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Abstract

Some monocotyledonous plants, including liliaceous, amaryllidaceous and iridaceous ones,

produce flowers with petaloid tepals in whorls 1 and 2 organs. For explaining the molecular

mechanism of two-layered petaloid tepal development, the modified ABC model has been

proposed, in which B class genes are expressed in whorl 1 organs as well as in whorls 2 and

3 organs. We have previously obtained results strongly support the modified ABC model by

chimeric repressor gene-silencing technology (CRES-T)-mediated suppression of B func-

tion in the liliaceous plant Tricyrtis sp. In the present study, we introduced a CRES-T con-

struct derived from the B class gene of Tricyrtis sp. (TrihDEFa-SRDX) into Lilium sp. in

order to examine the effect of suppressing B function on the floral organ identity. Flowers of

transgenic plants did not open fully and had pale pink-colored tepals with decreased num-

bers of papillae on the adaxial side in whorls 1 and 2 compared with those of non-transgenic

plants. No apparent morphological alterations were observed in whorls 3 and 4 organs. Both

the amount of total anthocyanins and the expression levels of endogenous flavonoid biosyn-

thesis-related genes (LhMYB12, LhbHLH2, LhCHS, LhF3H, LhF3’H, LhDFR and LhANS)

decreased in whorls 1 and 2 organs of transgenic plants compared with non-transgenic

plants. In addition, the expression levels of endogenous B class genes (LFDEF, LFGLOA

and LFGLOB) decreased in transgenic plants and the level was negatively correlated with

the degree of morphological alteration. Thus suppression of B function may reduce the iden-

tity of petaloid tepals in whorls 1 and 2 of transgenic Lilium sp.

Introduction

Molecular mechanisms of floral organ development have been well understood by intensive

studies using eudicotyledonous model plants such as Arabidopsis thaliana and Antirrhinum
majus. The ABC model represents the relationship between floral organ development and

expression patterns of three classes of floral homeotic genes, A, B, and C class genes [1, 2].
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According to this model, B class gene specifies petal formation in combination with A class

gene in whorl 2, and stamen formation in combination with C class gene in whorl 3. B class

genes comprise two paralogous genes, DEFICIENS (DEF)/APETALA3 (AP3) and GLOBOSA
(GLO)/PISTILATA (PI), and DEF/AP3 and GLO/PI proteins interact directly to form func-

tional complexes [3, 4]. In various eudicotyledonous plants, mutation or suppression of B class

genes has resulted in the conversion of petals into sepal-like organs and stamens into pistil-like

organs [1, 5–12].

In contrast to eudicotyledonous plants, some monocotyledonous plants, including liliac-

eous, amaryllidaceous and iridaceous ones, produce flowers with two-layered petaloid tepals

in whorls 1 and 2. In order to explain the molecular mechanism of two-layered petaloid tepal

development, the modified ABC model has been proposed [13]. According this model, expres-

sion of B class genes extends to whorl 1 in addition to whorls 2 and 3. The modified ABC

model has been supported indirectly by expression analysis of B class genes in various plant

species with two-layered petaloid tepals such as Tulipa gesneriana [14, 15], Agapanthus praecox
[16], Muscari armeniacum [17, 18], Dendrobium crumenatum [19], Phalaenopsis aphrodite
[20], Crocus sativus [21] and Alstroemeria ligtu [22]. Recently, we have obtained results directly

supporting the modified ABC model in the liliaceous plant Tricyrtis sp. [23] by chimeric

repressor gene-silencing technology (CRES-T), which suppresses target genes of a transcrip-

tion factor dominantly by expressing a fusion protein of the transcription factor with a repres-

sion domain [24]. Transgenic Tricyrtis sp. plants with suppressed B function by CRES-T

produced sepaloid-tepals instead of petaloid tepals in whorls 1 and 2, and pistil-like organs

instead of stamens in whorl 3. However, effect of suppressing B function on the floral organ

development is still unclear in other plant species with two-layered petaloid tepals.

Lilium spp. (Liliaceae) are one of the most popular plants with two-layered petaloid tepals.

