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Abstract: Bufadienolides are cardiotonic steroids (CTS) identified in mammals. Besides Na+/K+-ATPase
inhibition, they activate signal transduction via protein–protein interactions. Diversity of endogenous
bufadienolides and mechanisms of action may indicate the presence of functional selectivity and unique
cellular outcomes. We evaluated whether the bufadienolides telocinobufagin and marinobufagin
induce changes in proliferation or viability of pig kidney (LLC-PK1) cells and the mechanisms involved
in these changes. In some experiments, ouabain was used as a positive control. CTS exhibited an
inhibitory IC50 of 0.20 (telocinobufagin), 0.14 (ouabain), and 3.40 µM (marinobufagin) for pig kidney
Na+/K+-ATPase activity and concentrations that barely inhibited it were tested in LLC-PK1 cells. CTS
induced rapid ERK1/2 phosphorylation, but corresponding proliferative response was observed for
marinobufagin and ouabain instead of telocinobufagin. Telocinobufagin increased Bax:Bcl-2 expression
ratio, sub-G0 cell cycle phase and pyknotic nuclei, indicating apoptosis. Src and MEK1/2 inhibitors
blunted marinobufagin but not telocinobufagin effect, which was also not mediated by p38, JNK1/2, and
PI3K. However, BIO, a GSK-3β inhibitor, reduced proliferation and, as telocinobufagin, phosphorylated
GSK-3β at inhibitory Ser9. Combination of both drugs resulted in synergistic antiproliferative effect.
Wnt reporter activity assay showed that telocinobufagin impaired Wnt/β-catenin pathway by acting
upstream to β-catenin stabilization. Our findings support that mammalian endogenous bufadienolides
may exhibit functional selectivity.

Keywords: cardiotonic steroids; bufadienolides; Na+/K+-ATPase; functional selectivity; ERK1/2;
GSK-3β; Wnt/β-catenin pathway

1. Introduction

The Na+/K+-ATPase is an enzyme that actively transports ions Na+ and K+ across cell membranes
and has cardiotonic steroids (CTS—cardenolides and bufadienolides) as specific inhibitors of its
pumping function. More recently, Xie and coworkers have established that, besides performing the
active ion transport, Na+/K+-ATPase also functions as a signal transducer through protein–protein
interactions, relaying extracellular signals to intracellular compartments via the activation of cascades
of different protein kinases, as well as production of second messengers [1,2]. This intracellular
signaling is activated by binding of CTS to Na+/K+-ATPase using the Src tyrosine kinase as a
transducer. Therefore, CTS could work as inhibitors of Na+/K+-ATPase activity and also as agonists via
Na+/K+-ATPase/Src complex [3]. These signal pathways promote regulation of various cell functions
such as hypertrophy and hyperplasia, apoptosis, contraction, and differentiation, which depends on
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the host signaling modules of each cell type [2,3]. Studies show that the Na+/K+-ATPase may interact
with protein kinases, phosphatases, membrane transporters, and other cellular proteins, and these
interactions make this enzyme an important signal transducer [3].

A number of CTS have been characterized as endogenous steroids in mammals, but their function
is still controversial [4]. Physiological roles like sodium balance and blood pressure regulation and
the involvement in pathological conditions such as hypertension, heart failure, chronic renal failure,
cancer and psychiatric disorders have been postulated [4–7]. Moreover, new therapeutic uses of
Na+/K+-ATPase ligands have been considered recently, for example, as new anticancer agents, less
toxic drugs for heart failure, and new substances against hypertension, cystic fibrosis, ischemic stroke,
and neurodegenerative disorders [8,9]. The antitumoral effect of some CTS in vitro and in vivo has led
to a growing interest in the development of CTS for cancer [10–12]. Interestingly, CTS usually have
different effects in normal cells compared to tumor cells, so they can be inactive or proliferative to the
former while kills the latter [13,14]. Thus, even though the signaling pathways are similar, the outcome
seems to be distinct. On the other hand, few works have suggested that, in the same system, different
effects may be elicited by specific CTS. For instance, ouabain attenuates the cardiotoxicity induced
by other CTS like digoxin and bufalin [15]. On the other hand, digoxin blocks the hypertensinogenic
effect of ouabain, maybe because only ouabain activates Src in vascular smooth myocytes [16,17]. In
Madin-Darby Canine Kidney (MDCK) cells from distal tubule, cytotoxicity triggered by several CTS
like ouabain and bufalin is not shared by marinobufagin and marinobufotoxin [18]. In isolated rat
kidneys, we demonstrated that, at equipotent concentrations for Na+/K+-ATPase inhibition, bufalin
stimulates natriuresis and diuresis but not ouabain [19].

Recently, some studies with G protein-coupled receptors (GPCR) have shown that ligands produce
different qualitative effects even when interacting with the same and single receptor. One explanation
is that different conformational states of a receptor would be induced or selected by ligands. Thus,
they could differentially activate signaling pathways mediated by the same receptor and act as
both agonists and antagonists of different functional cascades [20–22]. This mechanism, known as
functional selectivity/biased agonism, is a relatively novel concept in pharmacology, and may explain
why several similar endogenous ligands are produced by the organism, and also raises the possibility
of selecting or designing novel ligands that differentially activate only a subset of functions of a single
receptor, thereby optimizing therapeutic action. In this work we compared the effect of two chemically
similar bufadienolides, telocinobufagin, and marinobufagin, on the inhibition of Na+/K+-ATPase with
their cellular effects and the molecular mechanisms involved, and our results suggest that they have
functional selectivity.

2. Results

2.1. Inhibition of Pig Kidney Na+/K+-ATPase Activity

The potency of bufadienolides for inhibiting Na+/K+-ATPase activity is shown in Figure 1. Both
bufadienolides fully inhibited enzyme activity, but telocinobufagin was around 15 times more potent
than marinobufagin (IC50 = 0.20 ± 0.02 and 3.40 ± 0.18 µM, respectively). As a comparison, the IC50

of ouabain, a well-known CTS, was 0.14 ± 0.02 µM, similar to telocinobufagin (Figure S1).
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Figure 1. Inhibition curves of pig kidney Na+/K+-ATPase activity by telocinobufagin (TCB) or 
marinobufagin (MBG). Preparation of Na+/K+-ATPase from pig kidney was incubated with 
increasing concentrations of TCB or MBG for 1 h. Each point represents the mean ± SEM of three 
independent experiments performed in triplicate. 

