers, and some of the common merits have been mentioned above. Generally,
upon illumination, spherical gold nanoparticles and gold nanorods have localized surface
plasmon resonance (LSPR) which is attributed to the oscillations of free electrons [7]. The
LSPR is very sensitive to the size, morphology, capping agent, and refractive index on
the surface, making the optical absorption of the gold nanospheres and nanorods range
from visible to near-infrared. However, for gold nanoclusters, such LSPR phenomenon
disappears; instead, discrete absorbance peaks can be observed [8,9]. Additionally, gold
nanoclusters can be synthesized with molecular purity with determined composition and
defined structure, which offers a perfect platform for building structure–functionality
relationships in biomedical research [10,11].

In this review, the recent progress regarding employing spherical gold nanoparticles,
gold nanorods, and atomically precise gold nanoclusters for cancer treatment is discussed
first (Scheme 1). The main factors, including size, morphology, optical property, surface
ligand, biocompatibility, and stability, that can affect the performance will be particularly
mentioned. Following that is the elaboration of the challenges and perspectives in the
field, and this review will be ended with a summarized outlook and conclusion. As gold
nanostructures for cancer treatment are extensively covered in the literature and many
related reviews can be found [12–18], this review is limited to the following scope: (1) In
terms of gold nanostructure shape, it only focuses on spherical gold nanoparticles, gold
nanorods, and gold nanoclusters. (2) In terms of cancer type, it only targets high-incidence
cancers such as breast cancer, liver cancer, skin cancer, and colon cancer. (3) Finally, for
cancer treatment types, it mainly focuses on photothermal/photodynamic therapy, drug
carrier/delivery system, cellular imaging, and biosensing/probing, despite there being
some differences for different shaped gold nanostructures.
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2. Gold Nanostructures for Cancer Treatment
2.1. Spherical Gold Nanoparticles

Spherical Au nanoparticles have been widely utilized in cancer treatment, mainly
thanks to their unique physicochemical properties, their excellent biocompatibility, and
particularly their characteristic surface plasmon resonance absorbance with specific wave-
lengths [19,20]. Spherical Au nanoparticles can be applied for cancer treatment in several
ways such as photothermal therapy, radiotherapy, tumor imaging, and serving as drug
delivery systems [21–26].

Note that for photothermal cancer treatment, AuNP-based agents can convert the light-
irradiation energy into heat and generate reactive oxygen species for ablating the tumor
cells [27–29]. The AuNPs can be delivered by physiological transportation or conjugation
with antibodies, and once they are delivered, they can self-assemble into large clusters
inside the cells [30]. For instance, Emami et al. reported the construction of anti-PD-L1-
targeting and doxorubicin (DOX)-conjugated Au nanoparticles (PD-L1-AuNP-DOX) for
the targeted chemo-photothermal therapy of colorectal cancer [31]. The results showed that
PD-L1-AuNP-DOX treatment plus NIR irradiation drastically and synergistically inhibited
the proliferation of CT-26 cells in vitro by increasing apoptosis and cell cycle arrest [31]. In
another study, Mao and Yang’s group took advantage of the electrostatic attraction and
successfully assembled negatively charged silk fibroin (SF) with positively charged gold
nanoparticles (AuNPs) [32]. The in vitro and in vivo analysis revealed that the AuNPs/SF
nanofibers can kill breast cancer cells and destroy the tumor issues under just one-time
NIR irradiation for 6 min by photothermal therapy efficiently [32]. In addition, Wang et al.
discovered that hollow microporous carbon and Au nanoparticles can be integrated as
well to synergistically increase the photothermal conversion effect while ensuring a high
DOX loading capacity [33]. In addition, AuNPs can act as a gatekeeper to release DOX at a
specific location and promote the photothermal effect [33].