There have been some reports in Lilium spp. that expression of B class genes extends to whorl

1 in addition to whorls 2 and 3 [25–27]. Although these reports support the modified the ABC

model, no direct evidence by suppression or mutation of B class genes has been obtained in

Lilium spp. yet. Lilium spp. have some advantages for studying floral organ development as fol-

lows: (1) an efficient and reproducible system of Agrobacterium-mediated genetic transforma-

tion has been established [28]; (2) they have large floral organs compared with other plant

species with two-layered petaloid tepals; and (3) several major genes involving in floral organ

development, such as APETALA1/SQUAMOSA-, DEF/AP3-, GLO/PI- and AGAMOUS-like

genes, have so far been isolated [26, 27, 29–31].

In the present study, we produced and characterized transgenic plants of an oriental hybrid

lily, Lilium cv. Acapulco, carrying a CRES-T construct derived from the B class gene of Tricyr-
tis sp. in order to examine the effect of suppressing B function on the floral organ identity.

Materials and methods

Plant material and production of transgenic plants

Potted plants of Lilium cv. Acapulco were cultivated in a greenhouse without heating.

Agrobacterium tumefaciens strain EHA101/pBCSH-CrB was used for transformation. Full-

length coding region of the B class gene of Tricyrtis sp. (TrihDEFa) was fused with the ERF-

associated amphiphilic repression (EAR) motif repression domain (SRDX) [32], resulting in

TrihDEFa-SRDX. T-DNA region of the binary vector pBCSH-CrB contained TrihDEFa-SRDX
under the control of the cauliflower mosaic virus (CaMV) 35S promoter with a translational

enhancer sequence of tobacco mosaic virus (omega enhancer), and the hygromycin phospho-

transferase gene (HPT) under the control of the nopaline synthase (NOS) promoter as a select-

able marker gene (S1 Fig in S1 File).
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Inoculation and co-cultivation of filament-derived calli with Agrobacterium, selection of

transgenic cells and tissues, and regeneration of transgenic plants were performed as previ-

ously described [28]. The presence of HPT in putative transgenic plants was confirmed by

PCR analysis with the primer set hpt290-F and hpt290-R (S1 Table in S1 File).

Morphological characterization of transgenic plants

Transgenic plants were transplanted to pots and cultivated in a growth chamber. Three years

after cultivation, morphological characterization was performed during the flowering season.

The total numbers of papillae on the adaxial side of whorls 1 and 2 organs were counted. Scan-

ning electron microscopy (SEM) observation of the surface of whorls 1 and 2 organs was per-

formed as previously described [33]. The size of epidermal cells was measured using ImageJ

software [34]. Extraction and measurement of total anthocyanins in whorls 1 and 2 organs

were carried out as previously described [35].

RNA isolation and gene expression analysis

Total RNA was extracted using the RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) and

then treated with the RNase-Free DNase Set (QIAGEN, Hilden, Germany) according to the

manufacturer’s instructions. For cDNA synthesis, 500 ng of total RNA was reverse-transcribed

using the PrimeScript™ RT reagent Kit (Takara Bio Inc., Shiga, Japan) in accordance with the

manufacturer’s instructions.

For detecting endogenous genes for two main transcriptional regulator of the flavonoid bio-

synthesis [R2R3-type myeloblastosis (LhMYB12) and basic helix-loop-helix (LhbHLH2)] [36,

37], endogenous genes for five flavonoid biosynthetic enzymes [chalcone synthase (LhCHS),

flavanone-3-hydroxylase (LhF3H), flavonoid 3’-hydroxylase (LhF3’H), dihydroflavonol

4-reductase (LhDFR) and anthocyanin synthase (LhANS)], and the transgene (TrihDEFa-
SRDX), semi-quantitative RT-PCR was performed using the EmeraldAmp1MAX PCR Mas-

ter Mix (Takara Bio Inc., Shiga, Japan) on the T100™ Thermal Cycler (Bio-Rad, CA, USA).

Amplified products were analyzed by electrophoresis on 1.5% agarose gels. The actin gene of

Lilium sp. (LhACT) was used as an internal control.