2.2. Effect of Bufadienolides on ERK1/2 Activation 

CTS, especially ouabain, have been shown to induce prompt mitogen-activated protein kinases 
ERK1/2 activation at low concentrations [23]. Figure 2 shows that both telocinobufagin (Figure 2a,c) 
and marinobufagin (Figure 2b,d) in the nanomolar range stimulated ERK1/2 phosphorylation after 
15 min incubation at concentrations that barely inhibit Na+/K+-ATPase activity. Ouabain was used as 
a positive control (Figure S2). 

 
Figure 2. ERK1/2 activation by different concentrations of telocinobufagin (TCB) or marinobufagin 
(MBG). Serum-starved LLC-PK1 cells were treated with 1, 10, 100, and 1000 nM TCB or MBG for 15 
min. Representative Western blots of phospho- and total ERK1/2 for TCB (a) and MBG (b) and 
relative optical density quantification in (c) and (d), respectively. Data are mean ± SEM of five 
independent experiments. * p < 0.05; ** p < 0.01; *** p < 0.005 vs. control. 

2.3. Effect of Bufadienolides on Cell Proliferation and Viability 

ERK pathway is associated with various cellular functions such as growth and CTS like ouabain 
and marinobufagin have been described to stimulate proliferation of normal cells [14,24,25]. Cell 
counting with Trypan blue exclusion up to 72 h demonstrated that marinobufagin, similar to 
ouabain (Figure S3), promoted significant cell growth after 72 h at 10 nM, and 24, 48, and 72 h at 100 
nM (Figure 3a). On the contrary, telocinobufagin did not affect cell proliferation at 1 and 10 nM, and, 
in contrast to the other CTS, significantly hampered cell growth after 48 h at 100 nM (Figure 3b), with 
rare cells stained with Trypan blue dye.  

Figure 1. Inhibition curves of pig kidney Na+/K+-ATPase activity by telocinobufagin (TCB) or
marinobufagin (MBG). Preparation of Na+/K+-ATPase from pig kidney was incubated with increasing
concentrations of TCB or MBG for 1 h. Each point represents the mean ± SEM of three independent
experiments performed in triplicate.

2.2. Effect of Bufadienolides on ERK1/2 Activation

CTS, especially ouabain, have been shown to induce prompt mitogen-activated protein kinases
ERK1/2 activation at low concentrations [23]. Figure 2 shows that both telocinobufagin (Figure 2a,c)
and marinobufagin (Figure 2b,d) in the nanomolar range stimulated ERK1/2 phosphorylation after
15 min incubation at concentrations that barely inhibit Na+/K+-ATPase activity. Ouabain was used as
a positive control (Figure S2).
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Figure 2. ERK1/2 activation by different concentrations of telocinobufagin (TCB) or marinobufagin
(MBG). Serum-starved LLC-PK1 cells were treated with 1, 10, 100, and 1000 nM TCB or MBG for
15 min. Representative Western blots of phospho- and total ERK1/2 for TCB (a) and MBG (b) and
relative optical density quantification in (c,d), respectively. Data are mean ± SEM of five independent
experiments. * p < 0.05; ** p < 0.01; *** p < 0.005 vs. control.

2.3. Effect of Bufadienolides on Cell Proliferation and Viability

ERK pathway is associated with various cellular functions such as growth and CTS like ouabain
and marinobufagin have been described to stimulate proliferation of normal cells [14,24,25]. Cell
counting with Trypan blue exclusion up to 72 h demonstrated that marinobufagin, similar to ouabain
(Figure S3), promoted significant cell growth after 72 h at 10 nM, and 24, 48, and 72 h at 100 nM
(Figure 3a). On the contrary, telocinobufagin did not affect cell proliferation at 1 and 10 nM, and, in
contrast to the other CTS, significantly hampered cell growth after 48 h at 100 nM (Figure 3b), with
rare cells stained with Trypan blue dye.
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Figure 3. Cell proliferation of LLC-PK1 cells treated with marinobufagin (MBG) or telocinobufagin 
(TCB). Serum-starved LLC-PK1 cells were treated with 1, 10, and 100 nM MBG (a) or TCB (b) in 2.5% 
FBS for 24, 48, and 72 h, and then Trypan blue-free viable cells were counted in Neubauer chamber. 
Each point represents the mean ± SEM of three independent experiments performed in duplicate. * p 
< 0.05; *** p < 0.005 vs. control. 

To investigate in more detail the effects found on cell proliferation, we decided to test the effects 
of bufadienolides on the expression of markers of cell viability, the anti-apoptotic protein Bcl-2 and 
the pro-apoptotic protein Bax in LLC-PK1 cells treated for 72 h. Consistently, whether Bax 
expression decreased with marinobufagin, Bcl-2 expression increased, similar to ouabain (Figure S4); 
the contrary was observed with telocinobufagin (Figure 4a,b, respectively). Figure 4c shows the 
densitometric analysis consistent with a decrease of Bax:Bcl-2 ratio in marinobufagin-treated cells, 
explaining the increase in proliferation, but an increase in telocinobufagin-treated cells, suggesting 
the onset of apoptosis. 

 
Figure 4. Bax and Bcl-2 expression in LLC-PK1 cells treated with marinobufagin (MBG) and 
telocinobufagin (TCB). Serum-starved LLC-PK1 cells were treated with 1, 10, and 100 nM MBG and 

Figure 3. Cell proliferation of LLC-PK1 cells treated with marinobufagin (MBG) or telocinobufagin
(TCB). Serum-starved LLC-PK1 cells were treated with 1, 10, and 100 nM MBG (a) or TCB (b) in 2.5%
FBS for 24, 48, and 72 h, and then Trypan blue-free viable cells were counted in Neubauer chamber.
Each point represents the mean ± SEM of three independent experiments performed in duplicate.
* p < 0.05; *** p < 0.005 vs. control.