By taking advantage of the great biocompatibility, enhanced permeability and re-
tention effect, and the plasmonic optical properties, one typical strategy for using gold
nanoparticles to treat cancer is photo-induced hyperthermia and immunotherapy [34].
As a typical example, in 2019, Zhang and co-workers reported the use of a type of novel
immunological AuNPs via intra-cellular generation and exocytosis for combinatorial pho-
tothermal therapy and immunotherapy. Melanoma B16F10 cells were utilized to produce
AuNPs first and subsequently shed nanoparticle encapsulated vesicles that were trans-
ported to an extracellular location by tumor antigens (AuNP@B16F10) [35]. When NPs
were introduced into dendritic cells (DCs), DC-derived AuNPs (AuNP@DCB16F10) were
generated. As illustrated in Figure 1A, laser irradiation showed that the phototoxicity of
nanoparticles was concentration-dependent and the cell viability was extremely low, sug-
gesting that AuNP@DCB16F10 can effectively kill tumor cells. In addition, the cells treated
with nanoparticles or laser alone did not die, while AuNP@DCB16F10 + NIR showed
full red fluorescence with barely green fluorescence (Figure 1B). Figure 1C presents the
fluorescence images at different time spacings upon the injection of AuNP@DCB16F10,
and the fluorescence intensity of the tumor increased and reached the maximum at 24 h.
AuNP@DCB16F10 was able to drain to inguinal lymph nodes quickly, then rapidly to
axillary lymph nodes on the same flank with the injection spot, and then slowly drained to
the nanoparticles to the opposite lymph nodes when the fluorescence intensity increased
over time (Figure 1D). As shown in Figure 1E,F, upon irradiation, the temperature of
AuNP@DCB16F10-treated mice increased quickly from 32 ◦C to over 42 ◦C in the first 40 s
and reached 50 ◦C after 60 s. This confirmed that AuNP@DCB16F10 was able to convert
light to hyperthermia in vivo very efficiently [35].

Furthermore, spherical gold nanoparticles can also self-assemble into three-dimensional
nanostructures for cancer treatment. In a recent study, You’s group reported nanoprobes
formed by self-assembly of ultrasmall AuNPs for dual-mode real-time imaging-guided
photothermal/photodynamic combined therapy for liver cancer [36]. The nanoprobes
demonstrated excellent tumor-targeting capabilities in both T1 magnetic-resonance imaging
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and in vivo fluorescence imaging modes; meanwhile, the nanoprobes are able to dissociate
and escape from the body to reduce aggregation in the body to minimize the possible
toxicity [36].
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tumor-containing mice with injection of PBS, AuNP@DCL929, and AuNP@DCB16F10. Reprinted 
with permission from [34]. Copyright 2019, American Chemical Society. 
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Figure 1. Cytotoxicity and characterization of AuNP@DCB16F10. (A) Cell viability of B16F10 cells
treated with AuNP@DCB16F10 after incubation for 24 h. (B) Cytotoxicity images of B16F10 cells.
(C) In vivo distribution of AuNP@DCB16F10 labeled by DiR in tumor-containing mice. (D) Lumines-
cence images of nanoparticle migration. (E,F) Infrared thermal images and temperature profiles of
tumor-containing mice with injection of PBS, AuNP@DCL929, and AuNP@DCB16F10. Reprinted
with permission from [34]. Copyright 2019, American Chemical Society.

In addition, spherical Au nanoparticles have been attracting considerable interest as
non-toxic drug carrier systems for cancer treatment, thanks to the large surface-to-volume
ratio; easy tuning of surface charge, hydrophilicity, and functionality; and outstanding
stability [37–39]. Various biocompatible polymers (e.g., polyethylene glycol (PEG) [40],
polyelectrolyte [37], DNA [25], liposome [41], and other bio-macromolecules [42]) can
be used to tune the tumor microenvironment [43] and, more importantly, enhance the
stability, payload capacity, and the cellular uptake. Muhammad et al. reported that the
PEG-capped AuNPs can enable efficient delivery of anti-cancer therapeutics of bleomycin
and doxorubicin into HeLa cells while maintaining drug cytotoxicity [40]. In another
study, Soliman’s group successfully prepared cetyltrimethylammonium bromide (CTAB)-
stabilized AuNPs which can efficiently entrap fluorouracil (5-FU), an antimetabolite drug
used for treating colon and skin cancers [44]. The optimum 5-Fu-loaded AuNP gel and
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cream were able to reduce tumor volume by about 6.8- and 18.4-fold, as compared to the
control, in A431-bearing mice [44].

