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Abstract

Knowledge of genetic cause in neurodevelopmental disorders can highlight molecular and cellular 

processes critical for typical development. Furthermore, the relative homogeneity of 

neurodevelopmental disorders of known genetic origin allows the researcher to establish the 

subsequent neurobiological processes that mediate cognitive and behavioral outcomes. The current 

study investigated white matter structural connectivity in a group of individuals with intellectual 

disability due to mutations in ZDHHC9. In addition to shared cause of cognitive impairment, these 

individuals have a shared cognitive profile, involving oromotor control difficulties and expressive 

language impairment. Analysis of structural network properties using graph theory measures 

showed global reductions in mean clustering coefficient and efficiency in the ZDHHC9 group, 

with maximal differences in frontal and parietal areas. Regional variation in clustering coefficient 

across cortical regions in ZDHHC9 mutation cases was significantly associated with known 

pattern of expression of ZDHHC9 in the normal adult human brain. The results demonstrate that a 

mutation in a single gene impacts upon white matter organization across the whole-brain, but also 

shows regionally specific effects, according to variation in gene expression. Furthermore, these 

regionally specific patterns may link to specific developmental mechanisms, and correspond to 

specific cognitive deficits.
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Introduction

Many cognitive and psychiatric disorders are highly heritable (Haworth et al. 2009; Lee et 

al. 2015). In some cases, genetic risk factors have been identified, but understanding the 

neural mechanisms linking altered gene transcripts to cognitive or behavioral outcomes 

remains challenging. One reason for this is the heterogenous nature of the vast majority of 

these disorders, which presents a major challenge to establishing the neural endophenotypes 

that mediate any gene–cognition relationships; any group defined on the basis of a cognitive 

impairment or behavioral difficulty will likely contain individuals with different genetic and 

neural causes, making it difficult to identify mechanisms at the group level. One promising 

approach has been to study neuroanatomical differences in groups of individuals that have 

rare but clearly defined genetic causes of those impairments (Meyer-Lindenberg 2009; 

Griffa et al. 2013). These groups, while necessarily small in size, have a homogenous 

etiology. Studying these groups can therefore provide a powerful means for identifying the 

neurobiological pathways that potentially mediate cognitive and behavioral phenotypes in 

the wider population. For instance, the study of a rare familial speech disorder (KE family, 

FOXP2 mutation) highlighted the importance of striatal networks for emergent higher-order 

language skills (Liegeois et al. 2011; Watkins 2011).

However, studies of brain differences have mainly focussed on focal differences in brain 

areas or white matter tracts that show the most pronounced group differences. This is true of 

both genetically defined group comparisons and case-control designs more generally. 

However, genetic differences are likely to have wide-ranging effects on the organization of 

neural ensembles across many areas. To explore this fully requires a more advanced network 

science approach, capable of establishing how organizational principles differ across groups 

of individuals (Meyer-Lindenberg 2009; Petersen and Sporns 2015). We take this approach 

here.

In a network analysis, brain regions are described as nodes and their connections as edges. 

Nodes typically correspond to regions of interest (ROI) (Dell’Acqua and Catani 2012; 

Fornito et al. 2015). In the current study, edges represented fractional anisotropy (FA) of 

white matter connections between the regions. FA indicates anisotropic diffusion of water 

(Alexander et al. 2011). Higher levels of FA are associated with more ordered organization 

of axons and increased myelination (Feldman et al. 2010). Higher values of FA have been 

linked to higher cognitive performance (Clayden et al. 2011; Navas-Sanchez et al. 2013) and 

lower levels to white matter damage in patient studies (Kubicki et al. 2005; Verstraete et al. 

2013). Organizational principles of the structural brain network can be quantified using 

graph theory (Bullmore and Sporns 2009; Rubinov and Sporns 2010). These approaches 

have been used to study typical and atypical brains across the lifespan (Hagmann et al. 2012; 

Collin and van den Heuvel 2013; Griffa et al. 2013; Deco and Kringelbach 2014; Martino et 

al. 2014).

A few studies have employed this network analysis approach to investigate how genetic 

differences may influence brain organization (Ottet et al. 2013; Hong et al. 2014; Leow et al. 

