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Abstract
Extensive studies on the taxonomic resolution required for bioassessment purposes 
have determined that resolution above species level (genus, family) is sufficient for 
their use as indicators of relevant environmental pressures. The high‐throughput se-
quencing (HTS) and meta‐barcoding methods now used for bioassessment tradition-
ally employ an arbitrary sequence similarity threshold (SST) around 95% or 97% to 
cluster sequences into operational taxonomic units, which is considered descriptive 
of species‐level resolution. In this study, we analyzed the effect of the SST on the 
resulting diatom‐based ecological quality index, which is based on OTU abundance 
distribution along a defined environmental gradient, ideally avoiding taxonomic as-
signments that could result in high rates of unclassified OTUs and biased final values. 
A total of 90 biofilm samples were collected in 2014 and 2015 from 51 stream sites 
on Mayotte Island in parallel with measures of relevant physical and chemical param-
eters. HTS sequencing was performed on the biofilms using the rbcL region as the 
genetic marker and diatom‐specific primers. Hierarchical clustering was used to 
group sequences into OTUs using 20 experimental SST levels (80%–99%). An OTU‐
based quality index (IdxOTU) was developed based on a weighted average equation 
using the abundance profiles of the OTUs. The developed IdxOTU revealed significant 
correlations between the IdxOTU values and the reference pressure gradient, which 
reached maximal performance using an SST of 90% (well above species level delimi-
tation). We observed an interesting and important trade‐off with the power to dis-
criminate between sampling sites and index stability that will greatly inform future 
applications of the index. Taken together, the results from this study detail a thor-
oughly optimized and validated approach to generating robust, reproducible, and 
complete indexes that will greatly facilitate effective and efficient environmental 
monitoring.
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1  | INTRODUC TION

Benthic diatoms are widely used as ecological indicators for bod-
ies of water due to their short generation time, large diversity, high 
and sensitivity to environmental changes (Mann & Vanormelingen, 
2013). They serve as a proxy for the entire phytobenthos (Kelly, 
King, Jones, Barker, & Jamieson, 2008), which is one of the five bi-
ological quality elements (BQEs) required by the European Water 
Framework Directive (WFD) for the assessment of the ecological 
quality of bodies of water (European Commission, 2000).

Diatom‐based quality indices are generally calculated using 
a weighted average equation (Zelinka & Marvan, 1961) based on 
the species’ ecological optimum and tolerance, as defined by its 
abundance profile along a pollution gradient. Each index has its 
own reference database that contains the ecological values (opti-
mum and tolerance) of a set of species. Diatom studies are largely 
dedicated to rigorously characterizing specimens down to the fin-
est taxonomic level possible (species, subspecies), even though 
it is often challenging and not necessary for bioassessment pur-
poses (Lavoie, Dillon, & Campeau, 2009; Rimet & Bouchez, 2012). 
Microscopy‐based identification of diatoms is based on their 
morphological attributes and thus carries several drawbacks. The 
process is time‐consuming and requires experienced analysts. 
Furthermore, misidentifications are common and cause discrep-
ancies in the species inventories of different laboratories, which 
must be regularly rectified (Kahlert et al., 2009, 2012 ). Moreover, 
different indices may have different ecological values for the 
same species because their profiles were defined from different 
ecoregions with limited range of environmental variables (Besse‐
Lototskaya, Verdonschot, Coste, & Vijver, 2011).

DNA barcoding has enabled the rapid development of novel mo-
lecular techniques that have greatly improved the quality of species 
identification (Hebert, Cywinska, Ball, & deWaard, 2003). These 
approaches employ standard markers to identify taxa‐specific se-
quences in the DNA of the organisms in question to serve as that 
organism’s barcode. These DNA‐based methods are efficient and 
reduce misidentifications due to phenotypic plasticity (Leliaert et al., 
2014) or cryptic diversity (Kaczmarska, Mather, Luddington, Muise, 
& Ehrman, 2014). High‐throughput sequencing (HTS) technology, in 
combination with the aforementioned meta‐barcoding, allows for 
simultaneously identifying multiple taxa from multiple environmen-
tal samples (Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 
2012). This makes the routine analysis of environmental samples 
faster, more cost‐effective, and accurate than traditional micros-
copy‐based methods and provides much information than ever 
before. This facilitates expanding the sampling network to include 
more sites monitored on a more frequent basis and has thereby 
revolutionized the field of biomonitoring (Baird & Hajibabaei, 2012; 
Keck, Vasselon, Tapolczai, Rimet, & Bouchez, 2017). The incor-
poration of molecular techniques in biomonitoring has caused re-
markable progress over the past decade in terms of optimal genetic 
marker selection (Kermarrec et al., 2013), HTS platform (Loman et al., 
2012; Shokralla, Spall, Gibson, & Hajibabaei, 2012), DNA extraction 

(Vasselon, Domaizon, Rimet, Kahlert, & Bouchez, 2017), and the bio-
informatics required to analyze the HTS data.

