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Full counting statistics of electron transport is of fundamental importance for a deeper understanding of the
underlying physical processes in quantum transport in nanoscale devices. The backaction effect from a
detector on the nanoscale devices is also essential due to its inevitable presence in experiments. Here we
investigate the backaction of a charge detector in the form of a quantum point contact (QPC) on the
counting statistics of a biased double quantum dot (DQD). We show that this inevitable QPC-induced
backaction can have profound effects on the counting statistics under certain conditions, e.g., changing the
shot noise from being sub-Poissonian to super-Poissonian, and changing the skewness from being positive
to negative. Also, we show that both Fano factor and skewness can be either enhanced or suppressed by
increasing the energy difference between two single-dot levels of the DQD under the detector-induced
backaction.

C
urrent fluctuations in nanoscale systems provide key insights into the nature of charge transfer beyond
what is obtainable from a conductance measurement alone (see, e.g., Refs. 1 and 2 for recent reviews). An
in-depth understanding, however, may require us to go beyond the first-order and even the second-order

current correlation functions (corresponding to the average current and the shot noise respectively) to study the
full counting statistics3,4 which yields all zero-frequency correlation functions at once. Real-time detection of the
tunneling of individual electrons, an important step towards experimental measurement of the full counting
statistics, has recently been achieved in various QD systems5–7. In particular, since its measurement in a single QD
for the first time8, counting statistics has become an important experimental tool to examine interaction and
coherence effects in nanoscale systems under out-of-equilibrium conditions9–13. More recently, counting statistics
was applied to characterize correlations in both classical and quantum systems14.

However, a pronounced effect known as backaction on the counting statistics of electron transport2,15 is
inevitably introduced during measurements made by even most noninvasive detectors such as a quantum point
contact (QPC)16. Very recently, such backaction has been investigated experimentally in a single QD16,17. In
contrast to a single QD, a double quantum dot (DQD)18 involves coherent coupling between two different dots,
and therefore can be used to demonstrate prominent coherent effects19. The counting statistics for DQDs has been
studied theoretically20 and experimentally only for noise properties21,22. In a DQD measured by a QPC, both the
current and the shot noise of the QPC have been previously investigated23–26. In addition, for a zero-bias DQD, the
effect of charge-detector-induced backaction was studied theoretically27 to explain experimental observations of
inelastic electron tunneling28. However, to the best of our knowledge, the impacts of charge-detector-induced
backaction on the full counting statistics in these QD systems have not yet been studied.

Here we investigate the counting statistics of electron transport through a biased DQD under measurement by
a charge detector. We demonstrate that this inevitable backaction can indeed have profound effects on the
counting statistics under certain conditions for the DQD. In particular, it can change the nature of the shot noise
from being sub-Poissonian to super-Poissonian and also change the skewness from being positive to negative.
Moreover, we show that when the energy difference between two single-dot levels of the DQD increases, both
Fano factor and skewness can be either enhanced or suppressed under the detector-induced backaction. These
QPC-backaction-induced effects are expected to be experimentally observable with currently existing technolo-
gies. Apart from a deeper understanding of experimental observations, this study may also shed light on how to
control these QD systems using the backaction of a charge detector.
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Results
We focus on a setup consisting of a lateral DQD, which is coupled to
the source and the drain electrodes, and measured by a nearby QPC
[see Figure 1(a)]. The lateral DQD is formed by properly tuning the
voltages applied to the corresponding gates. Here we consider a
Coulomb-blockade regime with strong intradot and interdot
Coulomb interactions, so that only one electron is allowed in the
DQD system. The states of the DQD are represented by the occu-
pation states j1æ and j2æ, denoting one electron in the left and the
right dots, respectively [see Figure 1(b)].

The total Hamiltonian of the whole system can be written as

H~HDQDzHleadszHQPCzHTzHdet, ð1Þ

where (we set 5 1)

HDQD~
e

2
szzVsx, ð2Þ

Hleads~
X

s
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{
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rscrs

� �
, ð3Þ
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X
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vSkc{SkcSkzvDqc{DqcDq