To investigate in more detail the effects found on cell proliferation, we decided to test the effects
of bufadienolides on the expression of markers of cell viability, the anti-apoptotic protein Bcl-2
and the pro-apoptotic protein Bax in LLC-PK1 cells treated for 72 h. Consistently, whether Bax
expression decreased with marinobufagin, Bcl-2 expression increased, similar to ouabain (Figure S4);
the contrary was observed with telocinobufagin (Figure 4a,b, respectively). Figure 4c shows the
densitometric analysis consistent with a decrease of Bax:Bcl-2 ratio in marinobufagin-treated cells,
explaining the increase in proliferation, but an increase in telocinobufagin-treated cells, suggesting the
onset of apoptosis.
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Figure 4. Bax and Bcl-2 expression in LLC-PK1 cells treated with marinobufagin (MBG) and
telocinobufagin (TCB). Serum-starved LLC-PK1 cells were treated with 1, 10, and 100 nM MBG
and TCB in 2.5% FBS for 72 h. Representative western blots of the pro-apoptotic Bax and anti-apoptotic
Bcl-2 for MBG (a) and TCB (b) and the ratio of the relative optical density quantification for Bax:Bcl-2 (c).
Data are the mean ± SEM of two independent experiments.
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2.4. Effect of Telocinobufagin on Cell Cycle Phases and Cell Death

Since 100 nM telocinobufagin had an antiproliferative effect and reduced cell viability, we decided
to evaluate alterations in the phases of the cell cycle through flow cytometry. At 48 h, only 100 nM
telocinobufagin significantly changed cell cycle phase profile, promoting a 5.5-fold increase of cells
in sub-G0 and 1.5-fold in S phase and a 50% decrease of cells in G2/M phase (Figure 5). Along with
these results, LDH release, a marker of necrotic cell death, was not different from control for both
bufadienolides (Figure 6).
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Hoechst staining was used to observe nuclear morphological alterations induced by 
telocinobufagin. Figure 7 shows that, compared to control (Figure 7b,c), condensation of nuclear 
chromatin, seen as smaller and brighter nuclei, can be detected in 100 nM telocinobufagin-treated 
cells (Figure 7e,f), corroborating that apoptosis is induced by such bufadienolide at this 
concentration. 

Figure 5. Cell cycle analysis of LLC-PK1 cells treated with telocinobufagin (TCB) by flow cytometry.
Serum-starved LLC-PK1 cells were treated with 10 and 100 nM TCB in 2.5% FBS for 48 h. Distribution
of cells in the sub G0, G0/G1, S and G2/M phases of the cell cycle. Data are the mean ± SEM of three
independent experiments in duplicate. * p < 0.05 vs. control.
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Figure 6. Lactate dehydrogenase (LDH) release from LLC-PK1 cells treated with telocinobufagin (TCB)
or marinobufagin (MBG). Serum-starved LLC-PK1 cells were treated with 100 nM TCB or 100 nM
MBG in 2.5% FBS for 72 h. Data are the mean ± SEM of three independent experiments in duplicate.
* p < 0.05 vs. control. Triton X-100 was used as positive control.

Hoechst staining was used to observe nuclear morphological alterations induced by
telocinobufagin. Figure 7 shows that, compared to control (Figure 7b,c), condensation of nuclear
chromatin, seen as smaller and brighter nuclei, can be detected in 100 nM telocinobufagin-treated cells
(Figure 7e,f), corroborating that apoptosis is induced by such bufadienolide at this concentration.
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Serum-starved LLC-PK1 cells were treated with 100 nM TCB in 2.5% FBS for 24 h. Phase-contrast 
microscopy (a: control; d: TCB) and Hoechst 33,342 staining for nuclear fluorescence (b,c: control; e,f, 
TCB). Higher magnification is shown in (c,f). Arrows indicate cells with pyknotic nuclei in (f). Scale 
bar: 50 μm (a,b,d,e); 20 μm (c,f). 

2.5. Role of Intracellular Ca2+ on Telocinobufagin-Induced Cell Death 

CTS are classical inhibitors of Na+/K+-ATPase which may increase intracellular [Ca2+]. In 
LLC-PK1 cells, 100 nM ouabain was shown to produce Ca2+ transients [26] and this ion is involved in 
cell death [27]. We used BAPTA-AM, an intracellular Ca2+ chelator, in order to evaluate the 
association of Ca2+ and telocinobufagin effect. After pre-incubation with 5 μM BAPTA-AM, cells 
were treated with 100 nM telocinobufagin for 24 h. As exhibited in Figure 8, BAPTA-AM could not 
prevent the effect of telocinobufagin. 

 

Figure 7. Apoptotic morphology of LLC-PK1 cells treated with telocinobufagin (TCB). Serum-starved
LLC-PK1 cells were treated with 100 nM TCB in 2.5% FBS for 24 h. Phase-contrast microscopy
(a: control; d: TCB) and Hoechst 33,342 staining for nuclear fluorescence (b,c: control; e,f, TCB). Higher
magnification is shown in (c,f). Arrows indicate cells with pyknotic nuclei in (f). Scale bar: 50 µm
(a,b,d,e); 20 µm (c,f).

2.5. Role of Intracellular Ca2+ on Telocinobufagin-Induced Cell Death

CTS are classical inhibitors of Na+/K+-ATPase which may increase intracellular [Ca2+]. In LLC-PK1
cells, 100 nM ouabain was shown to produce Ca2+ transients [26] and this ion is involved in cell
death [27]. We used BAPTA-AM, an intracellular Ca2+ chelator, in order to evaluate the association
of Ca2+ and telocinobufagin effect. After pre-incubation with 5 µM BAPTA-AM, cells were treated with
100 nM telocinobufagin for 24 h. As exhibited in Figure 8, BAPTA-AM could not prevent the effect
of telocinobufagin.
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2.6. Role of Caveolae on Telocinobufagin-Induced Cell Death

The Na+/K+-ATPase population that mediates signal transduction has been shown to reside
in caveolae, which are invaginations of the plasma membrane rich in cholesterol [23,28,29].
Methyl-β-cyclodextrin (MβCD) has been used to hamper Na+/K+-ATPase-mediated signaling by
depleting cholesterol and thus disrupting caveolae [30–32]. After a 30-min pretreatment with 10 mM
MβCD, LLC-PK1 cells were incubated with 1 mM MβCD plus 100 nM telocinobufagin for 72 h. As
shown in Figure 9, such treatment partially prevented telocinobufagin effect.
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Figure 9. Effect of MβCD on cell proliferation of LLC-PK1 cells treated with telocinobufagin (TCB).
Serum-starved LLC-PK1 cells were treated with 100 nM TCB and/or pretreated with 10 mM MβCD for
30 min and then with 1 mM MβCD in 2.5% FBS for 72 h and Trypan blue-free viable cells were counted
in Neubauer chamber. Data are the mean ± SEM of three independent experiments in duplicate.
*** p < 0.005 vs. control. # p < 0.005 vs. TCB.