Sequence data obtained from the HTS platform are subjected 
to a quality‐filtering process and then typically clustered into oper-
ational taxonomic units (OTU). Three main approaches have been 
developed to effectively cluster sequences into OTUs (Westcott 
& Schloss, 2015). And which algorithm to apply depends on many 
factors, including the target taxa, the genetic markers, and the 
sequencing method (Flynn, Brown, Chain, MacIsaac, & Cristescu, 
2015). The closed‐reference clustering method compares se-
quences to a reference database and then clusters into OTUs 
based on similarity to the reference sequence. The most commonly 
used clustering approach is de novo clustering. Here, sequences 
are clustered into OTUs before taxonomic assignment. Hierarchical 
clustering is a form of de novo clustering that creates a distance 
matrix to compute sequence dissimilarity between all sequence 
pairs before generating the OTUs. While this method is widely 
used, it requires high computational capacity (Sun et al., 2012). 
Greedy heuristic clustering is a more computationally effective 
approach because it does not compare all of the sequence pairs 
but, instead, analyzes one input sequence at a time. If the distance 
between that sequence and an already existing OTU is smaller than 
the predefined threshold, the sequence is assigned to the existing 
OTU. If not, it serves as the seed sequence for a new OTU (Sun et 
al., 2012). Both the hierarchical and the greedy heuristic clustering 
methods use a defined yet arbitrary clustering threshold, called the 
sequence similarity threshold (SST), as a cutoff value to ensure that 
the sequences within an OTU are identical (Patin, Kunin, Lidström, 
& Ashby, 2013). The third approach is termed open‐reference 
clustering and involves closed‐reference clustering followed by 
de novo clustering. Thereby, this approach essentially combines 
the strengths of the two aforementioned methods (Westcott & 
Schloss, 2015).

While SST values can reach up to 99% (Apothéloz‐Perret‐Gentil 
et al., 2017), most range between 95% and 97% (Edgar, 2013; 
Elbrecht & Leese, 2015; Kelly et al., 2018; Patin et al., 2013), which 
is thought to effectively maximize genetic diversity while also min-
imizing the frequency of sequencing errors in the resulting HTS‐
based dataset (Birtel, Walser, Pichon, Bürgmann, & Matthews, 
2015; Schloss & Handelsman, 2005). These thresholds are treated 
as quasispecies level delimitations regardless of the specific marker, 
clustering method, or model organism used, even though these pa-
rameters can greatly affect the final OTU composition (Flynn et al., 
2015).

A taxonomic name is then assigned to each newly generated 
OTU by comparing a representative sequence, generally the most 
abundant (Patin et al., 2013), to reference barcodes available in pub-
lic databases (Rimet et al., 2016). Most studies use a consensus con-
fidence threshold (Schloss et al., 2009) to delineate the abundance 
of the representative sequences required within an OTU and those 
that fall below this threshold are labeled as “unclassified OTUs” 
(Rivera, Vasselon, Jacquet, et al., 2018b; Visco et al., 2015). To gen-
erate complete reference libraries, these unclassified OTUs must 
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be resolved (Groendahl, Kahlert, & Fink, 2017; Vasselon, Rimet, 
Tapolczai, & Bouchez, 2017). This challenge represents a consider-
able and pressing issue because a portion of the taxonomic diversity 
of the site remains unknown. As such, the quality index calculation 
will only be based on the ecological values from a portion of the 
species or genera while others go unidentified, among which may be 
dominant, relevant species (Rivera, Vasselon, Jacquet, et al., 2018b). 
An alternative approach was proposed (Apothéloz‐Perret‐Gentil et 
al., 2017) that avoids the taxonomic assignment of OTUs by using 
the ecological values of the OTUs directly.

The aim of this study was to determine the impact of taxo-
nomic resolution on a quality index using molecular data. Toward 
this end, we carried out DNA‐meta‐barcoding on environmental 
biofilm samples collected from streams on the main island of the 
Department of Mayotte, a French archipelago in the Indian Ocean. 
We then investigate the impact of the SST on the OTU quality 
index (IdxOTU) using the abundance profiles (ecological profiles) 
of the different OTUs that result from a gradient of different SSTs 
(80%–99%).

We hypothesize that the SST serves as a proxy for taxonomic 
resolution whereby OTUs of high SSTs represent fine taxonomic 
characterization (e.g., species, populations) and OTUs of low SSTs 
represent coarser taxonomic classification (e.g., genera, families). 
Our approach is similar to studies that analyzed the effect of tax-
onomic resolution on classical diatom quality indices (Lavoie et al., 
2009; Rimet & Bouchez, 2012).

Additionally, we hypothesize that at low SSTs, the ecologi-
cal profile of an OTU is the result of merging good indicator 
sequences and thus results in a low‐performance quality index 
according to its capacity to separate “high‐” and “poor‐”quality 
samples from each other. On the other hand, at high SSTs, the 
ecological profiles of the more rare OTUs are based on fewer 
data points. Thus, they are more sensitive to the outliers that 

do not fit in the model provided by the ecological profile. We, 
therefore, hypothesize that after an “optimal” point, increasing 
the SST results in a less stable index that does not confer ad-
ditional benefit in terms of quality evaluation. We suggest that 
an optimal SST, analogous to the optimal taxonomic resolution 
in previous studies on microscopy‐based approaches (Rimet & 
Bouchez, 2012), can be identified that maximizes the index’s per-
formance and stability.