� �
, ð4Þ
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zH:c:

h i
, ð5Þ

Hdet~
X

kq

T{fszð Þ c{SkcDqzc{DqcSk

� �
: ð6Þ

Here, HDQD, Hleads, and HQPC are, respectively, the free
Hamiltonians of the DQD, the electrodes coupled to the DQD, and

the QPC without the tunneling term. In the DQD Hamiltonian, e is
the energy difference between the two single-dot levels and V the
interdot tunneling-coupling strength. Also, we define pseudospin
operators sz:a{2a2{a{1a1 and sx:a{2a1za{1a2, with a1 (a2) being
the annihilation operator for an electron staying at the left (right) dot.
cls (crs) is the annihilation operator for electrons in the source (drain)
reservoir, i.e., the left (right) electrode of the DQD, while cSk (cDq) is
the annihilation operator for electrons in the source (drain) reservoir
of the QPC with momentum k (q). HT gives the tunneling-coupling
Hamiltonian between the DQD and the two electrodes where the
counting operator Ur U{

r

� �
decreases (increases) the number of elec-

trons that have tunneled into the right electrode (via the barrier
between the DQD and the right electrode)29. These counting opera-
tors are introduced to keep track of the progress of the tunneling
processes by successive electrons. Finally, Hdet describes tunnelings
in the QPC which depends on the electron occupation of the DQD,
owing to electrostatic couplings between the DQD and the QPC. We
define T ; T0 2 (f2 1 f1)/2 and f ; (f2 2 f1)/2, so that the transition
amplitudes of the QPC, when an extra electron staying at the left and
the right dots, equal T 1 f and T 2 f, respectively30.

Counting statistics. To study the counting statistics of the electron
transport through a DQD system, it is essential to know the
probability P(n, t) of n electrons having been transported from the
DQD to the right electrode during a period of time t. It is related to
the cumulant generating function G(x, t) defined by2

e{G x,tð Þ~
X

n

P n,tð Þeixn: ð7Þ

We consider the time interval t much longer than the tunneling time
of an electron through the DQD system, so that transient properties
(i.e., finite-frequency counting statistics)31–33 are insignificant. The
derivative of the cumulant generating function with respect to the
counting field x at x 5 0 yields the j-th cumulant, i.e., Cj 5

2(2ihx)jG(x, t)jxR0, where x is a field conjugate to n (see, e.g., Ref.
2). These cumulants carry complete information on the counting
statistics of the DQD system. For instance, the average current and
the shot noise can be expressed as I 5 eC1/t and S 5 2e2C2/t. Thus, the
Fano factor F, which is used to characterize the bunching and anti-
bunching phenomena in the transport processes, is given by F 5 S/
2eI 5 C2/C1. The skewness is defined by K 5 C3/C1, which
characterizes the asymmetric degree of the distribution of the
transported electrons around its mean value.

On the other hand, the probability-distribution function of the
number of transported electrons can also be expressed as

P n,tð Þ~rn
00 tð Þzrn

gg tð Þzrn
ee tð Þ, ð8Þ

where rn
ij tð Þ i,j[ 0,g,ef gð Þ denote the reduced density matrix ele-

ments of the DQD at a given number n of electrons transported from
the DQD to the right electrode in time t. Here 0, g, and e denote the
eigenstates j0æ, jgæ, and jeæ of the DQD, which correspond to no
electron staying in the DQD, one electron in the ground state, and
one electron in the excited state, respectively [see horizontal solid
lines in Figure 1(b)]. From equations (7) and (8), we have

G x,tð Þ~{ln
X

n

rn
00 tð Þzrn

gg tð Þzrn
ee tð Þ

h i
eixn

( )

~{ln r00 x,tð Þzrgg x,tð Þzree x,tð Þ
h i

~{ln Tr rij x,tð Þ
h i

,

ð9Þ

with

Figure 1 | The coupled QDQ-QPC system. (a) Schematic diagram of a

DQD coupled to two electrodes (S and D) via tunneling barriers. A QPC

used for measuring the DQD electron states yields backaction on the DQD.

(b) Electronic transition between two eigenstates | gæ and | eæ of the DQD

(with a transition energy D) can be induced by the charge detector QPC.

The energy difference e between the two single-dot levels (dashed lines) can

be varied by tuning the gate voltages.
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rij x,tð Þ~
X

n

rn
ij tð Þeixn: ð10Þ

Note that the reduced density matrix elements rn
ij tð Þ in equation (10)

satisfy a master equation (see Methods) and rij(x, t) are just the
Fourier transforms of these matrix elements20,22. Below we manage
to obtain the cumulant generating function G(x, t) at a long time t.