Real-time RT-PCR was performed using the SYBR1 Premix Ex Taq™ II (Takara Bio Inc.,

Shiga, Japan) on the MiniOpticonTM Detecter (Bio-Rad, CA, USA) as previously described

[23]. The relative amounts of endogenous B class gene (LFDEF, LFGLOA and LFGLOB) tran-

scripts were calculated using the comparative cycle threshold method, and results were nor-

malized to LhACT.

Accession number of genes, primer sets and PCR conditions used for these analyses are

listed in S1 Table in S1 File.

Results

Morphological characterization of transgenic plants

Eighteen independent transgenic plants of Lilium cv. Acapulco carrying TrihDEFa-SRDX
were obtained and termed LiCrB (transgenic Lilies with CRES-T construct for B class genes)

strains. The presence of the transgene HPT was confirmed by PCR analysis (S2 Fig in S1 File).

Morphological characterization was performed three years after cultivation in pots during the

flowering season.

In wild-type plants (WT), flowers had deep pink-colored tepals in whorls 1 and 2, and

many papillae were formed on the adaxial side of these tepals (more than 300 papillae per

flower) (Figs 1 and 2). LiCrB strains could be classified into three types according to the degree
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of morphological alteration in floral organs. Type I LiCrB strains (LiCrB6 and LiCrB25)

showed severe morphological alterations in floral organs (Fig 1; Table 1). These strains pro-

duced non-fully-opened flowers (funnel-shaped flowers) with pale pink-colored and narrow

tepals in whorls 1 and 2. The number of papillae per flower much decreased in Type I LiCrB

strains compared with WT (76 and 48 papillae in LiCrB6 and LiCrB25, respectively) (Figs 1D

and 2). Type II LiCrB strains (LiCrB27 and LiCrB29) showed moderate morphological alter-

ations in floral organs (Fig 1E; S3 Fig in S1 File; Table 1). They produced moderately-opened-

flowers (cup-shaped flowers) with pale pink-colored and narrow tepals in whorls 1 and 2. In

Fig 1. Morphological characterization of the wild-type (WT) and transgenic plants (LiCrBs). Type I (LiCrB25),

Type II (LiCrB29) and Type III (LiCrB20) transgenic plants showed severe, moderate and no morphological

alterations, respectively. (A) Flowering plants of WT and LiCrB25. Bar = 10 cm. (B, C) Whorls 1 and 2 organs of (B)

WT and (C) LiCrB25. Bar = 5 cm. (D) Close-up of the adaxial side of whorls 1 and 2 organs of wild-type (WT) and

LiCrB25. Black arrowheads indicate papillae. Bar = 2 cm. (E) Flowers of WT, LiCrB25, LiCrB29 and LiCrB20. Bar = 5

cm.

https://doi.org/10.1371/journal.pone.0237176.g001
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contrast to Type I LiCrB strains, there were no large differences in the number of papillae per

flower between Type II LiCrB strains and WT (295 and 220 papillae in LiCrB27 and LiCrB29,

respectively) (Fig 2). Fourteen strains showed no apparent morphological alterations in any

floral organs, and they were classified into Type III LiCrB strains (Fig 1E; Table 1). All of the

LiCrB strains showed no morphological alterations in whorls 3 and 4 organs as well as in vege-

tative organs (S3 and S4 Figs in S1 File).

The surfaces of whorls 1 and 2 organs of WT and LiCrB25 (Type I) was observed through

SEM. In WT, adaxial and abaxial surfaces of the middle position of whorls 1 and 2 organs

mainly consisted of flat and complicated irregular-shaped cells (Fig 3A, 3B, 3E and 3F). On the

other hand, adaxial and abaxial surfaces of whorl 1 organs and abaxial surface of whorl 2

organs of LiCrB25 mainly consisted of relatively simple, rectangular cells (Fig 3C, 3D and 3H).

There were no apparent changes in the cell shape between WT and LiCrB25 in the basal and

distal position of whorls 1 and 2 organs (S5 Fig in S1 File). The surface area of epidermal cells

Fig 2. Number of papillae on the adaxial side of whorls 1 and 2 organs of wild-type (WT) and transgenic plants

(LiCrBs). Type I, Type II and Type III transgenic plants showed severe, moderate and no morphological alterations,

respectively.

https://doi.org/10.1371/journal.pone.0237176.g002

Table 1. Morphological characterization of wild-type plants and transgenic plants (LiCrBs) during the flowering season.