2.7. Signaling Pathways Involved in Bufadienolide Effect

In order to check whether ERK1/2 pathway is linked to the cellular effect of bufadienolides,
we used the inhibitor of the upstream kinases MEK1/2 and Src, two classical sequential points in
the signaling pathway mediated by Na+/K+-ATPase. Marinobufagin 10 and 100 nM stimulated cell
proliferation at 72 h. The treatment with MEK inhibitor (Figure 10a,b) and Src inhibitor (Figure 10c,d)
prevented this effect in both proliferation (Figure 10a,c) and viability assays (Figure 10b,d). Conversely,
the antiproliferative/cell death effect of 100 nM telocinobufagin was not prevented by such inhibitors
(Figure 10e–h).
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Figure 10. Effect of MEK1/2 and Src inhibition on cell proliferation and viability of LLC-PK1 cells
treated with marinobufagin (MBG) and telocinobufagin (TCB). Serum-starved LLC-PK1 cells were
treated with 1, 10, and 100 nM MBG (a–d) and TCB (e–h) in 2.5% FBS for 72 h with or without 10 µM
U0126 (MEK inhibitor) (a,b,e,f) or 10 µM SU6656 (Src inhibitor) (c,d,g,h). Trypan blue-free viable cells
were counted in Neubauer chamber (a,c,e,g) and viability was assessed by MTT (b,d,f,h). Data are the
mean ± SEM of at least three independent experiments in duplicate. * p < 0.05; ** p < 0.01; *** p < 0.005
vs. control.

CTS-evoked Na+/K+-ATPase signaling has been shown to activate stress-activated kinases
p38 [33] and JNK1/2 [34] and may induce cell death. To test the involvement of these kinases in
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the effect of telocinobufagin, we treated our LLC-PK1 cells with the p38 inhibitor SB202190 (10 µM)
and JNK inhibitor SP600125 (1.5 µM). Figure 11 shows that these treatments but did not prevent the
effect of telocinobufagin. Inhibition of PI3K/AKT/mTOR pathway is related to the antiproliferative
effect of some CTS [35–37]. Incubation of LLC-PK1 cells with the PI3K inhibitor LY2940025 (5 µM)
alone did not affect the number of viable cells and also had no effect on telocinobufagin-treated cells
(Figure 11c).
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Figure 11. Effect of p38, JNK1/2 and PI3K inhibition on cell proliferation of LLC-PK1 cells treated
with telocinobufagin (TCB). Serum-starved LLC-PK1 cells were treated with 100 nM TCB in 2.5%
FBS for 72 h with or without 10 µM SB202180 (p38 inhibitor) (a), 1.5 µM SB600125 (JNK1/2 inhibitor)
(b), or 5 µM LY294002 (PI3K inhibitor) (c). Trypan blue-free viable cells were counted in Neubauer
chamber. Data are the mean ± SEM of at least three independent experiments in duplicate. *** p <
0.005 vs. control.

As GSK-3β is a constitutively active kinase critical for cellular functions including proliferation
and repression of epithelial-mesenchymal transition (EMT) [38] and its modulation has been
ascribed as an apoptotic mechanism of CTS [39], we also tested this pathway. First, we evaluated
the effect of the GSK-3β inhibitor 6-bromoindirubin-3′-oxime (BIO) on LLC-PK1 cell number.
A concentration-dependent inhibitory effect was observed (Figure 12a). Second, we showed that 10
and 100 nM telocinobufagin promoted an inhibitory GSK-3β phosphorylation at Ser9, comparable to
5 µM BIO (Figure 12b,c). Then, we evaluated the combination effect of 500 nM BIO, which was not able
to reduce cell growth when used alone, in the presence of different concentrations of telocinobufagin.
As shown in Figure 13, while BIO had no effect, it potentiated telocinobufagin at concentrations of 10
and 25 nM.
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GSK-3β is particularly involved in EMT, being one of the checkpoints of Wnt/β-catenin 
pathway. When active, it impairs Wnt signaling by phosphorylation of β-catenin leading to 
proteasomal degradation. The inhibitory effect of telocinobufagin on GSK-3β would allow β-catenin 
translocation to the nucleus and development of EMT. These data suggest that telocinobufagin could 

Figure 12. Effect of GSK-3β inhibition on cell proliferation and GSK-3β Ser9 phosphorylation of
LLC-PK1 cells. Serum-starved LLC-PK1 cells were treated with 0.5, 1, and 5 µM BIO (GSK-3β inhibitor)
in 2.5% FBS for 72 h (a), and 10 and 100 nM TCB and 5 µM BIO for 15 min (b,c). Trypan blue-free
viable cells were counted in Neubauer chamber (a). Representative western blots of phospho- and total
GSK-3β (b) and relative optical density quantification in (c). Data are the mean ± SEM of at least three
independent experiments. * p < 0.05; *** p < 0.005 vs. control.
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Figure 13. Effect of GSK-3β inhibition on cell proliferation of LLC-PK1 cells treated with
telocinobufagin (TCB). Serum-starved LLC-PK1 cells were treated with 10, 25, 50 and 100 nM TCB in
2.5% FBS for 72 h with or without 500 nM BIO (GSK-3β inhibitor). Trypan blue-free viable cells were
counted in Neubauer chamber. Data are the mean ± SEM of at least three independent experiments in
duplicate. ** p < 0.01 vs. TCB 25 nM; *** p < 0.005 vs. TCB 10 nM.