The effect of the SST on IdxOTU was analyzed from several as-
pects: (i) the number of OTUs defined at each SST, (ii) the proportion 
of OTUs identified at the species and genus level after taxonomic 
assignment (this aspect was studied but not included in the index 
development), (iii) the performance of the quality index using three 
different indicators: (iii‐a) the correlation between quality values and 
the reference environmental gradient, (iii‐b) the index’s capability to 
discriminate between sites with different quality values, and (iii‐c) 
the variability in the index values conferred by the process used for 
index development (stability).

2  | MATERIAL S AND METHODS

2.1 | Study site and sampling network

The French overseas Department of Mayotte is an island in the 
Comoros archipelago located in the Indian Ocean, northwest of 
Madagascar (12°50′35″S 45°08′18″E; Appendix S1). Following the 
change to its legal status in 2011, the implementation of the Water 
Framework Directive (WFD) became obligatory for its bodies of 
water (Figure 1). Toward this end, a surveillance monitoring network 
(RCS) was set up in 2008. This network was complemented with a 
“reference” (REF) network in 2013 and a “polluted” (POLL) network 
in 2014 to enlarge the environmental gradient. The classification of 
sites into these networks was predefined and based, in general, on 
visible conditions of the area (Tapolczai, Bouchez, Stenger‐Kovács, 
Padisák, & Rimet, 2017). For the purpose of this study, a total of 90 
samplings were collected from the three monitoring networks: 30, 
23, and 37 samples from the RCS, POLL, and REF networks, respec-
tively. These were collected from 51 river sites in 2014 and 2015, in 
parallel with the physical and chemical data associated with each site 
(Appendix S2).

2.2 | Phytobenthos sampling, physical, and 
chemical parameters

The phytobenthos sampling procedure followed both French and 
European standards (Afnor, 2014, 2016) and was carried out during 
the dry season (July–August) when flow conditions are more sta-
ble compared those the rainy season, which are affected by heavy 
flooding. The samples were collected using clean toothbrushes to 
remove the biofilm from the surface of at least five stones from lotic 
regions. These were then preserved by adding sufficient 99% etha-
nol to ensure a final concentration of over 70%. The sampling and 
analysis of the physical and chemical parameters were carried out 

F I G U R E  1   One of the sampling site in Dapani River, Mayotte. 
Good quality sites are typically characterized by dense riparian 
vegetation, natural river bank, and low turbidity. Since the 
sampling was carried out during the dry season, the environmental 
conditions are stable and the water level is low
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during the same time period according to APHA standards (APHA, 
2012).

2.3 | HTS procedure

Total DNA was extracted from 2 ml of each phytobenthos sam-
ples using the GenEluteTM‐LPA method. A detailed protocol can 
be found in previous publications (Chonova et al., 2016; Kermarrec 
et al., 2013). This method is preferred for diatom meta‐barcoding 
(Vasselon, Domaizon, et al., 2017) because it uses multiple lysis 
mechanisms (mechanical, enzymatic, and heat‐based) that when 
combined greatly increase the efficiency of diatom cell lysis and 
DNA yield.

A short 312‐bp segment of the rbcL gene was used as the DNA 
marker and amplified by PCR using an equimolar mix of a modified 
version of the Diat_rbcL_708F forward and the R3 reverse primers 
(Rimet, Abarca, et al., 2018a; Vasselon, Rimet, et al., 2017). Each 
DNA sample was amplified in triplicate using 1 µl of extracted 
DNA in a final reaction volume of 25 µl. Detailed information on 
the PCR mixture and amplification conditions is summarized in 
Appendix S3.

The three PCR replicates of each DNA sample were pooled and 
purified using Agencourt AMPure beads (Beckman Coulter, Brea, 
CA, USA). The quality and quantity of the purified amplicons were 
checked using the 2200 TapeStation (Agilent Technologies, Santa 
Clara, CA, USA). Following the library preparation method described 
by Vasselon, Domaizon, et al. (2017), individual A‐X tag adapters 
(Ion ExpressTM Barcode Adapters, Life Technologies, Carlsbad, CA, 
USA) were ligated to the amplicons using the NEBNext® Fast DNA 
Library Prep Set for Ion TorrentTM (BioLabs, Ipswich, MA, USA). 
The sample libraries were pooled into two mixes corresponding to 
the Mayotte 2014 and 2015 sampling campaigns that contained 
49 and 41 samples, respectively. Each mix was adjusted to a final 
concentration of 100 pm and sequenced independently on two Ion 
318TMChip Kit v2 (Life Technologies, Carlsbad, USA) using the PGM 
Ion Torrent machine.