Plant

strain

Flower diameter

(cm)

Flower length

(cm) a
Flower diameter/

length

Pollen

fertility b
Whorl 1 organ

length (cm) c
Whorl 1 organ

width (cm) c
Whorl 2 organ

length (cm) c
Whorl 2 organ

width (cm) c

Wild-type 20.1 3.6 5.6 91.9±3.0 a 12.5±0.1 a 4.0±0.0 a 12.3±0.1 a 5.6±0.1 a

Type I

LiCrB6 13.6 10.2 1.3 65.5±6.6 c 10.5±0.2 b 2.7±0.1 de 10.6±0.1 cd 3.2±0.1 c

LiCrB25 9.2 9.9 0.9 53.5±3.6 cd 10.6±0.4 b 2.4±0.1 e 10.4±0.1 d 3.2±0.2 c

Type II

LiCrB27 15.8 6.8 2.3 46.2±4.1 d 11.1±0.1 b 2.9±0.0 cd 10.9±0.1 bcd 4.1±0.2 b

LiCrB29 13.4 8.5 1.6 37.9±1.9 d 11.0±0.2 b 2.8±0.0 de 10.8±0.2 bcd 3.8±0.3 bc

Type III

LiCrB20 18.4 3.2 5.8 74.3±1.7 b 11.4±0.3 ab 3.4±0.0 b 11.3±0.2 b 5.2±0.1 a

LiCrB30 19.0 3.8 5.0 78.4±3.5 ab 11.4±0.1 ab 3.4±0.2 bc 11.2±0.1 bc 5.3±0.0 a

a Vertical length from the base to the tip of flowers.
b Pollen fertility was accessed with acetocarmine staining. Values represent the mean ± standard error of five replicates. Means with different letters are significantly

different (P<0.05 by Turkey-Kramer’s test).
c Middle position of organs was measured. Values represent the mean ± standard error of the longest three organs for each strain. Means with different letters are

significantly different (P<0.05 by Turkey-Kramer’s test).

https://doi.org/10.1371/journal.pone.0237176.t001
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in the adaxial side of whorls 1 and 2 organs in LiCrB25 was significantly smaller than WT,

whereas there was no significant difference in the cell surface area in the abaxial side between

WT and LiCrB25 (Table 2). Many papillae consisting of raised epidermal cells were observed

on the adaxial surface of the basal position of whorls 1 and 2 organs in WT, whereas only a few

papillae were observed in LiCrB25 (S6 Fig in S1 File).

Measurement of the total anthocyanin content in transgenic plants

The total anthocyanin contents in whorls 1 and 2 organs of WT and LiCrB strains are shown

in Fig 4. Anthocyanin contents in LiCrB25 (Type I) and LiCrB29 (Type II) much decreased

compared with WT. In LiCrB20 (Type III), no difference in the anthocyanin content in whorl

2 organs was observed between WT and LiCrB20, although anthocyanin content slightly

decreased in whorl 1 organs.

Expression analysis of endogenous flavonoid biosynthesis-related genes

and transgene in transgenic plants

The relative expression levels of seven endogenous flavonoid biosynthesis-related genes

(LhMYB12, LhbHLH2, LhCHS, LhF3H, LhF3’H, LhDFR and LhANS) and transgene (Trih-
DEFa-SRDX) in whorls 1 and 2 organs of WT and LiCrB strains were analyzed by semi-quanti-

tative RT-PCR (Fig 5). Expression levels of all flavonoid biosynthesis-related genes in LiCrB25

(Type I) and LiCrB29 (Type II) greatly decreased compared with WT. On the other hand,

LiCrB20 (Type III) showed similar expression levels to WT.

Strong expressions of the transgene were observed in whorls 1 and 2 organs of LiCrB25 and

LiCrB29, whereas only a slight expression was observed in whorl 2 organs of LiCrB20. No

expression of the transgene was detected in whorls 1 and 2 organs of WT and whorl 1 organs

of LiCrB20.