GSK-3β is particularly involved in EMT, being one of the checkpoints of Wnt/β-catenin pathway.
When active, it impairs Wnt signaling by phosphorylation of β-catenin leading to proteasomal
degradation. The inhibitory effect of telocinobufagin on GSK-3β would allow β-catenin translocation
to the nucleus and development of EMT. These data suggest that telocinobufagin could activate
Wnt/β-catenin signaling through GSK-3β inhibition. In order to assay how telocinobufagin could
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activate or inhibit Wnt/β-catenin signaling, we activated the Wnt/β-catenin pathway at four different
levels and checked whether telocinobufagin could modulate Wnt/β-catenin pathway activation. We
treated LLC-PK1 cells with Wnt3a conditioned medium (Wnt3a CM), or the control medium L-cell
conditioned medium (L-cell CM), in order to access the inhibition of the physiological Wnt signaling
activity. We also transfected LLC-PK1 cells with either β-catenin, β-catenin S33A (a constitutively
active mutant of β-catenin, that cannot be phosphorylated by the destruction complex and thus is
not degraded), or dnTCF4 VP16 (a constitutively active form of TCF4 that does not rely on β-catenin
to activate the signaling). Telocinobufagin treatment inhibited 40% at 100 nM and 59% at 300 nM
the TOPFLASH reporter activity of cells treated with Wnt3a CM (Figure 14a) and 31% at 100 nM
and 77% at 300 nM the activity of β-catenin transfected cells (Figure 14b). The TOPFLASH reporter
activity of the β-catenin S33A transfected cells was inhibited only 30% at 300 nM telocinobufagin, and
not at 100 nM (Figure 14c). TCB treatment displayed no effect upon TOPFLASH reporter activity of
dnTCF4 VP16 transfected cells (Figure 14d). These data strongly suggest that telocinobufagin inhibits
Wnt/β-catenin signaling downstream to β-catenin stabilization and that telocinobufagin activity relies
on β-catenin phosphorylation and degradation. Hence, telocinobufagin acts at two different levels on
Wnt/β-catenin signaling pathway. While it inhibits GSK-3β, it also impairs β-catenin stabilization by
an undescribed mechanism.
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Figure 14. Wnt/β-catenin signaling inhibition by TCB relies on β-catenin phosphorylation and
degradation. Wnt/β-catenin signaling pathway specific TOPFLASH gene reporter assay for LLC-PK1
cells treated with 10, 100, and 300 nM TCB with control L-cell (L-cell CM) or Wnt3a conditioned
medium (Wnt3a CM) for inducing Wnt/β-catenin pathway for 24 h (a). Cells were transfected with
β-catenin, a constitutively active β-catenin mutant (b), β-catenin S33A (c), or constitutively active
TCF4 construct dnTCF4 VP16 (d). Data are the mean ± SEM of at least three independent experiments.
* p < 0.05; ** p < 0.01; *** p < 0.005 vs. control. EV, empty vector.
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3. Discussion

Several CTS have been found in mammals and their binding to Na+/K+-ATPase have been
considered to exert similar effects by the same mechanism of action. The discovery of novel roles
of Na+/K+-ATPase has gradually changed the consensus view of CTS physiopharmacology. For
the present work we chose two bufadienolides discovered in human plasma, telocinobufagin and
marinobufagin, with strikingly similar chemical structure, and showed that they produced different
pharmacological effects in the same cell, suggesting that CTS can exhibit functional selectivity.

CTS are classical ligands of Na+/K+-ATPase and bind with different potencies depending on the
isozyme and animal species [40]. In contrast to most mammalian cells, renal epithelial cells basically
express one isozyme in abundance, α1β1, and serve as a good model to evaluate the effect of CTS
without the interference of other isozymes. Moreover, pig kidney α1β1 is sensitive to CTS and has
been widely used to dissect binding and Na+/K+-ATPase-mediated signaling properties of these
compounds and is an appropriate model of human (kidney) Na+/K+-ATPase [41]. We first evaluated
the inhibitory potency of telocinobufagin and marinobufagin on the enzymatic activity of pig kidney
Na+/K+-ATPase. Telocinobufagin had an IC50 around 200 nM, equivalent to ouabain which was used
as a reference CTS. On the other hand, although marinobufagin differs from telocinobufagin only
by the presence of an epoxide group at C14–C15 instead of a hydroxyl group at C14 in the steroidal
nucleus, the former was much less potent (IC50 around 3400 nM). These results are consistent with our
previous findings in rat [42] and human kidney [43].

In addition to Na+/K+-ATPase inhibition, CTS are now known to stimulate Na+/K+-ATPase-mediated
intracellular signaling pathways by protein–protein interaction independent on its ion pumping function.
This has been discovered by Zijian Xie and coworkers in the late 1990s and revolutionized the
field with a series of groundbreaking studies (reviewed in, for instance, [3,44,45]). One of the first
signaling pathways found to be mediated by Na+/K+-ATPase signalosome was the Src-dependent
Na+/K+-ATPase-Ras-Raf-MEK1/2-ERK1/2, being this latter phosphorylated within minutes by CTS
concentrations that hardly inhibit Na+/K+-ATPase. Indeed, 1–1000 nM telocinobufagin and marinobufagin
stimulated ERK1/2 phosphorylation after 15 min. Ouabain, which has been well characterized as a
Na+/K+-ATPase-mediated ERK1/2 activator in several cell types [46–50], including LLC-PK1 cells [51,52],
also activated in the same concentration range. Reports on ERK1/2 activation by marinobufagin and
telocinobufagin are scarce [42,53]. More important, most of the concentrations tested in the present work
can barely inhibit Na+/K+-ATPase activity, which is in accordance to several works [54–56] and consistent
with a nonpumping, signaling pool of Na+/K+-ATPase in LLC-PK1 cells [52].

The activation of ERK1/2 promotes cell viability and growth, and is a key mechanism responsible
for CTS-induced cell proliferation [48,54,57]. Here, marinobufagin, as well as ouabain, induced cell
proliferation at 10 and 100 nM, especially after 72 h. This effect has been reported for ouabain in
LLC-PK1 [14] and other cell types [23–25,47,54,57,58]. Consistently, inhibition of Src and MEK1/2
completely hampered the proliferative effect of marinobufagin. Interestingly, the same effect was
not shared by telocinobufagin, which did not affect cell proliferation at 10 nM compared to control
and had a significant antiproliferative effect at 100 nM after 48 h. Note that it cannot be explained
by different inhibitory potencies of telocinobufagin and marinobufagin since ouabain had the same
cell proliferation profile as marinobufagin and exhibited a similar Na+/K+-ATPase inhibitory profile
as telocinobufagin. Src and MEK1/2 blockade did not hamper TCB activity, indicating that another
mechanism was involved.