2014; Meoded et al. 2014; Bruno et al. 2016). These studies focused on common variants of 

trophic factor genes (Meoded et al. 2014), genes involved the regulation of synaptic weights 
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(Ottet et al. 2013; Hong et al. 2014; Meoded et al. 2014), and mutations associated with 

specific phenotypes (Leow et al. 2014; Bruno et al. 2016). Genetic differences were 

associated with differences in structural brain network organization, with specific effects for 

each genetic factor. This suggests that studying differences in brain organization may offer 

important insight into understanding the effects of genetic variation.

In the present study we take a network analysis approach to studying brain organization in a 

neurodevelopmental disorder defined by specific genetic origin. Mutations in ZDHHC9 are a 

recurrent cause of X-linked Intellectual Disability (XLID) (Raymond et al. 2007). The 

ZDHHC9 gene codes for a palmitoylation enzyme, involved in post-translational 

modification of specific target substrates. Palmitoylation plays an important role in the 

recruitment of receptors and ion channels at the synapse (Topinka and Bredt 1998; El-

Husseini et al. 2000; Young et al. 2013). A systematic assessment of clinical history and 

cognitive deficits across multiple XLID-associated genes led to the observation that 

ZDHHC9 mutations are associated with homogeneous neurological and cognitive features, 

including disproportionate attention problems, language impairment, and deficits in 

oromotor control in the context of mild to moderate intellectual disability (Baker et al. 

2015). The majority of affected individuals also had a history of epilepsy that resembled 

Rolandic epilepsy in presentation and spike topography (Baker et al. 2015). Previous 

neuroimaging work in our group investigated focal differences in brain structure in 

ZDHHC9 cases. These studies indicated differences in subcortical volumes (thalamus, 

putamen, and caudate nucleus) and hypoplasia of the corpus callosum (Baker et al. 2015). 

Reductions in cortical thickness were found that were most pronounced in areas around the 

temporoparietal junctions and inferior frontal lobe (Bathelt et al. 2016). Mutation of 

ZDHHC9 was also associated with reductions in white matter structural integrity involving 

cortical, corticosubcortical, and interhemispheric tracts (Bathelt et al. 2016).

Given strong evidence for pervasive effects on white matter integrity, we expected the 

ZDHHC9 mutation would have an impact on structural brain network organization. More 

specifically, we predicted that in addition to any global impact of gene mutation, we ought to 

observe some regional specificity in network properties, according to variability in the 

expression of that gene across the brain. This regional specificity may correspond to the 

areas of most marked cognitive impairment resulting from the mutation, and overlap with 

other genes known to result in similar phenotypic features, potentially via similar 

developmental mechanisms. In short, across our analyses we explored how both a mutation 

to, and regional expression of, ZDHHC9 are associated with structural brain organization.

Participants and Methods

Participants

The study compared 7 males with inherited loss of function mutations in the ZDHHC9 gene 

(age in years: mean = 29.13, standard error (SE) = 4.86, range = 13.83–41.83) to 7 males 

individually matched in age ± 2 years (age in years: mean = 27.23, SE = 5.31, range = 

10.17–42.5). Comparison subjects had no history of neurological illness or cognitive 

impairment. Statistical analysis indicated no significant difference in age between the groups 

(Welch-corrected t-test: t(11.91) = −0.265, P = 0.796).
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For detailed description of clinical and cognitive characteristics of the ZDHHC9 group see 

Baker et al. 2015. In summary, all individuals with a ZDHHC9 mutation had mild to 

moderate intellectual disability (full-scale IQ: mean = 64.86, SE = 2.32, range = 57–73). 

Five individuals had a history of epilepsy, with seizure characteristics and EEG features 

similar to the Rolandic epilepsy spectrum. At the time of magnetic resonance imaging 

(MRI) acquisition, 1 participant reported seizures within the previous 3 months, and 3 

currently received antiepileptic medication (carbemazapine n = 1, carbemazapine and 

lamotrigine n = 1, phenytoin n = 1). Vineland scores (Sparrow et al. 2005) indicated stronger 

receptive language abilities compared with expressive and written language abilities in the 

ZDHHC9 group. The Verbal Motor Production Assessment for Children (VMPAC) (Hayden 

and Square 1999) indicated significant oromotor difficulties in the ZDHHC9 group, 

including deficits in oral control, sequencing, voice characteristics, and connected speech. 