Expression analysis of endogenous B class genes in transgenic plants

The relative amounts of transcripts of three endogenous B class genes (LFDEF, LFGLOA and

LFGLOB) in floral organs and leaves of WT and LiCrB strains were analyzed by real-time

Fig 3. SEM observation of epidermal cells of whorls 1 and 2 organs of wild-type plants (WT) and a Type I

transgenic plant showing a severe morphological alteration (LiCrB25). (A, C) Adaxial surface of the middle position

of whorl 1 organs of (A) WT and (C) LiCrB25. (B, D) Abaxial surface of the middle position of whorl 1 organs of (B)

WT and (D) LiCrB25. (E, G) Adaxial surface of the middle position of whorl 2 organs of (E) WT and (G) LiCrB25. (F,

H) Abaxial surface of the middle position of whorl 2 organs of (F) WT and (H) LiCrB25. Bars = 100 μm.

https://doi.org/10.1371/journal.pone.0237176.g003

Table 2. Surface area of epidermal cells in the adaxial and abaxial sides of whorls 1 and 2 organs of wild-type plants (WT) and a Type I transgenic plants showing a

severe morphological alteration (LiCrB25) a.

Floral

organ

Plant

stain

Basal position Middle position Distal position

Adaxial side

(mm2)

Abaxial side

(mm2)

Adaxial/

abaxial sides

Adaxial side

(mm2)

Abaxial side

(mm2)

Adaxial/

abaxial sides

Adaxial side

(mm2)

Abaxial side

(mm2)

Adaxial/

abaxial sides

Whorl 1

organ

WT 111.0±3.9 97.3±3.1 1.1±0.1 87.1±4.3 64.4±4.6 1.4±0.0 75.5±3.4 69.1±1.5 1.1±0.0

LiCrB25 51.7±1.6 � 86.3±8.0 ns. 0.6±0.1 � 56.2±4.9 � 70.7±8.4 ns. 0.8±0.0 � 58.5±1.2 � 68.3±3.5 ns. 0.9±0.1 �

Whorl 2

organ

WT 120.7±2.2 96.2±5.7 1.3±0.1 97.4±7.7 87.2±8.5 1.1±0.0 93.0±2.5 76.9±5.9 1.2±0.1

LiCrB25 67.3±6.3 � 74.6±7.6 ns. 0.9±0.1 � 52.6±3.2 � 57.3±4.9 � 0.9±0.0 � 53.8±2.4 � 67.7±3.4 ns. 0.8±0.1 �

a Surface area of epidermal cells was measured using the image analysis software ImageJ. Values represent the mean ± standard error of three replicates each consisted of

ten epidermal cells.

� and ns. indicate significant and non-significant, respectively, compared with WT (P<0.05 by Turkey-Kramer’s test).

https://doi.org/10.1371/journal.pone.0237176.t002
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RT-PCR (Fig 6). In WT, LFDEF transcripts were detected in whorls 1, 2 and 3 organs, whereas

transcripts of both LFGLOA and LFGLOB were detected in whorl 4 organs in addition to

whorls 1, 2 and 3 organs. LFDEF expression levels in whorls 1, 2 and 3 organs of LiCrB strains

largely decreased compared with WT, excepting for whorl 2 organs of LiCrB29 (Type II). Rela-

tive amounts of LFDEF transcripts in whorl 1 organs were decreased to 6.4, 10.7, 20.5 and

22.5% of WT in LiCrB25 (Type I), LiCrB6 (Type I), LiCrB29 (Type II) and LiCrB20 (Type III),

respectively. In addition, relative amounts of LFDEF transcripts in whorl 2 organs of LiCrB25

and LiCrB6 decreased to 21.0 and 46.4% of WT, respectively. In contrast to LFDEF, no large

differences in the relative amount of LFGLOA and LFGLOB transcripts in floral organs were

observed between WT and LiCrB strains.