The sequencing was performed by the “Plateforme Génome 
Transcriptome” (PGTB, Bordeaux, France) who provided one fastq 
file per sample for the 90 libraries with demultiplexed DNA reads. 
A quality‐filtering step excluded DNA reads under 250 bp with a 
Phred quality score below 23 over a moving window of 25 bp, more 
than one mismatch in the primer sequence, a homopolymer over 
8 bp, or an ambiguous base. The 90 trimmed files were merged in 
order to manipulate all of the samples concurrently using the bio-
informatics processes described in Vasselon, Rimet, et al. (2017) 
using the Mothur software (Schloss et al., 2009). In addition to bio-
informatics, the DNA reads were dereplicated to obtain individual 
sequence units (ISUs). The abundance of ISUs, corresponding to the 
number of sequence replicates per ISU, was used to remove ISUs 
with only one sequence. Retained ISUs were then clustered into 
OTUs using different SSTs ranging from 80% to 99%. Finally, 20 
OTU lists, corresponding to each threshold and including the num-
ber of DNA reads within the 90 samples, were produced. Based 

on the taxonomy assigned to each ISU with the classify.seq com-
mand (RDP classifier with bootstrap cutoff = 85%, Wang, Garrity, 
Tiedje, & Cole, 2007) and the R‐syst::diatom library (Rimet et al., 
2016, 13–02–2015: R‐Syst::diatom v3, https://www.rsyst.inra.fr/
en), a consensus taxonomy was provided to each OUT using the 
classify.otu command with a confidence threshold of 80%. The 
Supplementary Data contains the following: the Fastq files with the 
demultiplexed DNA reads (Appendix S4); information on the se-
quencing depth before and after trimming (Appendix S5); the final 
OTU summary, including the proportion of DNA reads, represen-
tative DNA sequences for each OTU, and their taxonomic assign-
ments (Appendix S6); descriptions of the sampling sites (Appendix 
S7); and the script run in Mothur from trimming to obtain the used 
OTU lists (Appendix S8).

2.4 | The development and testing of IdxOTU

Sequence reads were transformed into relative abundances in order 
to normalize the OTU database. Although this is not the ideal ap-
proach toward achieving comparable quantification between sam-
ples, it is one of the most frequently used, second to rarefying 
(McMurdie & Holmes, 2014). Additionally, rare OTUs were removed 
from the 20 OTU lists and only those present in more than the 5% of 
the samples were kept, resulting in a total of five samples from the 
original 90 (Figure 2). This arbitrary limit, well established in previous 
studies (Bere, Mangadze, & Mwedzi, 2014; Stenger‐Kovács, Buczkó, 
Hajnal, & Padisák, 2007), was necessary to keep a minimum number 
of samples based on which robust ecological profiles of the OTUs 
are ensured.

Principal component analysis (PCA) was executed using 
the “prcomp” function in R (R Development Core Team, 2008; 
Venables & Ripley, 2002) to study the structure of the samples 
and their relationship to the environmental (physical and chemical) 
variables (Figures 2, 3). We used the variables shown to be related 
to anthropogenic pressure in previous study: turbidity [NFU], 
total suspended solids (TSS [mg/L]), dissolved organic carbon 
(DOC [mg/L]), total organic carbon (TOC [mg/L]), total nitrogen 
(TN [mg/L]), total phosphorus (TP [mg/L]), nitrite (NO2

− [mg/L]), 
nitrate (NO3

− [mg/L], phosphate (PO4
3‐ [mg/L]), and ammonium 

(NH4
± [mg/L]) (Tapolczai et al., 2017). Logarithmic transformation 

was applied to the environmental variables in order to ensure the 
normal distribution required for PCA. The first axis of the PCA 
(PC1) represents the reference pressure gradient; that is, the posi-
tion of the samples along this gradient represents the “reference” 
quality to which the IdxOTU values were compared. The values and 
summary statistics describing the environmental variables are 
presented in Appendix S2.

All 20 datasets were randomly divided according to the 20 SST 
levels into a training dataset containing the 75% of the samples in-
cluding their position along PC1 and their associated OTU relative 
abundances and into a test dataset containing the remaining 25% of 
the samples (Figure 2). Therefore, the index could be tested on an in-
dependent dataset (test) that was not included in index development 

https://www.rsyst.inra.fr/en
https://www.rsyst.inra.fr/en
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F I G U R E  2   Schematic representation of the index development process and statistical analyses
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(training). Although the selection of the two datasets was random, the 
proportions of the samples belonging to the three sampling networks 
(see Section 2.1) were maintained (0.41, 0.33, and 0.26 for REF, RCS, 
and POLL, respectively), to ensure a reasonable range of the pressure 
gradients. At each SST, a random selection of datasets was executed 

100 times to measure the average and standard deviation of the 
IdxOTU values at each sample instead of a single measure that could 
bias the results. The 100 iterations also allowed for all of the samples 
to be included in the training and test datasets too. This resulted in 
100 training and test datasets at each SST. The whole process re-
sulted in 100 indices tested for each of the 20 SSTs datasets (2,000 
indices in total). It is important to note that quality values in the re-
sults only contain the IdxOTU values calculated on the test dataset.