The antiproliferative effect of CTS has been extensively studied in normal [25,59–62] and tumor
cells, although the former cells usually are more resistant than the latter [9], resulting in repurposing
of these compounds as promising anticancer drugs [10,39,63]. Our results of cell viability, increased
Bax:Bcl-2 expression ratio, cell cycle analysis with a remarkable elevation of cells in sub-G0 (DNA
fragmentation) phase and Hoechst 33342-stained cells with pyknotic nuclei reveal that apoptosis occurs
in the presence of 100 nM telocinobufagin. Apoptosis is one of the main mechanisms responsible for
CTS-evoked cell death [39,62]. Several molecular mechanisms have been considered for the apoptotic
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cell death induced by such compounds. At high concentrations, CTS block a significant fraction of Na+
pumps affecting ionic cell homeostasis, with the rise of intracellular Na+ concentration and ultimately
Ca2+. This classical mechanism, described by Akera and Brody to explain the inotropic effect of
CTS [64], has been also associated to CTS-induced apoptosis [13,55,62,65,66]. However, this is not the
case here since the intracellular Ca2+ chelator BAPTA-AM did not influence telocinobufagin effect.
Indeed, we showed that 100 nM telocinobufagin inhibited pig kidney Na+/K+-ATPase activity by 25%,
probably insufficient for a significant change in the global intracellular Na+ concentration, as shown
by Cai et al. for 100 nM ouabain in LLC-PK1 cells [67]. Moreover, stable LLC-PK1 cell lines knocked
down for α1 are viable and do not exhibit significant morphological changes [68], demonstrating the
large Na+ pump reserve capacity of these cells.

A complex array of different signaling pathways has been associated to cell growth arrest and
death caused by CTS [69]. Caveolar Na+/K+-ATPase was revealed to be the signal transducer and
strategies to dissipate caveolae also interrupt intracellular signaling [23,28,31]. We showed that
MβCD can attenuate the effect of 100 nM telocinobufagin suggesting that this Na+/K+-ATPase pool
has a role in triggering cell death. The inhibition of some putative second messengers responsible
for CTS-induced cell death like p38 [33,70–72] and JNK1/2 [73–75] did not change telocinobufagin
outcome. PI3K-Akt is a relevant pathway for LLC-PK1 cells viability and proliferation [14] and it was
shown to be downstream ERK1/2 in proximal tubule renal cells treated with ouabain [47]. As for
ERK1/2 (MEK1/2) inhibition, PI3K inhibition did not affect cell proliferation or telocinobufagin effect.

Another kinase, GSK-3β, mediates proliferation arrest and apoptosis [76]. Inhibition [39,47,77]
or activation [37,78–80] of GSK-3β have been demonstrated to be induced by CTS. Our results
showed that, unlike other tested kinase inhibitors, the GSK-3β inhibitor BIO decreased LLC-PK1
cell number in a concentration-dependent fashion and telocinobufagin, like BIO, stimulated GSK-3β
phosphorylation at the deactivating site Ser9, suggesting a role of GSK-3β in telocinobufagin effect.
When used in combination, BIO potentiated telocinobufagin-induced cell death. Because GSK-3β is
a key regulator of Wnt/β-catenin pathway, and Wnt is secreted by kidney epithelial cell line [81,82],
we chose this pathway to functionally substantiate the pGSK-3β Ser9 finding. In the resting state,
GSK-3β is active and phosphorylates β-catenin triggering its degradation, antagonizing the canonical
Wnt//β-catenin signaling. When Wnt binds to its receptor, GSK-3β is deactivated and β-catenin works
as a transcription factor. Surprisingly, telocinobufagin inhibited, in contrast to stimulating, the Wnt
signal. Telocinobufagin was able to inhibit β-catenin overexpression-induced Wnt signaling activation.
Since the bufadienolide impairs Wnt signal transduction even with increased β-catenin levels, the
inhibition of GSK-3β induced by telocinobufagin will not be sufficient to activate Wnt/β-catenin
signaling. Moreover, Wnt/β-catenin activation through constitutively active β-catenin or dnTCF4
VP16 were not blocked by the bufadienolide, suggesting that telocinobufagin acts upstream to β-catenin
stabilization. Recently, some CTS have been demonstrated to inhibit Wnt/β-catenin signaling in tumor
cells [78,83,84] but, on the other hand, in renal cells, CTS have been reported to promote EMT [85,86]
and β-catenin nuclear translocation [87]. Further studies are definitely necessary to characterize the
mechanism(s) of action involved in telocinobufagin-induced LLC-PK1 cell death.

Functional selectivity hypothesis has been formulated in an attempt to explain phenomena that
cannot be understood in the light of traditional pharmacological concepts. A central one is that
pharmacological specificity occurs through interaction between the ligand and the receptor, where the
ligands can be characterized by their receptor affinity and efficacy. Thus, the classification of agonist
(full, partial, or inverse) and antagonist was created considering efficacy as a system-independent
parameter, being constant for a particular ligand-receptor complex [88]. This dogma has been
challenged in recent years, particularly by studies of G protein-coupled receptors, providing evidence
that some ligands induce different responses mediated by the same and single receptor, depending
on the system [21,22]. Therefore, the ligand would induce or select a thermodynamically favorable
receptor conformation responsible to modulate the signal transduction and multiple possibilities of
activation (or inactivation) of signaling pathways would be expected.
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The debate concerning whether CTS have similar mechanism of action and pharmacological effect
is not new. For instance, Runge et al. suggested that differences in CTS polarity were responsible for
distinct cardiac effects [89], although pharmacokinetics was pointed out later to have a major role [90].
Pamnani et al. showed that bufalin, but not ouabain, produces a positive inotropic and chronotropic
effect [91] and we demonstrated that bufalin is much more natriuretic and diuretic, despite of
equivalent Na+/K+-ATPase inhibitory potency; this discrepancy occurs due to activation of Src-ERK1/2
pathway [19]. Ouabain induces hypertension when chronically administered in rats, while digoxin
and digitoxin prevent this effect and can even reduce blood pressure when administered alone [16].
This may be related to the activation or not of Src-dependent signaling cascade [17]. Moreover, ouabain
in low concentrations delays the cardiotoxic effect of digoxin and bufalin in vitro and in vivo, and
apparently it seems to involve intracellular signaling mechanisms [15]. As the bufadienolides in our
study are found endogenously in conditions such as hypertension, chronic renal failure, heart failure,
and preeclampsia [4], an intriguing possibility is that the balance between them is important in health
and disease. For instance, marinobufagin has been demonstrated to induce cardiac and renal fibrosis
and it was consistent with the trigger of EMT in renal cells [85]. Perhaps, as for ouabain and digoxin
in hypertension [16], the opposing effects of marinobufagin and telocinobufagin would maintain
homeostasis and critical fluctuations of their endogenous concentration might be detrimental.