2.2. Gold Nanorods

Another important type of gold nanostructure is gold nanorods, which possess some
unique advantages for cancer treatment. For example, gold nanorods can absorb light in the
near-infrared (NIR) region, enabling efficient irradiation, which can be utilized for selective
photothermal therapy of some specific cancers [45]. Specifically, thanks to the tunable
localized surface plasmon resonance (LSPR), gold nanorods can not only serve as probes
but also become heat sources when irradiated by a laser with a photothermal effect [46]. The
generated heat can provide photothermal therapy for cancer treatment and/or trigger anti-
cancer drug release for chemotherapy when gold nanorods serve as a drug carrier [46]. In
short, gold nanorods can be applied for cancer treatment in phototherapy, cellular imaging,
drug transport, and combined therapy (e.g., phototherapy and chemotherapy) [47,48].

Employing the photothermal effects of gold nanorods to kill cancer cells is the most
widely employed strategy for cancer treatment, as the nanorod can absorb the NIR light
to penetrate into sick tissues without damaging the surrounding healthy tissues, and the
wavelength of light can be fine-tuned through the aspect ratio and surface ligand [49–51].
In 2015, Betzer et al. reported dual-mode targeted plasmonic nanoprobes made of gold
nanorods as a theranostic approach for detecting and curing skin-adjacent tumors for head
and neck cancers [52]. Both in vivo and in vitro, the immune-targeted gold nanorods can
target head and neck cancer cells with high specificity and facilitate the differentiation
between cancerous and noncancerous tissues [52]. Shrivastava’s group discovered that the
polyelectrolyte coating on the Au nanorods can have an important effect on the photother-
mal efficiency and the photothermally triggered cancer cell damage [53]. For gold nanorods
with polystyrene sulfonate (PSS-AuNRs) and PSS plus poly-diallyl dimethyl ammonium
chloride (PDDAC-AuNRs), despite high photothermal conversion efficiency and cellular
uptake of PDDAC-AuNRs, their intracellular clustering adversely affects the photothermal
treatment of cancer cells [53]. Such surface coating influence was also observed by Wang
et al., who documented biologically inspired polydopamine-stabilized Au nanorods for
light-induced cancer therapy [54]. The self-polymerized polydopamine shell has a high
adsorption capacity for therapeutic drugs and is very stable and biocompatible. Thanks to
the tunable LSPR properties of gold nanorods in the near-infrared spectral region, impres-
sive in vitro cancer cell killing efficiency and remarkable tumor growth suppression were
achieved in vivo by the gold nanorod–polydopamine composite, superior to any single
therapy modality [54].

Besides surface coating, imprinting other biologically active molecules such as saccha-
rides can also improve the photothermal treatment efficiency. Liu’s group prepared sialic
acid (SA, a typical monosaccharide)-imprinted gold nanorods, which could selectively kill
a tumor but not damage the circumjacent healthy tissue [55]. Besides achieving higher
treatment efficiencies, researchers have also devoted great effort to unraveling the molecu-
lar mechanism of the Au-nanorod-aided plasmonic photothermal therapy. In 2017, Ali et al.
conducted an investigation regarding the efficacy, toxicity, and mechanism of Au nanorod
photothermal therapy of cancer in xenograft mice [56]. In this study, the size, surface
modification, and concentration of AuNRs and the laser power to achieve the maximal
apoptosis induction were first examined. The possible mechanism of AuNRs-plasmonic
photothermal therapy (PPTT) action using quantitative proteomic analysis in tumor tissues
of the mouse was also studied, where several death pathways were identified. Cytochrome
c and p53-associated apoptosis mechanisms were recognized to contribute to the enhance-
ment of PPTT with AuNRs@RF (rifampicin). Moreover, Pin1 and IL18-related signaling
made a contribution to the disturbance of the NETosis pathway through PPTT enabled by
AuNRs@RF [56].