The ecological profiles of the OTUs in the training datasets 
were defined by modeling the relative abundance of each OTU in 
the samples along PC1 (Figure 2). Weighted averages and standard 
deviations of the profiles were calculated to estimate the ecological 
optimum (s) and the tolerance (v) values of the OTUs. The Zelinka‐
Marvan equation (Zelinka & Marvan, 1961) was adapted to our data 
to define IdxOTU:

where aj = relative abundance of OTU j, sj = sensitivity value or 
optimum of OTU j, and vj = indicator value or tolerance of OTU j in 
the sample. Sensitivity and indicator values for each OTU were cal-
culated from the abundance values plotted as functions of the sam-
ples’ PC1 values. The two ecological values of each OTU comprised a 
database that was used together with the abundance of the OTUs in 
the samples for which the index was calculated. Only the data from 
the training dataset were used to define these profiles. The IdxOTU 

was calculated for each site in the test dataset and then correlated 
with its position on PC1 (Figure 2).

IdxOTU=

∑n

j=1
ajsjvj

∑n

j=1
ajvj

,F I G U R E  3   Two‐dimensional graphical representation of 
principal component analysis results. The environmental variables 
in this analysis were ammonium (NH4

+), dissolved organic carbon 
(DOC), nitrate (NO3

−), nitrite (NO2
−), phosphate (PO4

3−), total 
nitrogen (TN), total organic carbon (TOC), total phosphorus (TP), 
and total suspended solids (TSS). Sample locations on the primary 
axis (PC1) represent the reference pressure gradient, from “high” to 
“poor” quality
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2.5 | IdxOTU performance

Three different parameters were examined to assess IdxOTU’s 
performance.

1.	 Fitting a linear model using the “lm” function in R (Chambers, 
1992; R Development Core Team, 2008) to ascertain the rela-
tionship between the calculated IdxOTU values and their reference 

quality conditions (PC1). At each SST level, 100 linear models 
were fitted due to the 100 randomizations used when selecting 
the training and test datasets. The regression coefficients (R2) 
of the linear models were used to reflect the performance of 
the index. These R2 values were then plotted as a function of 
the SST, as described in Section 1,2 and in Figure 5.

2.	 Another aspect of the index’s performance was studied through 
the variability of the IdxOTU values among the samples within each 

F I G U R E  5   Linear regression coefficients (R2) obtained using linear models fitted to the relationship between IdxOTU and PC1 values from 
the test dataset are presented for each SST (a). The difference in the R2 values between the SSTs of 80%–85% (mean = 0.39) and 90%–99% 
(mean = 0.47) was statistically significant (Student's t test, p < 0.01).
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randomization step and SST. For this purpose, the standard devia-
tions (SD) of the calculated IdxOTU values for the samples within 
each randomization step were compared and then plotted against 
the SST gradient (Figure 6). Here, the SD was considered as a 
proxy for the discrimination power of the index, that is, the ability 
to distinguish between samples with different index values from 
each other (see Section 3.2.3 and Figure 6).

3.	 The stability of the index was tested by its ability to reproduce the 
same results over the course of the 100 randomization steps 
within each SST. Stability values were calculated for (a) the index, 
using the SD of the discrimination powers (see Section 3.2.4 and 
Figure 5) and for (b) the samples themselves, using the SD of the 
IdxOTU values per samples (see Section 3.2.5 and Figure 7).

3  | RESULTS

3.1 | Taxonomic resolution and number of OTUs

Of the 20 OTU lists, the number of OTUs increased exponentially with 
the SST (Figure 4a). The number of OTUs ranged from 159 at 80% SST 
to 15,296 at 99% SST. Common OTUs, those that were present in over 
5% of the samples, showed similar trends; however, the ratio of the re-
moved rare OTUs increased too: at 99%, over 60% of the OTUs were re-
moved, whereas at 80%, the percentage dropped to only 18%. Assigning 
taxonomy to the OTUs revealed that the taxonomic resolution changed 
dramatically with the SST (Figure 4b). From 80% to 93%, the percentage 
of unclassified OTUs varied between 45% and 50% and then steeply de-
creased with SSTs over 93% (Figure 4b). The proportion of OTUs identi-
fied at the species level exhibited the opposite trend. For SSTs up to 
90%, the proportion was around 25%, followed by a sharp increase that 
reached approximately 50% at 99% SST (Figure 4b). The proportion of 
OTUs identified at the genus level did not display such a clear pattern, 
with variations from 25% to 30% across the SST gradient (Figure 4b).