The molecular mechanism involved in the suggested functional selectivity of CTS is still elusive.
Binding characteristics of distinct CTS may affect the Na+/K+-ATPase conformation. Laursen et al.
showed by X-ray diffraction analysis of the crystal structure of ouabain-, digoxin-, and bufalin-(pig)
α1β1 Na+/K+-ATPase complex that the size of the lactone ring, the substituents of the steroid nucleus
as well as the degree of glycosylation are important to the depth of the CTS in the binding site and
rearrangement of transmembrane segments [92]. On the other hand, Klimanova et al. showed that
marinobufagin, different from ouabain that binds to E2-P conformation with high affinity (which is a
consensus for CTS as a class), binds with similar affinity to E1 state duck α1β1 Na+/K+-ATPase [93].
A more complex situation was postulated by Song et al., who observed antagonism between
“digoxin-like” and “ouabain-like” CTS [94], which in a certain way was also seen by Feldmann
et al. [95] and Nesher et al. [16]. Although they exhibit an agonistic effect when tested alone in rat
α2 and α3 Na+/K+-ATPase, they inhibit the effect of one another when combined. They proposed
a model where Na+/K+-ATPase operates as tetramers (αβ)4 and the process of oligomerization and
disaggregation of the oligomers would explain their findings [94].

4. Materials and Methods

4.1. Drugs

The bufadienolides telocinobufagin (m.w. 402.5 g/mol; CAS#: 472-26-4) and marinobufagin (m.w.
400.5 g/mol; CAS#: 470-42-8) were isolated by chromatographic separation on neutral aluminum oxide
column from the parotoid gland secretion of the Brazilian toads Rhinella schneideri which were captured
under the license of the Brazilian Institute for the Environment and Natural Resources/National
Center for Research and Conservation of Reptiles and Amphibians (IBAMA/RAN) number 097/06
(process 02010.000832/04-74). Afterwards, the compounds were chemically characterized as described
previously [96]. Briefly, the bufadienolides were structurally characterized by one- (1H and 13C)
and two-dimensional—correlation spectroscopy, COSY; heteronuclear multiple-quantum (HMQC)
and multiple-bond (HMBC) correlation—nuclear magnetic resonance (NMR) spectra and infrared
(IR) experiments and are represented in Figure 1. Analytical data, Fourier transform IR data and
chemical shifts for 1H and 13C NMR are presented in [96]. Stock solutions of bufadienolides (30 mM)
were prepared in DMSO and stored at −20 ◦C. Ouabain and all chemicals were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Cell culture products were purchased from Gibco (Grand Island,
NY, USA)
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4.2. Cell Culture

Porcine kidney proximal tubule cells, LLC-PK1 (ATCC, Manassas, VA, USA), were cultured in
Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% FBS, NaHCO3 (44 mM) and
gentamycin (40 mg/L). When cells were about 70–90% confluent, they were washed with phosphate
buffered saline (PBS: 125 mM NaCl, 8 mM Na2HPO4, 2 mM NaH2PO4, 5 mM KCl) and serum-starved
overnight. Then, they were cultured in DMEM supplemented with 2.5% FBS and used for experiments
unless stated otherwise.

4.3. Cellular Preparation and Treatment with CTS

LLC-PK1 cells grown on 6-well plates were treated with increasing concentrations of CTS for
15 min in serum-free DMEM (time estimated for maximal effect [23,50,97]). The medium was then
removed, the cells were washed with PBS and lysed with radioimmunoassay modified buffer (RIPA)
containing 1% NP-40, 0.25% deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 mM Na3VO4,
NaF 1 mM, 10 µg/mL aprotinin, 10 µg/mL leupeptin, 10 nM okadaic acid and 50 mM Tris-HCl
(pH 7.4). The cell lysate was centrifuged at 13,000 g for 15 min, the supernatant was collected for
protein determination and Western blot experiments.

4.4. Na+/K+-ATPase Inhibition Assay

Pig kidney preparation enriched with Na+/K+-ATPase was kindly provided by Carlos
Frederico Leite Fontes (Instituto de Bioquímica Médica, UFRJ, Rio de Janeiro, Brazil) and has been
obtained according to the method of Jorgensen [98], with previously described modifications [99].
Ouabain-sensitive ATPase activity was determined by the quantitative determination of inorganic
phosphate (Pi) released due to enzymatic hydrolysis of ATP using the colorimetric method of Fiske
and Subbarow [100]. For the evaluation of the inhibition of Na+/K+-ATPase activity, the reaction
started with the addition of enzyme preparation in an incubation medium containing 87.6 mM NaCl,
3 mM MgCl2, 3 mM ATPNa2, 1 mM EGTA, 10 mM NaN3, 20 mM Tris-maleate buffer (pH 7.4), with
3 mM KCl (or 1 mM ouabain for basal activity), in the presence of increasing concentrations of CTS, for
1 h at 37 ◦C [43]. Mean inhibitory concentrations (IC50) were estimated fitting the inhibition curves by
non-linear regression, as described by Touza et al. [43].