In 2018, Joshi’s group reported gold-nanorod-composed theranostic nanoparticles
(TNPs) for interventional image-directed photothermal therapy for solid tumors [57]. In
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this study, the feasibility of site-selective hepatic image-directed delivery of TNPs in rats
was examined. Figure 2A shows the dynamic thermal imaging at different time points
during the PPT process. In the saline group, the tumor’s temperature increased by about
7.5 ◦C within 1 min and remained basically stable; however, in sharp contrast, the TNP
group tumor temperature quickly jumped to ~20 ◦C in 5 min, suggesting that the increase
in tumor temperature exceeded the range of hyperthermia, resulting in the damage of local
vasculature which can destroy the tumor cells effectively. The authors further conducted
the hematoxylin/eosin staining of tumor sections. As shown in Figure 2B, tumor slices
in the saline group exhibited no obvious effect, while the TNP group presented a valid
response under the same laser irradiation power level with a remarkable photothermal
therapy effect. The transmission electron microscopy (TEM) images verified that the TNPs
stayed in the tissue with no structural change, as illustrated in Figure 2C. In addition,
the clear observation of the morphology of a gold nanorod core and a Gd shell can be
observed in Figure 2D. Finally, Figure 2E validates the feasibility of intraoperative imaging-
offered quantum yield, and the imaging sensitivity can be further improved by reducing
the exposure time to below 1 s. The above findings confirm that TNPs can be employed for
photothermal ablation efficiently while bearing no risk of heat-induced breakdown [57].
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(B) Typical histological images of saline and TNP-ablated tumor tissue stained with H&E. Pre-PTT
and post-PTT tissue images recorded using (C) TEM at 70 kV and (D) STEM at 120 kV. (E) Emission
monitoring after injecting 50 µL of TNP solution (excitation: ~980 nm, emission: ~1550 nm). Reprinted
with permission from [57]. Copyright 2018, American Chemical Society.
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Meanwhile, gold nanorods can integrate with other functional materials such as in-
organic compounds to form a therapeutic package to further promote the efficiency of
cancer treatment. Note that a variety of organic photosensitizer-conjugated Au complexes
have been designed and prepared recently, but they also have some drawbacks such as
photobleaching and invalid energy transfer, and the introduction of inorganic compounds
might resolve these issues. For instance, Lee et al. fabricated novel inorganic photothera-
peutic complexes by conjugating Au nanorods with defective TiO2 nanoparticle clusters
together [58]. A higher efficacy of cell death was observed in phototherapeutic treatments
of cancer cells, which is attributed to the increase in reactive oxygen species generation
from the TiO2 nanoparticle clusters with the aid of localized surface plasma resonance
triggered electron and heat generation from Au nanorods [58]. In another study, Li et al.
fabricated a novel nanocomposite of mesoporous silica gold nanorods, which also showed
an improved lifetime of circulation and homotypic targeting to HeLa cell tumors [59]. By
utilizing this nanocomposite, the tumor growth can be completely inhibited, indicating
great potential for tumor treatment [59].

Besides the photothermal effects, gold nanorods (GNRs) can serve as effective drug
carriers for controllable drug delivery. For instance, Mahmoud and co-workers discov-
ered that cholesterol-coated gold nanorods can be an intriguing carrier for hydrophobic
drugs, where efficient delivery and therapy against breast cancer cells can be achieved
by using MCF-7 cell lines [60]. A quite recent study quantified the cellular uptake by
GNRs in MCF-7 cells by using inductively coupled plasma mass spectrometry, and the
MCF-7 cells used the micropinocytosis mechanism to internalize bare GNRs that aggregate
and associate with the cell membrane [61]. Pacardo et al. discovered that when func-
tionalized with cyclodextrin, gold nanorods can encapsulate doxorubicin (DOX), and the
as-formed nanocomplex showed enhanced anti-cancer efficacy [62]. Zhang et al. reported
DNA-conjugated gold nanorods as a multifunctional carrier, which can load and release
DOX at targeted locations [63]. More importantly, such biotin-PEG-functionalized GNR
nanomedicine was able to drastically increase the cell uptake and reduce the drug reflux
capability of multidrug-resistant breast cancer cell lines [63].