Based on the master equation of rn
ij tð Þ, we can derive the following

equation of motion:

L%
Lt

~{M xð Þ%, ð11Þ

with

M xð Þ~

CL {b2CReix {a2CReix

{a2CL b2CRz ex { re

{b2CL { ex a2CRz re

{abCL {
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2

abCRzg re
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BBBBBBBBB@
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{abCRz2g de 0

1
2
CRz2g2

de {D

D
1
2
CRz2g2

de{ ex{ re

1
CCCCCCCCCCCA

,

ð12Þ

where ; (r00(x,t), rgg(x, t), ree(x, t), Re[reg(x, t)], Im[reg(x, t)])T.
Note that r0g(x, t) and r0e(x, t) as well as their complex conjugates are
decoupled from the reduced density matrix elements given above
and therefore are not included. In the matrixM xð Þ, a 5 cos(h/2),

b 5 sin(h/2), and g 5 cos h, with tan h 5 2V/e; D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 4V2

p
, and

CL Rð Þ~2pgL Rð ÞV
2
lk rkð Þ is the rate of electron tunneling through the

barrier between the DQD and the left (right) electrode. Here, gi (i
5 L, or R) denotes the density of states at the left or the right electrode
of the DQD, which is assumed to be constant over the relevant energy
range. The QPC-induced excitation rate ex, relaxation rate re, and
dephasing rate de are given by

ex~l H eVQPC{Dð ÞzH {eVQPC{Dð Þ½ �, ð13Þ

re~l H eVQPCzDð ÞzH {eVQPCzDð Þ½ �, ð14Þ

de~l H eVQPCð ÞzH {eVQPCð Þ½ �, ð15Þ

where H(x) 5 (x 1 jxj)/2, and l~2pgSgDf2, with gS (gD) being the
density of states of the source (drain) electrode in the QPC. We also
assume gS and gD to be constant over the relevant energies34. Let Lmin

be the minimal eigenvalues ofM xð Þ in equation (12). At a long time
t, the behavior of (x, t) is dominantly governed by36–40

% x,tð Þ~e{Lmint % x,0ð Þ: ð16Þ

Therefore, we have rii x,tð Þ~e{Lmintrii x,0ð Þ at a long time t. Then, it
follows from equation (9) that the cumulant generating function at
both a small x and a long time t is given by

G x,tð Þ~Lmint, ð17Þ

because r00 x,0ð Þzrgg x,0ð Þzree x,0ð Þ
h i

x?0~
P

i

P
nrn

ii 0ð Þ~
P

irii 0ð Þ
��

~1.

Note that the dephasing rate given in equation (15) is proportional
to the bias voltage of the QPC, which is consistent with a previous
study23. In addition, our approach is based on the Born-Markov
approximation (see Methods), which applies when the rates induced
by the backaction from the QPC are weak. With the transition rate of
a single electron hopping from one reservoir of the QPC to the other,
we can use the Landauer formula to obtain the transition probabil-
ity23 and then have gSgD 5 IQPC /(2pT2e2VQPC), where IQPC and
VQPC are the current and the bias voltage of the QPC with the densi-
ties of states gS and gD at the source and the drain reservoirs.
Following a recent experiment reported in Ref. 35, we take IQPC 5
500 nA and VQPC 5 0.5 meV to determine gSgD. In addition, we
choose f/T 5 0.044 as in Ref. 30, so that the QPC conductance
changes by , 1% if the number of electrons in the DQD changes
by one35.

Detector-induced backaction under resonance condition. In order
to obtain some compact analytical results for the counting statistics,
we first consider, for simplicity, the resonance case where energy
difference between two single-dot levels is zero (i.e., e 5 0). For
instance, the charge current through the DQD is obtained as

I~
4eCLCRV

2

J
, ð18Þ

and shot noise is

S~
8e2CLCRV

2f

J3 , ð19Þ

where

J~CLC
2
Rz4 2CLzCRð ÞV2{2CLCR exz reð Þ, ð20Þ

f ~16C2
RV

4zC2
L C4

R{8C2
RV

2z64V4� �
z4C2

LCR

| exz reð Þ {C2
R{4V2zCR exz reð Þ

� 	
:

ð21Þ

Then, the Fano factor F ; S/2eI also follows straightforwardly.
From equations (18)–(21), it is clear that the charge current I, the

shot noise S, and hence the Fano factor F depend on the excitation
rate ex and the relaxation rate re induced by the QPC. These reveal
the impacts of the backaction from the charge detector. More impor-
tantly, because of the nontrivial dependence of both ex and re on
the applied voltage across the QPC [see equations (13) and (14)], the
presence of the charge-detector-induced backaction can be experi-
mentally checked. Note that in the case of no backaction, where ex

and re in equations (18) and (19) are equal to zero, our results reduce
to the previous results obtained by other approaches41,42. For simpli-
city, the temperature is here chosen to be zero because it is extremely
low in quantum-transport experiments. Other parameters like the
interdot coupling strength V and the tunneling rate CL are taken
from the experimental data21,22.