Inhibitory control was also reduced in the ZDHHC9 group on a visual attention task. These 

specific features differentiated with ZDHHC9 group from age and IQ matched controls 

(Baker et al. 2015).

MRI Data Acquisition

MRI data was acquired at the MRC Cognition and Brain Sciences Unit, Cambridge, UK. All 

scans were obtained on the Siemens 3 T Tim Trio system (Siemens Healthcare, Erlangen, 

Germany), using a 32-channel quadrature head coil. The imaging protocol consisted of 2 

sequences: T1-weighted MRI and a diffusion-weighted sequence.

T1-weighted volume scans for surface analysis were acquired using a whole brain coverage 

3D Magnetizable Prepared Rapid Acquisition Gradient Echo (MP RAGE) sequence 

acquired using 1 mm isometric image resolution. Echo time was 2.98 ms, and repetition time 

was 2250 ms. T1-weighted volumes were visually inspected for motion artefacts and were 

deemed sufficient by a radiographer not involved in the study.

Diffusion scans were acquired using echo-planar diffusion-weighted images with an 

isotropic set of 60 noncollinear directions, using a weighting factor of b = 1000 s mm−2, 

interleaved with 4 T2-weighted (b = 0) volumes. Whole brain coverage was obtained with 

60 contiguous axial slices and isometric image resolution of 2 mm. Echo time was 90 ms 

and repetition time was 8400 ms.

Motion was quantified as the root-mean-square difference between volumes and the first 

volume in the diffusion sequence using the FMRIB Software Library (FSL)’s rmsdiff tool. 

The maximum displacement was under 3 mm for both ZDHHC9 cases and controls 

(ZDHHC9: mean = 2.1, SE = 0.292, median = 1.97, mad = 0.648; control: mean = 1.8, SE = 

0.304, median = 1.53, mad = 0.314) and there was no significant difference between groups 

(paired t-test: t(6) = −0.59, P = 0.58; Wilcoxon signed-rank test: W = 10, P = 0.499). There 

were also no differences in the number of outliers identified by FSL eddy (Andersson and 

Sotiropoulos 2016) (ZDHHC9: mean = 12.71, SE = 2.254, median = 11.0, mad = 5.93; 

control: mean = 10.0, SE = 3.078, median = 8.0, mad = 5.93; paired t-test: t(6) = −1.09, P = 

0.317; Wilcoxon signed-rank test: W = 8, P = 0.311).
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Structural Connectome Analysis

The white-matter connectome reconstruction followed the general procedure of estimating 

the most probably white matter connections for each individual, and then obtaining 

measures of FA between regions (Fig. 1). The details of the procedure are described in the 

following paragraphs.

In the current study, MRI scans were converted from the native DICOM to compressed 

NIfTI-1 format using the dcm2nii tool http://www.mccauslandcenter.sc.edu/mricro/mricron/

dcm2nii.html. Subsequently, a brain mask was derived from the b0-weighted volume of the 

diffusion-weighted sequence and the entire sequence was submitted for correction for 

participant movement and eddy current distortions through FSL’s eddy tool. Next, nonlocal 

means denoising (Coupe et al. 2008) was applied using the Diffusion Imaging in Python 

(DiPy) v0.11 package (Garyfallidis et al. 2014) to boost signal to noise ratio. The diffusion 

tensor model was fitted to the preprocessed images to derive maps of FA using dtifit from 

the FMRIB Software Library (FSL) v.5.0.6 (Behrens et al. 2003). A spherical constrained 

deconvolution (CSD) model (Tournier et al. 2008) was fitted to the 60-gradient-direction 

diffusion-weighted images using a maximum harmonic order of 8 using DiPy. An alternative 

analysis with a constant solid angle (CSA) model is present in the Supplementary Materials 

section. Next, probablistic whole-brain tractography was performed based on the CSD 

model with 8 seeds in any voxel with a General FA value higher than 0.1. The step size was 

set to 0.5 and the maximum number of crossing fibers per voxel to 2.