3.2 | Index performance

3.2.1 | Relationship between IdxOTU and the 
reference gradient

After developing IdxOTU on the training dataset for each SST and 
randomization step, quality values were calculated for the corre-
sponding test datasets. Then, the relationship between the calcu-
lated index values and PC1 was studied using linear models and their 
R2 (Figure 5a). The range of the R2 values is always high, due to the 
outlier datasets generated during the randomization process. The 
index’s performance showed an increase between 85% and 91% 
SST. This increase was evaluated by comparing the difference in 
R2 values between the 80%–85% and 91%–99% SSTs (Figure 5b). It 
increased significantly from a mean value of 0.39 to 0.47 (Student’s 
t test, p < 0.01). The correlations between the index values were 
calculated on the samples from the test dataset, and the PC1 values 
were statistically significant in ~95% of the cases.

3.2.2 | Discrimination power of IdxOTU

The SDs of the IdxOTU values (SD_index) among the samples from 
each of the randomization and SST steps were calculated and then 
used to reflective discrimination power (Figure 6). An increase in the 
SD_index was observed along the SST gradient with a steep transi-
tion at 86%–93% at which point it reached a plateau without any 
further increases (Figure 6a).

3.2.3 | Stability of IdxOTU

Concomitantly with the increase in discrimination power, we observed 
an increase in the interquartile ranges of the boxplots (Figure 6a). The 
SD of the SD_index was used to estimate the stability of the discrimi-
nation power against the 100 random selection processes applied to 
generate the training and test datasets. Higher SD values correspond 
to higher levels of variability in the discrimination power of the 100 
randomization steps at one given SST. The observed increase in the 
discrimination power and associated decrease in stability along the 
SST gradient is presented in Figure 6b. Values of both parameters 
were standardized to a scale that ranges from 0 to 1.

3.2.4 | Stability of the samples’ IdxOTU values

Figure 7a depicts the variation (also measured in SD) in IdxOTU val-
ues due to the randomization steps for each sample at each SST. 
The samples are ordered by mean IdxOTU value on the y‐axis from 
poor to high quality. This graphical representation illuminates that 
the quality values of the samples at the two ends of the quality 
gradient varied greatly. Mainly, the poor‐quality samples had more 
variation in their IdxOTU values and this variation increased with 
the SST. The variability in the IdxOTU values of samples in the mid-
dle of the pressure gradient was lower, with only a few exceptions 
(Figure 7a).

3.2.5 | OTU richness and index stability

We linked the instability of the IdxOTU values with OTU richness 
(number of OTUs per samples). The index value variability of each 
site (SD) and OTU richness (number of OTUs normalized across the 
experimental SSTs) correlated negatively, with higher SD values 
corresponding to low richness and lower SD being associated with 
higher richness (r = −0.54, p < 0.05; Figure 7b).

4  | DISCUSSION

4.1 | Sequence similarity threshold and taxonomic 
resolution

In the present study, the SST used for clustering sequences into 
OTUs was regarded as a proxy for taxonomic resolution but because 
this assumption can be up for debate, it requires further explana-
tion. As discussed comprehensively by Mann (1999), the lack of a 
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solid conceptual basis for diatom taxonomy has resulted in a rap-
idly changing, unstable classification system of diatoms. Original 
approaches were based on the morphological characteristics of the 
specimens but the inclusion of DNA barcoding techniques (Hebert 
et al., 2003) helped create a taxonomy based on morphology and 
supplemented by molecular characters. Another important aspect to 
consider is that both the intragenomic variation and the intraspecies 
variation of the barcoding gene differ among taxa (Hamsher, Evans, 
Mann, Poulíčková, & Saunders, 2011). Although we used a hierarchi-
cal clustering method with predefined global thresholds in the cur-
rent study, there are other clustering methods available that we have 
not tested. The importance of clustering methods presented in the 
introduction should not be overlooked and warrants further analysis 
in further studies.

The choice of appropriate taxonomic resolution for bioassessment 
purposes is a common and active topic of debate in biomonitoring 
most every biota studied. The identification to the lowest taxonomic 
level is important for complex ecological questions, fundamental 

studies, and for simply expanding the common knowledge base. One 
of the arguments in favor of precise taxonomic resolution (i.e., spe-
cies‐level) is built on the fact that species represent the basic units of 
an ecosystem and a clear and thorough understanding of their eco-
logical niches directly impacts the amount, quality, and value of the 
information they provide (Salmaso, Naselli‐Flores, & Padisák, 2015). 
However, in practice, classifying specimens to species (or finer) tax-
onomic level does not necessarily further inform or improve bio-
assessment. For example, aquatic macroinvertebrates are usually 
identified down to species or genus level, depending on the taxa and 
the life stages of the organisms. However, several studies have been 
unable to find significant differences in the bioindication efficiency 
of the same community at different taxonomic levels (even family) 
for the same type of pollution (Bailey, Norris, & Reynoldson, 2001; 
Bowman & Bailey, 1997). Furthermore, the applicability depends on 
the metrics being used. For macroinvertebrates, more complex met-
rics exist than for diatoms, including functionality, life‐forms, and 
habitat preferences. A comprehensive study by Schmidt‐Kloiber and 

F I G U R E  7   Variability (standard deviation) in the IdxOTU values for each sample as a function of the associated SST. (a) Dark red cells 
represent higher standard deviation while the lighter colors indicate lower standard deviations. (b) Plot of standard deviations against OTU 
richness illustrates their statistically significant negative correlation (Pearson's correlation test, p < 0.01, r = −0.54).
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Nijboer (2004) showed that while some metrics were not sensitive 
to changes in the taxonomic level (e.g., richness, diversity measures), 
others (e.g., functional metrics) did impact final quality values.