The charge current obtained from the cumulant C1 of the counting
statistics is calculated both with and without backaction, and the
results are presented in Figure 2. When the backaction from the
charge detector is taken into account, we observe that the current
through the DQD is significantly enhanced as shown in Figure 2(a).
In particular, when jeVQPCj# D, a plateau with a constant current is
observed [see, e.g., Figure 2(b)]. This plateau corresponds to a regime
in which QPC-induced excitations is suppressed but there is still a
constant relaxation rate contributed by the presence of the QPC, as
can be interpreted from equations (13) and (14). Physically, a critical
energy D exists for the QPC-induced excitation of an electron in the
DQD and is hence required to change the current27,28. Beyond the
regime of constant current, i.e., jeVQPCj. D, it is clearly shown that
in the region shown in Figure 2(b) the current increases with the
magnitude of the voltage applied across the QPC in a nearly linear
manner.
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For the Fano factor F ; S/2eI, our results are given in Figure 3. As
shown in Figure 3(a), the nature of the shot noise can be changed
from sub-Poissonian (F , 1) to super-Poissonian (F . 1), and vice
versa, under the QPC-induced backaction. Without backaction, e.g.,
when the QPC is decoupled to the DQD, the Fano factor is always
smaller than one, i.e., sub-Poissonian, implying the anti-bunching of
electrons [see the dashed line in Figure 3(b)]. If QPC-induced back-
action is considered but with a condition jeVQPCj # D, we find a
plateau similar to that in the current. As mentioned above, the elec-
tron transport in this regime does not involve QPC-induced excita-
tions. Outside this plateau (i.e. jeVQPCj . D), the Fano factor
increases with jVQPCj. For a sufficiently large bias, we can get F 5

1 [see Figures 3(b) and the solid curve in Figure 3(a)], indicating that
the electron transport is uncorrelated in time and is described
by Poissonian statistics. Beyond this large bias, we have F . 1.
Thus, bunching of electrons in the transport through the DQD
occurs, resulting in super-Poissonian noise. Physically, the effec-
tive tunneling rates for two eigenstate channels are obtained as

C
gð Þ

R ~b2CRz ex and C
eð Þ

R ~a2CRz re (see Methods). Without

backaction, i.e., re 5 ex 5 0, it follows that C gð Þ
R ~C

eð Þ
R under the

resonance condition (i.e., e 5 0) because of a 5 b. This corresponds
to sub-Poissonian noise (i.e., F , 1). For example, F < 0.39 for the
dashed line in Figure 3(b). When the detector-induced backaction is
included, i.e., re, ex ? 0, the effective tunneling rates become

unequal (i.e., C eð Þ
R =C

gð Þ
R ) even if a 5 b under the resonance con-

dition. This increases F but F is still smaller than 1 for small values of
jeVQPCj. However, when jeVQPCj further increases, it enhances re

and ex [see equations (13) and (14)], i.e., the relaxation and the
excitation. This makes the two effective tunneling rates more asym-
metric, yielding F . 1 (i.e., super-Poissonian noise) at large values of
jeVQPCj. Therefore, the change of shot noise from being sub-
Poissonian to super-Poissonian is due to the effect of dynamical
blocked channels43–45 induced by the QPC backaction.