Fig 4. Total anthocyanin content in whorls 1 and 2 organs of wild-type (WT) and transgenic plants (LiCrBs). Type

I (LiCrB25), Type II (LiCrB29) and Type III (LiCrB20) transgenic plants showed severe, moderate and no

morphological alterations, respectively. Total anthocyanin content on whorls 1 and 2 organs. Values represent the

mean ± standard error of triplicates. Values with different letters are significantly different (P<0.05 by Turkey-

Kramer’s test).

https://doi.org/10.1371/journal.pone.0237176.g004

Fig 5. RT-PCR analysis for expression of endogenous flavonoid biosynthesis-related genes (LhMYB12, LhbHLH2,

LhCHS, LhF3H, LhF3´H, LhDFR and LhANS) and transgene (TrihDEFa-SRDX) in whorls 1 and 2 organs of wild-

type (WT) and transgenic plants (LiCrBs). Type I (LiCrB25), Type II (LiCrB29) and Type III (LiCrB20) transgenic

plants showed severe, moderate and no morphological alterations, respectively. The actin gene of Lilium sp. (LhACT)

was used as an internal control.

https://doi.org/10.1371/journal.pone.0237176.g005
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Discussion

B class genes have an important role in petaloid organ development. In some plant species

with two-layered petaloid tepals, indirect evidence for the modified ABC model has been

obtained by detecting B class gene expression in whorl 1 in addition to whorl 2 [14–22]. In the

present study, expression of endogenous B class genes (LFDEF, LFGLOA and LFGLOB) were

observed in whorl 1 in addition to whorl 2 organs of WT, which is in agreement with the mod-

ified ABC model (Fig 6). LFGLOA and TFGLOB were slightly expressed in whorl 4 organs of

WT (Fig 6). Expression of B class genes in whorl 4 organs has also been reported in some

monocotyledonous plants producing flowers with two-layered petaloid tepals in whorls 1 and

2 such as Tricyrtis sp. [23], Agapanthus praecox [16], Muscari armeniacum [17, 18] and Tulipa
gesneriana [14]. Recently, Otani et al. [23] showed direct evidence for the modified ABC

model by suppression of B class genes in Tricyrtis sp. However, effect of suppressing B function

on the floral organ development is unclear in other plant species with two-layered petaloid

tepals. In the present study, we produced and characterized transgenic Lilium sp. plants with

suppressed B function by CRES-T.

Eighteen LiCrB strains carrying the CRES-T construct derived from the B class gene of Tri-
cyrtis sp. (TrihDEFa-SRDX) were obtained and classified into three types (Type I, II and III)

according to the degree of morphological alteration in floral organs. Type I and Type II LiCrB

strains showed severe and moderate morphological alterations in floral organs, respectively,

while no apparent morphological differences in floral organs were observed in Type III LiCrB

strains compared with WT (Fig 1). The degree of morphological alteration in LiCrB strains

was positively corelated with the expression level of the transgene TrihDEFa-SRDX (Fig 5),

while negatively corelated with the expression level of the endogenous B class gene LFDEF (Fig

6). B class genes have a positive autoregulatory feedback system that is important for the main-

tenance of their high expression levels in floral organs [38]. Thus, decreased expression levels

of LFDEF in LiCrB strains might reflect the degree of inhibition of the autoregulatory feedback

system by TrihDEFa-SRDX. Our results indicate that the LFDEF function may be suppressed

by TrihDEFa-SRDX expression leading to morphological alteration in floral organs.

In our previous study on CRES-T-mediated suppression of B function in Tricyrtis sp., some

transgenic plants developed greenish sepaloid tepals in whorls 1 and 2, and pistil-like organs in

whorl 3 [23]. However, no such significant alterations were observed in any LiCrB strains. One

Fig 6. Real-time RT-PCR analysis for expression of endogenous B class genes (LFDEF, LFGLOA and LFGLOB) in

floral organs and leaves of wild-type (WT) and transgenic plants (LiCrBs). Type I (LiCrB6 and LiCrB25), Type II

(LiCrB29) and Type III (LiCrB20) transgenic plants showed severe, moderate and no morphological alterations,

respectively. Relative amounts of transcripts of each gene were normalized to the actin gene of Lilium sp. (LhACT).