The question is of greater relevance for the study of protists, 
where the microscopic identification at the species level is techni-
cally challenging and labor intensive (Lavoie et al., 2009; Rimet & 
Bouchez, 2012). Published studies on the effect of taxonomic res-
olution are contradictory, and their results seem to depend largely 
on the index characteristics. For instance, Lavoie et al. (2009) stud-
ied the effect of reducing the taxonomic resolution to the genus 
level for the Eastern Canadian Diatom Index. They found that 
while it could still successfully separate impacted sites from refer-
ence ones, its ability to detect fine changes in the environment had 
diminished. Other studies, however, have found that the change 
from species level to genus level does not impact bioassessment 
efficiency. This has been tested using indicators of river regula-
tion (Growns, 1999) and organic and nutrient pollution (Rimet & 
Bouchez, 2012).

DNA barcoding has enabled the detection of intraspecific 
variations that were not detectable using microscopy‐based anal-
ysis (Keck et al., 2017; Vasselon, Rimet, et al., 2017). Generally, 
a sequence similarity of 95% has been used for species‐level 
delimitation when meta‐barcoding diatoms. In this study, 1,239 
OTUs at 95% similarity were identified, which is clearly dwarves 
the 382 species identified by microscopy (Tapolczai et al., 2017). 
Such striking differences between the results obtained through 
microscopy and HTS are commonly reported in the study of dia-
toms (Rivera, Vasselon, Jacquet, et al., 2018b). These differences 
are largely due to the cryptic diversity common to diatoms; in-
deed, it has been shown in several species that the genetic di-
versity is substantially richer than the morphological diversity 
(Evans, Wortley, Simpson, Chepurnov, & Mann, 2008; Mann et 
al., 2004; Souffreau et al., 2013). This relatively newfound abil-
ity to recognize these cryptic species is important because their 
ecological niches may differ even when they live in sympatry 
(Kelly, Trobajo, Rovira, & Mann, 2015; Rovira, Trobajo, Sato, 
Ibáñez, & Mann, 2015).

While the effect of taxonomic resolution on bioassessment has 
been extensively studied using microscopy‐based identification, 
“OTU studies” have relied on arbitrary clustering thresholds until 
now. Our study revealed maximum index performance at a 91%–92% 
SST, lower than traditionally thought necessary. However, it must be 
noted that the validity and applicability of this threshold are poten-
tially limited to the conditions included in the present analysis (e.g., 
pollution gradient, community structure) and further experimental 
consideration and validation are required prior to being exported for 
widespread use.

4.2 | Performances of the OTU‐based indices 
depend on the SST choice

In the present study, we developed a diatom index, based on the 
same principles as classical ones (e.g., PSI, Coste, 1982; BDI, Coste, 

Boutry, Tison‐Rosebery, & Delmas, 2009; TDI Kelly, 1998). However, 
in this case, we directly applied the ecological profile of the OTUs, 
without taxonomic assignment, avoiding the problem associated 
with incomplete DNA reference databases, which can easily inject 
bias (Apothéloz‐Perret‐Gentil et al., 2017; Groendahl et al., 2017; 
Rivera, Vasselon, Jacquet, et al., 2018b; Zimmermann, Glöckner, 
Jahn, Enke, & Gemeinholzer, 2015). Even though the number of 
species included in the DNA reference libraries is constantly in-
creasing (Rivera, Vasselon, Jacquet, et al., 2018b), the proportion 
of OTUs that can be assigned to the species level remains far from 
satisfying. Published reports have described a wide range of clas-
sification coverage, including 35.7% (Vasselon, Rimet, et al., 2017), 
35% (Apothéloz‐Perret‐Gentil et al., 2017), 23% (Rivera, Vasselon, 
Jacquet, et al., 2018b), and as low as 10% for marine samples (Rivera, 
Vasselon, Ballorain, et al., 2018a). Our approach is similar to those of 
Apothéloz‐Perret‐Gentil et al. (2017) but the method for defining the 
OTUs’ indicator and sensitivity values used in the Zelinka–Marvan 
equation (1961) is different. In Apothéloz‐Perret‐Gentil et al.’s study, 
sites were preclassified using the original Swiss morphology‐based 
index and served as the reference from which the OTU indicator 
and sensitivity values were defined. In the present study, we directly 
incorporated the environmental pressure gradients of both physi-
cal and chemical parameters using multivariate analysis. Thus, the 
method described here is completely independent of morphology‐
based taxonomy. The disadvantage, however, is that rare OTUs have 
unreliable ecological profiles and must be removed to safeguard the 
accuracy and of a system that is most effective when only based on 
robust OTUs. Our results indicate that the index values calculated 
for the test dataset correlated significantly with the pressure gradi-
ent regardless of the SST; however, an important transitional zone in 
the SST gradient was observed from 86% to 91%, described by an 
increasing R2 value.