For ROI definition, T1-weighted images were preprocessed by adjusting the field of view 

using FSL’s robustfov, nonlocal means denoising in DiPy, deriving a robust brain mask 

using the brain extraction algorithm of the Advanced Normalization Tools (ANTs) v1.9 

(Avants et al. 2009), and submitting the images to recon-all pipeline in FreeSurfer v5.3 

(http://surfer.nmr.mgh.harvard.edu). ROIs were based on the Desikan-Killiany parcellation 

of the MNI template (Desikan et al. 2006) with 34 cortical ROIs per hemisphere and 17 

subcortical ROIs (brain stem, and bilateral cerebellum, thalamus, caudate, putamen, 

pallidum, hippocampus, amygdala, nucleus accumbens). The surface parcellation of the 

cortex was transformed to a volume using the aparc2aseg tool in FreeSurfer. Further, the 

cortical parcellation was expanded by 2 mm into the subcortical white matter using in-house 

software. In order to move the parcellation into diffusion space, a transformation based on 

the T1-weighted volume and the b0-weighted image of the diffusion sequence was 

calculated using FreeSurfer’s bbregister and applied to volume parcellation.

For each pairwise combination of ROIs, the number of streamlines intersecting both ROIs 

was estimated and transformed to a density map. A symmetric intersection was used, that is, 

streamlines starting and ending in each ROI were averaged. Spurious connections in 

streamline tractography are a common problem in structural connectome studies (Zalesky et 

al. 2016). Typically, a threshold is applied to remove false positive streamlines. However, the 

choice of this cut-off is largely arbitrary. In order to remove the effect of setting any 

particular threshold, a range of thresholds was applied and the area under the curve for each 

metric was compared in subsequent analyses (Wijk et al. 2010).
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The weight of the connection matrices was based on FA. To obtain FA-weighted matrices, 

the streamline density maps were binarized after thresholding and multiplied with the FA 

map and averaged over voxels to obtain the FA value corresponding to the connection 

between the ROIs. This procedure was implemented in-house based on DiPy v0.11 functions 

(Garyfallidis et al. 2014). Edge weights may be defined in different ways (Qi et al. 2015), 

which may considerably influence the results of the analysis (Fornito et al. 2013). Therefore, 

additional analyses were carried out with alternative edge weight definitions, that is, 

streamline count, streamline count normalized by ROI size, and streamline count normalized 

by streamline length. These analyses confirmed the results of the main analysis. A detailed 

description can be found in the Supplementary Materials.

Graph Theory

Graph theory was employed to investigate differences in network architecture between the 

ZDHHC9 and control group. To this end, graph metrics were calculated in the python 

implementation of the Brain Connectivity Toolbox https://sites.google.com/site/bctnet/. 

Weighted undirected networks were used for all analyses. The weight represented the FA 

value in the structural connectome. A detailed description of commonly used graph theory 

metrics can be found elsewhere (Bullmore and Sporns 2009; Rubinov and Sporns 2010).

Allen Brain Atlas Data

Gene expression data were obtained from the Allen Brain Atlas Human Brain public 

database (http://human.brain-map.org). Gene expression data were based on microarray 

analysis of postmortem tissue samples from 6 human donors between 18 and 68 years with 

no known history of neuropsychiatric or neurological conditions (see online documentation). 

MRIs and transformations from individual donors MR space to MNI coordinates were also 

obtained from the Allen Brain Atlas website. For the current investigation, expression values 

were averaged across donors and mapped onto areas of the Desikan-Killiany parcellation of 

the MNI brain as described by French and Paus (2015). The current investigation focussed 

on the expression of ZDHHC9. In order to investigate the specificity of the link of ZDHHC9 
expression and structural connectome organization, we compared ZDHHC9 to a number of 

other genes: First, GAPDH was added as a control gene that is not associated with any 

known neurological or cognitive phenotype (Nicholls et al. 2012). We then assessed genes 

that are associated with a similar mutation phenotype. For overlap with language deficits, 

FOXP2 was included (Vargha-Khadem et al. 2005). FMR1 was selected as an XLID gene 

(Bourgeois et al. 2009). GRIN2A was included for the association with Rolandic Epilepsy 

(McTague et al. 2016).

Statistical Analysis

Comparison of Participant Groups—Participants in the ZDHHC9 and control group 

were matched on age (±2 years). Therefore, statistical comparisons were based on paired 

sample tests. Due to the rarity of single-gene disorders, the size of the sample was limited. 