Values represent the means ± standard error of triplicates. Asterisk (�) indicates significant difference compared with

WT (P<0.05 by Turkey-Kramer’s test).

https://doi.org/10.1371/journal.pone.0237176.g006
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possible reason for incomplete morphological alteration in floral organs of LiCrB strains is

insufficient suppression of B function due to the use of the CRES-T construct derived from a

heterologous plant, Tricyrtis sp. In transgenic Pharbitis nil, suppression of C function by a

CRES-T construct derived from its own C class gene resulted in greater morphological effects

than that derived from a C class gene of A. thaliana [39]. Although deduced amino acid

sequences of TFDEF and ThirDEFa show high homology (87.8% of sequence identity and

95.2% of sequence similarity), there are some differences in the sequences of functional

domains such as MADS domain and K domain (S7 Fig in S1 File). Further studies are neces-

sary to examine the effect of suppressing B function in Lilium sp. by using a CRES-T construct

derived from its own B class gene.

In whorls 1 and 2, WT and Type III LiCrB strains developed deep pink-colored tepals,

whereas Type I and II LiCrB strains developed pale pink-colored tepals (Fig 1). The amounts

of total anthocyanins decreased significantly in whorls 1 and 2 organs of Type I and II LiCrB

strains (Fig 4). Expression levels of genes encoding flavonoid biosynthetic enzymes (LhCHS,

LhF3H, LhF3’H, LhDFR and LhANS) also decreased in these organs (Fig 5). In addition,

LhMYB12, which upregulates transcription of multiple flavonoid biosynthetic enzyme genes

in Lilium spp. [36], showed lower expression levels in whorls 1 and 2 organs of Type I and II

LiCrB strains compared with those of WT and Type III LiCrB strains (Fig 5). Therefore,

decreased expression of LhMYB12 may result in reduced transcription of flavonoid biosyn-

thetic enzyme genes, leading to suppressed anthocyanin synthesis in whorls 1 and 2 organs of

Type I and II LiCrB strains. In Torenia fournieri, CRES-T-mediated suppression of B function

induced reduction of the petaloid identity in whorl 2 organs, in which expression of flavonoid

biosynthesis-related gene expression and accumulation of anthocyanins decreased [40]. Thus,

pale pink-colored whorls 1 and 2 organs of LiCrB strains in the present study may resulted

from reduced petaloid tepal identity by suppression B function.

The size of epidermal cells on the adaxial surface of whorls 1 and 2 organs of Type I and

Type II LiCrB strains significantly decreased compared with those of WT, whereas there were

no apparent differences in the size of epidermal cells on the abaxial surface among WT, Type I

and Type II LiCrB strains (Fig 3; Table 2). Since cell expansion on the adaxial side of tepals is

involved in flower opening [41], non-fully-opened flowers of Type I and Type II LiCrB strains

may be resulted from an insufficient expansion of epidermal cells on the adaxial side of whorls

1 and 2 organs. A similar observation was obtained in whorls 1 and 2 organs of transgenic Tri-
cyrtis sp. with suppressed B function [23]. Non-fully-opening of flowers might be involved in

reduction of the petaloid identity and/or conversion of the petaloid identity into the sepaloid

identity in whorls 1 and 2 organs.

There were many papillae, which consisted of raised epidermal cells as suggested by Yama-

gishi and Akagi [42], on the adaxial surface of whorls 1 and 2 organs of WT, whereas only a

few papillae were observed in Type I LiCrB strains (Figs 1D and 2; S6 Fig in S1 File). In many

Lilium species and cultivars, including cv. Acapulco used in the present study, papilla forma-

tion on the adaxial surface of whorls 1 and 2 organs is one of the typical traits of petaloid tepals.

Although papillae are formed via controlled division of parenchymal and epidermal cells,

molecular mechanism of papilla formation in petaloid organs is still unclear. It is possible that

cell division patterning of epidermal cells may be changed by reduction of the petaloid tepal

identity, reading to decrease in the number of papillae in whorls 1 and 2 organs of Type I

LiCrB strains.

In the present study, suppression of B function induced reduction of the petaloid tepal

identity of whorls 1 and 2 organs of transgenic Lilium sp. This indicates that two-layered petal-

oid tepals in Lilium spp. may be caused by extended expression of B class MADS-box genes in

whorl 1 in addition to whorls 2 and 3 proposed as the modified ABC model. The results
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obtained in the present study in combination with those of our previous study for Tricyrtis sp.

[23] strongly support the applicability of the modified ABC model in liliaceous plants.
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