One technical drawback of the index described in this investi-
gation is that when new samplings are carried out in Mayotte, the 
OTUs generated from these new data may differ from those ob-
tained from the datasets used our index development. Indeed, the 
sequence composition of the sampling sites can fluctuate over time. 
This means that the ecological profile, together with the representa-
tive sequence of an OTU, must be fixed and assigned to the correct 
OTU, generated by another sequencing run. However, this requires 
the calibration, standardization, and extensive validation of the OTU 
clustering method given its potential to greatly effect final OTU 
composition.

Interesting, our data uncovered an important trade‐off between 
the index’s discrimination power and its stability. The stability of 
IdxOTU during the randomization process decreased with increas-
ing SSTs. This is due to the exponential increase in OTUs, many of 
which become less frequent and a higher number warrant removal. 
Regardless, these OTUs consist of fewer sequences, and thus, their 
ecological profile cannot be established with any robustness. Thus, 
the biasing effect of one outlier abundance data point becomes 
higher and this makes the dataset very sensitive to the random se-
lection process for the training and test datasets. In contrast, coarse 
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taxonomic resolution generates fewer OTUs with wider but more 
reliable ecological profiles; this leads to a more stable IdxOTU with 
weaker discrimination power. This instability was particularly im-
portant when samples presented with low OTU richness. Low OTU 
richness is observed at highly polluted sites, where only a few re-
sistant species could survive (Blanco et al., 2012; Stevenson, Pan, & 
Van Dam, 2010) and in reference sites where nutrient limitation has 
selected for a limited number of taxa (Blanco et al., 2012; Stevenson, 
Hill, Herlihy, Yuan, & Norton, 2008). A technical drawback of using 
a high similarity threshold is the elevated risk of misappropriating 
biological relevance to artifacts and sequence errors, which results 
in biased and inaccurate results (Patin et al., 2013).

An ecological disadvantage of the de novo hierarchical clus-
tering used in this study is that it hinges on a single, global SST 
regardless of the species being considered. Given the differen-
tial levels of intra and interspecies genetic variation, a clustering 
method that tailors the SST to the specific characteristics of each 
taxon would be a valuable tool. Without this, there is always a risk 
of undergrouping heterogeneous sequences and thereby creat-
ing an ecological profile that is not indicative or representative of 
some taxa, while simultaneously running the risk of overgrouping 
and thereby separating groups of sequences with similar ecologi-
cal preferences for other taxa. Further studies should implement 
approaches similar to that described by Preheim, Perrotta, Martin‐
Platero, Gupta, and Alm (2013) that employs the ecological prefer-
ences of bacterial sequences (termed distribution‐based clustering) 
to refine the OTUs.

4.3 | The ecologically naïve paradigm of 
diatom indices

The taxonomy‐free approach delineated in this study proposes a 
solution to overcome the considerable technical challenge posed 
by incomplete reference databases. However, it is important to 
highlight that the fundamental basis of IdxOTU and the classical tax-
onomy‐based diatom indices are the same: using uncritically the 
relative abundance of a list of species (or OTUs) and their ecologi-
cal values to develop an index calculated from a weighted average 
equation that correlates with the physical and chemical parameters 
of an environment. These fundamental aspects have been analyzed 
in several previous studies: Instead of using this ecologically naïve 
approach, other groups have proposed reconsidering the functional 
aspects underlying the ecological indication, for example, using rela-
tive biovolume instead of relative abundance (Tapolczai et al., 2017), 
trait‐based functional groups (B‐Béres et al., 2016), or diversity 
metrics (Blanco et al., 2012). Nevertheless, the indices currently em-
ployed in the EU WFD are criticized for their lack of ecological basis 
(Schneider, Hilt, Vermaat, & Kelly, 2016) and all of the indices based 
on molecular techniques use the same naïve approaches (Kelly et 
al., 2018; Leese et al., 2016), which are qualitatively not ideal. In this 
study, we are clearly not advocating the uncritical widespread use of 
IdxOTU but instead used it as a test object to assess the effect of the 
SST was tested.

Sequencing methods can potentially address some of these 
drawbacks. It has been shown in a previous study that DNA read 
abundances, using the rbcL marker correlate reliably with species’ 
relative biovolume (Vasselon et al., 2018), thus enabling the genera-
tion of more ecologically relevant taxa quantification data (Tapolczai, 
2017). Moreover, molecular methods facilitate the analysis of other 
benthic taxa beyond diatoms (e.g., Cyanobacteria, Chlorophyta, 
Rhodophyta) without the need of experts that specialize in each of 
these groups. The application of this rapidly advancing technology 
has the potential to provide a much more holistic, representative 
view of phytobenthic composition (Groendahl et al., 2017).
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