One may notice that more and more research attention has been switched to employ-
ing gold nanorods and/or gold-nanorod-based nanomedicines for combined therapies,
especially chemotherapy and photothermal therapy, as combined chemo-photothermal
therapy shows better therapeutic efficiency than monotherapy. For instance, in 2014, Wang
et al. reported combined chemotherapy and photothermal ablation using DOX-loaded
DNA-wrapped gold nanorods for the treatment of metastatic breast cancer [64]. The in-
hibition capability of tumor growth was mainly thanks to the synergistic effect between
DOX-induced apoptosis and laser-irradiation-caused necrosis of tumor cells [64]. In 2019,
the Qian and Suo groups developed a facile means to construct polysaccharide-encapsulated
Au nanorods for improved chemo-phototherapy of breast cancer [65]. The polysaccharide-
decorated nanoplatform was efficiently internalized inside MCF-7 breast cancer cell lines and
exhibited greater cancer cell killing than single modalities [65]. Recently, Huang et al. pre-
pared pH-sensitive gold nanorods conjugated with a polypeptide for chemo/photothermal
therapy for cervical cancer treatment [66]. The Au nanorod conjugates displayed exceptional
biocompatibility, improved cancer cell uptake, and excellent cancer cell killing effects [66].
Another recent study conducted by Zhu’s group further demonstrated that degradable
silica-capped gold nanorods can be employed for triple-combined therapy for breast cancer
treatment [67]. Specifically, in the nanomedicine, upon 808 nm laser irradiation, singlet oxy-
gen was generated to achieve photodynamic/photothermal effects, while the site-specific
drug release of DOX can realize chemotherapeutic outcomes [67].

2.3. Atomically Precise Gold Nanoclusters

Gold nanoclusters (AuNCs), usually with a size less than 3 nm, are intermediate
bridges between relatively larger plasmonic Au nanoparticles and Au complexes. A gold
nanocluster has tens to a few hundreds of gold atoms, possessing a core–shell structure,
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with Au atoms in the core and a surface ligand capped on the metal core. For biomedical
applications, various biomolecules, such as DNA, proteins, polypeptides, dendrimers, and
biopolymers, have been employed as the stabilizing ligand to prevent the aggregation of the
metal core and hence improve the stability. Thanks to the ultrasmall-size-imparted quantum
confinement effects, gold nanoclusters exhibit significantly different optical behaviors and
chemical and catalytic properties compared with their nanoparticle counterparts [9,68,69].
Unlike AuNPs, AuNCs have no surface plasmon resonance absorption peak but have
discrete absorption peaks ranging from the visible region to the near-infrared (NIR) region
and drastically different fluorescent properties, depending on the size, surface ligand,
charge state, and other factors. Tremendous efforts and progress have been made in em-
ploying AuNCs for cancer treatments, and the main ways AuNCs can make a contribution
include probing, cell imaging, photothermal therapy, radiotherapy, and antimicrobial
application [70–73].

By rational structural design and choosing of a surface ligand, AuNCs can be fluores-
cent at a specific photo-emitting wavelength with a long lifetime that is quite favorable for
imaging or as probes [73]. In 2017, Singh developed glucose-decorated Au nanoclusters as
membrane-potential-independent fluorescence probes that can realize rapid identification
of cancer cells that express the Glut receptor [74]. In another study, Chen et al. fabricated
novel iodinated gold nanoclusters stabilized by bovine serum albumin (BSA) as a dual
modality probe, which achieved malignant thyroid cancer visualization through fluores-
cence/computed tomography (CT) [75]. Wang’s group discovered that accurate tumor
imaging can be realized by gold nanoclusters conjugated with carborane derivatives, mak-
ing accurate imaging-guided cancer treatment possible [76]. Such cancer imaging behaviors
were also observed by Zhu et al., who prepared gold-nanocluster-grafted polymer nanopar-
ticles for both imaging and cancer cell killing [77]. Phototherapy is usually considered to
be a more powerful means to cure cancer. For example, Liu et al. found that dendrimer-
encapsulated Au nanoclusters can “self-supply” O2 through the catalase activity, which
was utilized for photodynamic therapy to overcome cancer hypoxia [78]. In another report,
Youn’s group designed a facile top-down approach to synthesize albumin/polyallylamine-
assisted AuNCs, which possessed a non-spherical and hyperbranched morphology with a
high absorption capacity [79]. Such structure advantage was favorable for surface-plasmon-
based hyperthermia, and hence the as-fabricated gold nanoclusters were markedly cytotoxic
to 4T1 breast cancer cells [79]. Recently, more and more research attention has been de-
voted to employing AuNCs in radiotherapy, in which ionizing radiation is utilized for
killing cancer cells. Zhang et al. prepared histidine-capped gold nanoclusters that can
be adopted as a radiosensitizer for improved cancer radiotherapy through synergistic
internal and external regulations [80]. Interestingly, Yang’s group found that radionuclide-
labeled gold nanoclusters, particularly 99mTc@AuNCs and 177Lu@AuNCs, were able to
boost the effective anti-tumor immunity for augmented cancer radiotherapy [81]. Li’s
group employed bone marrow mesenchymal stem cells to mediate the fabrication of ul-
trasmall gold nanoclusters, which can enhance the radiotherapy efficacy of Egr1-hNIS
for its radiation sensitization [82]. In another report, Li and co-workers demonstrated a
transformable AuNC aggregate-based synergistic strategy, which can improve the tumor re-
tention/penetration of the nano-radiosensitizers and weaken the radio-resistance of cancer
cells [83]. In a quite recent study, Burda’s group and Basilion’s group reported that when
conjugating AuNCs with protease activatable monomethyl auristatin E, the specificity and
efficacy of radiation and chemotherapy can be significantly improved [84]. Both in vitro
and in vivo results showed selective tumor cell uptake, excellent anti-tumor activity, and
prolonged chemotherapeutic effect [84].