We also numerically calculate the skewness K 5 C3/C1 (see
Figure 4). As demonstrated in Figure 4(a), the skewness can be
changed from being positive (K . 0) to negative (K , 0), and vice
versa, under the QPC-induced backaction. Here K 5 0 corresponds
to a symmetric Gaussian distribution of electron tunneling, where
the tunneling of the larger number of electrons in a given time dura-
tion occurs with the same probability as the tunneling of the smaller
number of electrons, with respect to a mean value. For K . 0 (K , 0),
the distribution of electron tunneling becomes asymmetric with the
tunneling of the larger number of electrons in a given duration
occurring with a higher (lower) probability. Without backaction,
the skewness is always positive [see the dashed line in Figure 4(b)].
When QPC-induced backaction is included but with jeVQPCj# D, a
plateau similar to that in either current or Fano factor appears. In this
region, QPC-induced excitations are not involved in the electron

Figure 3 | Fano factor under QPC-induced backaction at the resonance
condition. (a) Fano factor F versus QPC bias energy eVQPC and the

tunneling rate CR. (b) Fano factor versus the bias energy eVQPC for a given

tunneling rate CR 5 0.15 meV. Other parameters are the same as in

Figure 2.

Figure 2 | Current under QPC-induced backaction at the resonance
condition. (a) Current I versus the QPC bias energy eVQPC and the

tunneling rate CR. (b) Current I versus the QPC bias energy eVQPC for a

given tunneling rate CR 5 0.15 meV. We use typical experimental

parameters V 5 0.1 meV and CL 5 0.05 meV from Refs. 21 and 22.
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transport. Outside this region (i.e., jeVQPCj.D), the skewness can be
either positive or negative, depending on the values of CR and
jeVQPCj [see Figure 4(b) and the regions surrounded by solid curves
in Figure 4(a)]. This indicates that the distribution of transported
electrons can deviate from the Gaussian in an opposite way.

Detector-induced backaction under off-resonance condition.
Note that the QPC-induced dephasing is not discussed above. This
is because such dephasing with a rate de (5 ljeVQPCj) does not
induce any transitions between different states of the DQD.
However, it is known that dephasing produces broadening of the
energy levels of the DQD23, and then can affect the current.
Indeed, in this case, the resonance condition (i.e., e 5 0) may be
violated. Below we numerically study the backaction effect under
the off-resonance condition (i.e., e ? 0) because analytical results
cannot be derived in this more general case.

To investigate the effect of the energy difference e on the detector-
induced backaction, we calculate the current, the shot noise, the Fano
factor, and the skewness using the same parameters as in Figures 2(b)
and 3(b). In Figure 5(a), the dotted curve shows the behavior of the
current under the resonance condition (i.e., e 5 0). When the energy
difference e increases, the current decreases [see the dashed and solid
curves in Figure 5(a)]. Moreover, within the region jeVQPCj, D, the
current decreases with increasing jeVQPCj under the off-resonance
condition (i.e., e ? 0). Outside the region, i.e., jeVQPCj $ D, the
current varies more nonlinearly with the voltage VQPC, as compared

with the current under e 5 0. Physically, the increase of e, e.g., from e
5 0 to 0.2 meV, makes the electron tunneling between the two dots
more off-resonant, so the current through them decreases23. In addi-
tion, the QPC-induced dephasing can yield the broadening of the
energy levels at a given nonzero e, which can further reduce the
current23. The effect of dephasing is contrary to the effects of excita-
tion and relaxation which increase the current [see equation (18)]. As
a result, these two opposite effects compete in the electron-tunneling
processes at a given nonzero e. Within the region jeVQPCj , D, the
dephasing effect dominates, leading to a decreasing current with the
increase of jeVQPCj. Outside this region, i.e., jeVQPCj . D, both
relaxation and excitation processes play an important role, so the
current increases with jeVQPCj.

The results of the shot noise (i.e., S/2e) are shown in Figure 5(b).
The shot noise decreases with the increase of the energy difference e.
At a given nonzero e, the shot noise decreases with increasing jeVQPCj
within the region jeVQPCj, D. Outside this region, i.e., jeVQPCj. D,
the shot noise increases with jeVQPCj. These behaviors are similar to
those of the current. From both current and shot noise, the Fano
factor is straightforwardly obtained, as shown in Figure 5(c). When
jeVQPCj is small, the Fano factor increases with the energy difference
e. However, for large values of jeVQPCj, Fano factor is suppressed.
Moreover, the Fano factor first decreases and then increases with
jeVQPCj at a given nonzero e. These behaviors can be deduced from
the current in Figure 5(a) and the shot noise in Figure 5(b) since F 5

S/2eI. Physically, the off-resonance electron tunneling between two
dots is enhanced when increasing e. This off-resonance makes the

two eigenstate channels more asymmetric (i.e., C eð Þ
R =C

gð Þ
R ) around

the region jeVQPCj , D, and then the Fano factor increases due to
dynamical blockaded channels43–45. For large values of jeVQPCjwhere
backaction becomes strong, the decrease of the Fano factor with
increasing e may be due to the QPC-induced backaction.