4.5. Immunoblot Assay

The technique was performed as described previously [42]. Cellular preparations of LLC-PK1
(20–40 µg protein/well) were separated on 10 or 12% SDS-PAGE gels and electrotransferred to
nitrocellulose membranes for 1 h. After protein transfer visualization with Ponceau Red, membranes
were incubated for 1 h in 5% skimmed milk dissolved in Tris-buffered saline solution with 0.1% Tween
20 (TBS-T) followed by 1 h incubation with primary (against total and phosphorylated ERK1/2 and
GSK-3β protein kinases, 1:1000 dilution, Cell Signaling Technology, Danvers, MA, USA), Bcl-2 and Bax
(1:250 dilution, Santa Cruz Biotechnology, Dallas, TX, USA), and secondary peroxidase-conjugated
antibodies (rabbit anti-IgG, 1:1000 or 1:4000, Santa Cruz Biotechnology, Dallas, TX, USA). The
immunoreactivity was detected by a SuperSignal system (Pierce Biotechnology, Waltham, MA, USA),
and the membranes were exposed during 30 s to 5 min to the radiographic film (CL-XPosure, Pierce
Biotechnology, Waltham, MA, USA). The autoradiographs were scanned in scanner (HP Scanjet G4050,
Hewlett-Packard, Palo Alto, CA, USA) and the quantification was carried out by densitometric analysis
using ImageJ software (version 1.42 q, National Institutes of Health, Bethesda, MD, USA). Blots for
Bax and Bcl-2, as for total and phosphorylated ERK1/2 and GSK-3β, were stripped and reprobed in
the same membrane to ensure reliable comparison.
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4.6. Cell Counting Assay

In 24-well plates, 1–2 × 104 LLC-PK1 cells/well were treated with 1, 10 or 100 nM CTS for 24,
48, and 72 h. In order to investigate the involvement of intracellular signaling pathways, 100 nM
CTS were incubated with or without inhibitors of Src (SU6656, 10 µM; Sigma-Aldrich, St. Louis,
MO, USA), ERK1/2-MEK1/2 (U0126, 10 µM; Cell Signaling Technology, Danvers, MA, USA), PI3K
(LY294002, 5 µM; Cell Signaling Technology, Danvers, MA, USA), p38 (SB202190, 10 µM; Cell Signaling
Technology, Danvers, MA, USA), JNK1/2 (SP600125, 1.5 µM; Cell Signaling Technology, Danvers, MA,
USA), or GSK-3β (BIO, 0.5, 1, and 5 µM; Sigma-Aldrich, St. Louis, MO, USA) for 72 h. For MβCD
(Sigma-Aldrich, St. Louis, MO, USA) assay, cells were pretreated with 10 mM MβCD for 30 min
and then 1 mM MβCD + 100 nM TCB in 2.5% FBS for 72 h. At these time points, two wells from
each group were trypsinized and the number of Trypan blue-viable cells was counted in Neubauer
chamber (hemocytometer).

4.7. MTT Assay

In 96-well plates, 3 × 103 LLC-PK1 cells/well were treated with 100 nM CTS with or without
inhibitors of Src (SU6656, 10 µM), ERK1/2-MEK1/2 (U0126, 10 µM), PI3K (LY294002 5 µM), p38
(SB202190, 10 µM), JNK1/2 (SP600125, 1.5 µM), or GSK-3β (BIO, 0.5, 1 and 5 µM) for 72 h. MTT was
added directly to culture wells and incubated for 4 h. The absorbance was measured at 570 nm with a
96-well plate reader. The optical density values were normalized to baseline values and presented as
percentage of control.

4.8. LDH Release

In 24-well plates, 104 LLC-PK1 cells/well were treated with 100 nM CTS for 72 h. Aliquots of
20 µL of media from each well were added to eppendorfs with 1 mL of Tris buffer (pH 7.2) containing
NaCl and pyruvate and warmed up to 37 ◦C. 25 µL NADH solution was added and absorbance was
measured at 340 nm in a spectrophotometer at different times (0, 1, 2, and 3 min).

4.9. Cell Cycle Analysis

In 24-well plates, 104 LLC-PK1 cells/well were treated with 10 and 100 nM TCB for 48 h. Then,
the cells were trypsinized and placed in Falcon tubes. After washing with HBSS (Hank’s Balanced Salt
Solution), the cells were incubated with cell-cycle solution containing 50 µg/mL propidium iodide
(Sigma-Aldrich, St. Louis, MO, USA), 1 mg/mL RNAse (bovine pancreas, Sigma), and 0.2% Triton
X-100, and then cell sorting was performed in a FACSCalibur flow cytometer (BD Biosciences, Franklin
Lakes, NJ, USA).

4.10. Morphological Analysis by Phase-Contrast and Fluorescence Microscopy

In 24-well plates, 5 × 103 LLC-PK1 cells/well were treated with 100 nM TCB for 24 h. For
BAPTA-AM assay, cells were pretreated with 5 µM BAPTA-AM for 30 min and then treated with TCB.
For nuclear fluorescence staining, cells were cultured in coverslips. After 24 h, they were washed
with PBS, fixed with 4% paraformaldehyde for 10 min, washed again and then incubated with 0.2%
Triton X-100 for 5 min. Cells were incubated with Hoechst 33,342 (1:10,000 dilution, Thermo Fisher
Scientific, Waltham, MA, USA) for 30 min. Cells were examined and photographed by phase-contrast
and fluorescence microscopy (Olympus CellSens Software 1.5, IX71 Olympus Microscope, Center
Valley, PA, USA).

4.11. Dual Luciferase Reporter Assay

LLC-PK1 cell lines were transfected using Lipofectamine 3000 Transfection Reagent (Invitrogen,
Carlsbad, CA, USA) and performed in triplicate. Cells were plated into 96-well plates and transfected
in the following day with 100 ng of TOPFLASH plasmid, 10 ng of CMV promoter Renilla plasmid
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and 100 ng of each experimental plasmid. Cells were treated for 24 h with TCB or vehicle, with or
without Wnt3aCM 24 h post-transfection. Wnt3a CM and L-cell CM were obtained according to ATCC
protocol. Cells were lysed with passive lysis buffer (Promega, Madison, WI, USA) and TOPFLASH
reporter activity was measured according to the manufacturer protocol (Dual-Luciferase Reporter
Assay System, Promega, Madison, WI, USA). The triplicate assays data were normalized to the empty
vector control.

4.12. Statistical Analysis

Statistical analyzes were performed by analysis of variance—one-way or two-way (for cell
counting in Figure 3 and Figure S3) ANOVA—followed by Dunnett test using GraphPad Prism®

software (version 6, GraphPad Software, La Jolla, CA, USA). Values of p < 0.05 were considered
statistically significant. The data represent the results of three or more experiments and were expressed
as mean ± standard error of the mean (SEM).

5. Conclusions

In conclusion, the present study strongly suggests that structurally similar bufadienolides—
marinobufagin and telocinobufagin—present functional selectivity promoting divergent effects by different
mechanisms of action despite acting on the same receptor (Na+/K+-ATPase) and contribute to the
understanding of the existence of different endogenous CTS in mammals.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/19/9/2769/
s1.
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