It is worth noting that gold nanoclusters with polydisperse size distribution are em-
ployed in the above cases. Such wide size distribution can hinder the deeper fundamental
understanding of biomedical applications to some extent. However, gold nanoclusters of
molecular purity can be chemically synthesized with atomic precision. Atomically precise
gold nanoclusters have demonstrated great potential for cancer treatment, mainly due
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to their rich surface functionalities, outstanding optical features (especially the excellent
luminescent properties, e.g., strong emission in the near-infrared region), and great biocom-
patibility [10,85–87]. More importantly, thanks to the definite size, uniform composition,
and crystallographically resolvable structure, atomically precise gold nanoclusters provide
an ideal platform to unravel comprehensive mechanisms and establish structure–activity
relationships in cancer treatment study [88–90].

In early studies, biocompatible compounds such as glutathione (GSH) were widely
employed as functional stabilizing agents to prepare atomically precise gold nanocluster
molecules [91]. For instance, Zhang et al. synthesized a series of ultrasmall molecular
Au10-12(SG)10-12 nanoclusters, which enhanced the tumor uptake and targeting specificity
via enhanced permeability and retention effects owing to their small-size-imparted quan-
tum confinement effect. At the same time, GSH ligands can further enhance the tumor
uptake by facilitating the escape of nanoclusters from the reticuloendothelial system while
activating the transporter [92]. Such size-depending tumor-targeting behaviors were subse-
quently observed by Zheng and co-workers with a series of few-atom AuNCs [93]. Upon
injection into the mice for 40 min, smaller-sized Au10-11 and Au18 NCs were more retained in
the kidneys than the relatively larger-sized Au25 NCs. Additionally, the ratios of bladder-to-
kidney intensity followed the order of Au25 NC > Au18 NC > Au10-11 NC. This suggests that
the glomerulus is no longer a one-way “size-cutoff” slit but is an atom-precise “bandpass”
barrier that can drastically decrease the renal clearance of atom-precise Au nanoclusters
in the subnanometer size regime [93]. In a following study, the same group reported that
enhanced photostability and tumor-targeting can only be achieved by ICG-conjugated
GSH-protected Au25 nanoclusters but not gold clusters with other gold numbers [94]. Such
magic size selection was observed by Liu group in a recent study, in which the Au25(Capt)18-
based nanosystem acted as a GSH-activated mitochondria-targeting photosensitizer for
high-efficiency treatment of malignant tumors [95].