The results of the skewness are shown in Figure 5(d). For small
values of jeVQPCj, the skewness increases with e. However, the skew-
ness is suppressed when jeVQPCj becomes large. Also, the skewness
first decreases and then increases with jeVQPCj at a given nonzero e.
These behaviors are similar to those of the Fano factor, which also
indicate that the off-resonance electron tunneling dominates for
small values of jeVQPCj and the QPC-induced backaction plays an
important role for large values of jeVQPCj.

Discussion
Note that in the strong Coulomb-blockade regime, we only need to
consider the lowest two energy levels of the DQD. In this aspect, it is
similar to the single two-level dot in Ref. 45. However, the DQD are
different from the single two-level dot in other aspects. For instance,
the DQD provides more controllabilities than a single quantum dot.
It can be tuned by not only the two single-dot levels of the DQD but
also the interdot tunneling strength via gate voltages. However, in a
single quantum dot, only the level spacing can be tuned by the trap
potential of the dot. Also, the electron transport through a single
quantum dot only involves the tunneling rates CL and CR, while
the electron transport through the DQD involves the effective

tunneling rates of the two eigenstate channels, i.e., C gð Þ
L ~a2CL, C eð Þ

L

~b2CL, C
gð Þ

R ~b2CRz ex and C
eð Þ

R ~a2CRz re (see Methods),
which depend on the energy difference e of the two single-dot levels
and the tunneling strength V between these two levels. As seen in
Methods, both a and b are functions of e and V. Moreover, in our
considered setup, the QPC can induce excitation and relaxation as
well as dephasing on the electron that tunnels through the DQD [see
the interaction Hamiltonian in the eigenstate basis, i.e., equations
(23), (25) and (26) in Methods]. This is also different from a single
quantum dot because the QPC can only induce dephasing on the
electron that tunnels through this single dot8.

Figure 4 | Skewness under QPC-induced backaction at the resonance
condition. (a) Skewness K versus QPC bias energy eVQPC and the

tunneling rate CR. (b) Skewness versus the bias energy eVQPC for a given

tunneling rate CR 5 0.25 meV. Other parameters are the same as in

Figure 2.
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In summary, we have studied the unavoidable detector-induced
backaction on the counting statistics of a biased DQD. We find that
this backaction has profound effects on the counting statistics, e.g.,
changing the shot noise from being sub-Poissonian regime to super-
Poissonian, and changing the skewness from being positive to nega-
tive. We also show that when the energy difference between two
single-dot levels of the DQD increases, both Fano factor and skew-
ness can be either enhanced or suppressed under the detector-
induced backaction. These backaction effects can be experimentally
examined by using the current technologies. Also, our results con-
tribute to possible fine manipulation of quantum transport processes
using the backaction of a charge detector.

Methods
Quantum dynamics of the DQD. We derive a master equation to describe the
quantum dynamics of the DQD27, which is used to calculate the counting statistics. In
the eigenstate basis, the DQD Hamiltonian can be written as

HDQD~
D

2
ej i eh j{ gj i gh jð Þ, ð22Þ

where D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2z4V2

p
is the energy splitting of the two eigenstates of the DQD given

by jgæ 5 aj1æ 2 bj2æ, and jeæ 5 bj1æ 1 aj2æ, with a 5 cos(h/2), b 5 sin(h/2), and tan h
5 2V/e. In the interaction picture with the unperturbed Hamiltonian H0 ; HDQD 1

Hleads 1 HQPC, the interaction Hamiltonian HI ; HT 1 Hdet can be written as

Hdet~X tð ÞY tð Þ, ð23Þ

HT tð Þ~
X

s

c{ls aag e{iDt=2zbaeeiDt=2
� �

eivls tzU{
r c{rs

h

| aaeeiDt=2{bag e{iDt=2t
� �

eivrs tzH:c:
	
,

ð24Þ

where

X tð Þ~
X3

n~1

Uneivn t , ð25Þ

Y tð Þ~
X

kq

V{
kq tð ÞzVkq tð Þ, ð26Þ

and U1 5 fjeæÆgj, U2 5 fjgæÆej, U3 5 T 2 f cos h z, v1 5 2v2 5 D, v3 5 0,
Vkq tð Þ~c{DqcSke{i vSk{vDkð Þt . ae and ag are annihilation operators for eigenstates jeæ
and jgæ, respectively.