In 2020, Yang et al. developed a theranostic nanomedicine of AuNCs-Pt based on
atomically precise glutathione-protected Au25 nanoclusters with dual functions of both
near-infrared imaging and glutathione scavenging capabilities [96]. AuNCs-Pt has NIR-
II (excited at 808 nm, emitted at 1050–1250 nm) imaging ability on a lethal high-grade
serous ovarian cancer (HGSOC) model; hence, it can be a potential tool for monitoring Pt
transportation [96]. At the same time, AuNCs-Pt exhausts the intracellular glutathione to
minimize the Pt detoxification and effectively maximizes the platinum chemotherapeutic
efficacy [96]. As shown in Figure 3A, the authors conducted NIR imaging using the
LUC + OVCAR8 cells. Notably, LUC + OVCAR8 cells have a bioluminescent property
that is able to present the growth degree and position of tumors through imaging. After
injection for 12 h, most of the AuNCs-Pt was found in the peritoneal tumor, indicating
high tumor accumulation (Figure 3B). It is worth noting that the images in the NIR-I region
portrayed the tissue anatomy. In stark contrast, the NIR-II signal was better defined and
overlapped with the tumor luminescent signal. Ex vivo imaging was carried out on excised
organs, which verified the colocalization of the bioluminescent and fluorescent signals
of both NIR-II and NIR-I for the AuNCs-Pt tumor deposits (Figure 3C,D). Thanks to the
stronger penetration capability, NIR-II imaging more precisely disclosed the nanoparticle
accumulation in organs, showing a more convincing imaging method. The results indicated
that AuNCs-Pt reached about 5-fold Pt accumulation in tumor tissue compared with
that using free CDDP (Figure 3E). They also illustrated that AuNCs-Pt demonstrated a
markedly stronger ability to inhibit tumor growth compared to the other groups (Figure 3F).
Furthermore, AuNCs-Pt treatment increased the survival of the animals to one and a half
months and did not reduce the body weight (Figure 3G,H).

The above case took full advantage of the near-infrared emission property of molecular
Au25 nanoclusters, and the Au25 clusters can effectively maximize the chemotherapeutic
efficacy of platinum. In fact, besides chemotherapy, radiotherapy is another important
cancer therapeutic strategy, particularly for treating solid tumors at different stages [97]. In
radiotherapy, X-ray radiation of high energy is used to shrink the tumors and kill cancer
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cells, and the radiosensitizer is essential to improve the therapeutic efficacy [98,99]. In 2019,
Jia et al. reported a molecular levonorgestrel-protected gold nanocluster as a radiosensitizer
for enhanced cancer therapy [100]. Scheme 2a presents the synthetic route, in which the
alkynyl ligand of levonorgestrel can react with Me2AuSCl to generate a molecular Au8
nanocluster. Single crystal X-ray diffraction (SCXRD) measurement showed that it has two
parts, each containing a planar tetranuclear structure capped by four ligands. The major
cancer therapeutic mechanism is shown in Scheme 2b. Specifically, X-ray irradiation triggers
an increase in reactive oxygen species, leading to irreversible cell apoptosis. Au8NCs make
cancer cells more sensitive to radiation by improving the local treatment efficiency with a
relatively safe and low radiation dose.
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(A) Scheme of establishing an orthotopic model. (B) Representative in vivo images at 12 h after
AuNCs-Pt administration. (C) Ex vivo images and (D) the intensities of ex vivo signal in heart (H),
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weights of mice during the treatment. Reprinted with permission from [96]. Copyright 2020 American
Chemical Society.
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The authors then evaluated the radiosensitizing effect of the Au8 nanoclusters with an
in vivo tumor assay [100] in which a comparison test of a control sample and a phosphate-
buffered saline (PBS)-treated group was also performed. Specifically, the EC1 cells were first
divided into three different groups: control group, PBS-treated group, and Au8NC-treated
group. Subsequently, EC1 cells (2 × 106 cells per mouse) were injected into the flanks of
female BALB/c-nude specific-pathogen-free (SPF) mice and treated with different doses of
X-ray irradiation. Finally, the body weights and the tumor sizes were monitored every other
day [100]. Figure 4a–e illustrate the tumor size and body weight of the mice after injection
of different doses. It can be noted that an approximately 5 times increase in the tumor
size was observed for the control groups, while in sharp contrast, the tumor volume in the
Au8NCs + 4 Gy group decreased significantly. Furthermore, the body weights of the mice
under various conditions remained nearly the same over 2 weeks, indicating no toxicity.
Eosin and hematoxylin staining of the organs and tumors was further carried out. As
shown in Figure 4f, compared with the control groups, ubiquitous damage can be identified
in the tumor tissue for the Au8NCs + 4 Gy treated group with basically no abnormalities
in the organs. This study demonstrated the potent capability of the atomically precise
gold nanoclusters as a sensitizer to enhance the tumor-suppressing efficacy. Following the
above work, the same group also reported a levonorgestrel-protected gold nanocluster of
Au10(C21H27O2)10; by conjugating a poly(allylamine hydrochloride) molecule, sustained
drug release and effective antibody-mediated actin imaging can be realized [101]. We also
notice that the ligand of levonorgestrel is a water-soluble drug, and this study can pave
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a path to selecting a suitable drug as a ligand to prepare molecular Au nanoclusters as
effective sensitizers for improved radiotherapy and beyond.
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3. Challenges and Perspectives