Applying the Born-Markov approximation and tracing over the degrees of freedom
of the QPC, the quantum dynamics of the DQD system in the Schrödinger picture is
governed by the master equation,

_r tð Þ~{i HDQD,r tð Þ½ �zLdr tð ÞzLT r tð Þ, ð27Þ

with

Ldr tð Þ~
X3

i,j~1,i=j

D Ui½ �r tð ÞzD Ui,Uj
� 	

r tð Þ

 �

|l H eVQPC{við ÞzH {eVQPC{við Þ½ �,

ð28Þ

Ldr tð Þ~a2CLD a{
g

h i
r tð Þzb2CLD a{

e

� 	
r tð Þ

za2CRD aeU
{� 	

r tð Þzb2CRD agU
{� 	

r tð Þ

zabCL a{e ,r tð Þag
� 	


z a{g ,r tð Þae

h i
z a{g ,r tð Þae

h i
z a{

e ,r tð Þag
� 	o

{abCR aeU
{,r tð Þa{

gU
h in

z agU
{r tð Þ,a{eU

� 	
z a{gU

{,r tð Þa{
eU

h i
z aeU

{r tð Þ,a{
gU

h io
:

ð29Þ

Here, r (t) is the reduced density matrix of the DQD system. The theta functions H
(6eVQPC 2 vi) appear when tracing over the degrees of freedom of the QPC, i.e.,Ð mL

{?

Ðz?
mR

gsgDdvkdvq
Ðz?

0 dteivte{i vk{vqð Þt c{SkcDqc{DqcSk

D E
~pgSgDH eVQPC{vð Þ,

and
Ðz?

mL

Ð mR

{? gsgDdvkdvq
Ðz?

0 dteivtei vk{vqð Þt c{DqcSkc{SkcDq

D E
~pgSgDH

{eVQPC{vð Þ, with eVQPC 5 mL 2 mR, where mL and mR are the chemical potentials of
the source and drain electrodes of the QPC. For v . 0, the QPC-induced excitation
occurs when jeVQPCj. v [see equation (13)]. For v , 0 or v 5 0, the QPC-induced
excitation or dephasing occurs, respectively [see equations (14) and (15)]. The
superoperator D, acting on any single or double operator, is defined as

Figure 5 | Current, shot noise, Fano factor and skewness under QPC-induced backaction at the off-resonance condition. (a) Current I, (b) shot noise,

(c) Fano factor F, and (d) skewness K versus the QPC bias energy eVQPC for different values of the energy difference e between two single-dot levels of the

DQD. We use a typical experimental parameter CR 5 0.15 meV. Other parameters are the same as in Figure 2.
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D A½ �r:ArA{{
1
2

A{Ar{
1
2

rA{A, ð30Þ

D A,B½ �r: 1
2

ArB{zBrA{{B{Ar{rA{B
� �

: ð31Þ

From equation (27) and the relations

n U{
r rUr

�� ��n� 
~r n{1ð Þ, n UrrU

{
r

�� ��n� 
~r nz1ð Þ, ð32Þ

n U{
rUrr

�� ��n� 
~r nð Þ, n UrU

{
r r

�� ��n� 
~r nð Þ, ð33Þ

where n is the number of electrons that have tunneled to the right electrode of the
DQD, we obtain the n-resolved equation of motion for each reduced density matrix
element:

_r
nð Þ

00 ~{CLr
nð Þ

00 zb2CRr n{1ð Þ
gg za2CRr n{1ð Þ

ee

{abCR r n{1ð Þ
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� �
,

ð34Þ
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� �
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gg z rer nð Þ
ee

z
1
2
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� �
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eg zr nð Þ
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� �
,

ð35Þ

_r nð Þ
ee ~b2CLr
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00 z exr nð Þ

gg { a2CRz re
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ee

z
1
2

abCR{g de

� �
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eg zr nð Þ
ge

� �
,

ð36Þ

_r nð Þ
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eg zabCLr
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00 z
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2
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ee {
1
2
CRz2g2

de

� �
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{
1
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In particular, we obtain the tunneling rates for two eigenstate channels C gð Þ
L ~a2CL ,

C
eð Þ

L ~b2CL , C gð Þ
R ~b2CRz ex, and C

eð Þ
R ~a2CRz re.
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