The recent advances regarding gold nanostructures, namely gold nanoparticles, gold
nanorods, and atomically precise gold nanoclusters, have been reviewed above. One
can notice that the gold nanostructures hold great potential in cancer diagnostics and
therapeutics, mainly thanks to the merits such as excellent optical properties, facile control
of size and/or morphology, robust stability, the capability to tune the surface chemistry for
conjugation with functional biological molecules, and especially the great biocompatibility.

However, there are also some disadvantages of gold nanostructures employed for
cancer treatment, and these disadvantages need further in-depth investigations in this
promising yet fast-evolving field:

1. The long-term toxicity issue. The gold nanostructures cannot be easily degraded and
can accumulate in vivo during prolonged treatment, which may cause some uncertain
side effects [56,102]. Upon long-term accumulation, damage to organs such as lung,
spleen, kidney, and liver might be present.

2. The targeting specificity issue. Even though the gold nanostructures can be designed
to bind to specific cancer cells, there is still an urgent need for cancer diagnosis
and therapeutics at the early stage with a high level of targeting specificity [103].
Currently, the widely employed cancer treatment strategies such as photoimaging
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and photothermal therapy still have the limitations such as non-specific binding and
the unnecessary activation of the normal host immune response.

3. The modulation of the gold nanostructures to meet the complex biological environ-
ment can be challenging. Upon the surface modification of the gold structures, the
pharmacokinetic parameters of the gold nanostructures and the cellular response
will be correspondingly changed, while in vivo, the fundamental comprehensive
understanding of the interactions between the gold nanostructures and the biological
moieties is still lacking [104].

4. Some gold nanostructures (e.g., the gold nanocluster case mentioned in this review)
can be used for both NIR-I and NIR-II imaging; however, when choosing both regions,
the excitation wavelength range is quite limited, and the imaging effectiveness and
efficiency still have room to improve. Determining how to modify the composition,
morphology, and structure of these gold nanomaterials to work better for both NIR-I
and NIR-II regions is still extremely challenging.

The above challenges actually imply great opportunities for future development using
gold nanostructures for cancer treatment. In addition, from the perspectives of this research
field, some other important issues may also represent the future research directions:

1. For photothermal treatment based on gold nanostructures, the efficacy is highly
dependent on the penetration depth of the NIR lasers, and the heating intensity can
decrease with the increase in the laser penetration depth. This means that the laser
intensity and the plasmonic effects of the gold nanostructures could be critical and
deserve special attention in future studies.

2. Even if gold nanostructures have been successfully documented for in vitro, in vivo,
pre-clinical, and clinical studies, considering the cytotoxicity, the internalization
of gold nanostructure with tissues, the complex biological environment, the long-
term stability of the gold nanostructure’s integrity, and the high costs of preparing
specifically designed nanogold agents, the way to realizing gold nanostructures for
practical applications of cancer treatment is still long.

However, all the above issues or challenges might be resolved by the rapid develop-
ment of nanotechnology, plus other factors such as the introduction of artificial intelligence
in modern medicine. For instance, with the aid of artificial intelligence and machine learn-
ing technologies, some new specific drugs can be possibly designed and synthesized for
preparing atomically precise gold nanoclusters to target specific cancer cells to achieve
some “perfect” diagnostic and therapeutic effects.

4. Conclusions

In conclusion, gold nanostructures, especially spherical gold nanoparticles, gold
nanorods, and atomically precise gold nanoclusters, are good candidates for cancer treat-
ment. The optical properties (such as surface plasmon effects and fluorescent behaviors),
ease of surface modification, low cytotoxicity, outstanding biocompatibility, excellent sta-
bility, and other merits make gold nanostructures very promising for cancer diagnostics
and therapeutics. Despite some shortcomings and disadvantages, we envision that more
research endeavors will push gold nanostructures toward real clinical applications of cancer
treatment in the future.
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