Some controversy exists regarding optimal statistical procedures in small samples. Paired t-
test comparisons are both robust to some violation of the normality assumption and to small 

sample sizes (Campbell et al. 1995; Bridge and Sawilowsky 1999; Fritz et al. 2012). In all 
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cases, we also tested for any deviation from the normality assumption, using the Shapiro–

Wilk test, which provides the best sensitivity (Razali and Wah 2011). Bonferroni correction 

was also applied to correct for multiple comparisons. For topographical analysis, false 

discovery rate (FDR) correction using the Benjamini–Hochberg method was applied. This 

maximizes power in the presence of a very large number of comparisons.

Regional Variation in Graph Measures and Association With Gene Expression 
and Group-Average Graph Metrics—Differences in node-level graph metrics were 

compared between groups. Deviations from the normality assumption were very rare, being 

present for only 3–5% of regions (node degree: 3.53, node strength: 5.88, clustering 

coefficient: 3.53, efficiency: 3.52). For this reason, we retained the paired-sample t-tests as 

our primary means of comparison—the statistical sensitivity of this method is superior to the 

nonparametric alternatives—but we disregarded those few instances where the normality 

assumptions were violated.

The linear association between gene expression and group-average graph metrics was 

investigated with linear regression models. Separate simple regression models were fitted 

with the graph metric as the outcome and gene expression and an intercept term as the 

predictor (model: YGraphMetric = βGeneExpressionXGeneExpression + βIntercept). Bonferroni 

correction was used to correct for multiple comparisons arising from the number of groups 

(ZDHHC9, control), the number of genes, and the number of graph metrics entered into the 

analysis.

Results

The following section describes the results of the structural connectome comparison 

between the ZDHHC9 group and controls. The analysis first focused on regional differences 

in edge weight between the groups as a basic property of the network. Next, graph theory 

was employed to characterize connectivity principles of the networks. Last, the relationship 

between regional variation of ZDHHC9 expression and these connectivity properties was 

investigated. Illustrations of the topography of the structural network are presented in Figure 

2. These illustrations were thresholded at a high cut-off to make the figure more readable. 

Unthresholded adjacency matrices of the group average networks can be found in the 

Supplementary Materials.

Reduced Regional Edge Weight in the ZDHHC9

Comparison of edge weights by region indicated a significantly lower edge weight in the 

ZDHHC9 group for subcortical-cortical, left hemisphere cortical, right hemisphere cortical, 

and interhemispheric connections (Table 1 and Fig. 3).

Reductions in Global Graph Metrics in the ZDHHC9 Group

Statistical comparison indicated significant differences in mean node degree and mean node 

strength. Global clustering coefficient and global efficiency are significantly influenced by 

node degree. In order to adjust for differences in network density, group-level consensus 

thresholding was applied, such that we only retained connections that were found in each 
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participant (de Reus and van den Heuvel 2013; Fornito et al. 2016). Analysis of global 

clustering coefficient and global efficiency in the consensus-thresholded networks indicated 

a significant reduction in both metrics in the ZDHHC9 group (Table 2 and Fig. 4).

Regional Reductions in Graph Metrics in the ZDHHC9 Group

Regional comparison of node degree and node strength indicated reduction in the ZDHHC9 
group for the brain stem, caudate, and putamen (Table 3a and b). Cortical differences were 

found in areas of the left and right temporal lobe, parietal lobe, and frontal lobe (Fig. 5a and 

b). Reductions in the local clustering coefficient in the ZDHCC9 group were found for the 

left inferior frontal gyrus, right isthmus, and cingulate cortex (Table 3c and Fig. 5c). Local 

efficiency was found to be reduced around the right superior frontal cortex (Table 3d and 

Fig. 5d). There were no significant increases for any region or measure in the ZDHHC9 
group compared with controls.

ZDHHC9 Expression and Structural Connectome Properties

Normalized gene expression obtained from the Allen Brain Institute Human Brain database 

indicated higher expression of ZDHHC9 in the left compared with the right hemisphere (see 

Fig. 6). Local maxima were found in the left postcentral gyrus, inferior frontal cortex, 

anterior cingulate cortex, inferior parietal lobule, and right lingual gyrus. Low expression 

was observed in the right posterior and isthmuscingulate cortex, and left superior temporal 

gyrus.

Next, the relationship between node-level graph metrics and gene expression in each region 

was investigated. The analysis indicated a significant positive association between node-

level clustering coefficient and ZDHHC9 expression in the ZDHHC9 [F(1,66) = 15.62, R2 = 

0.191, β = 0.0052, P < 0.001, corrected-P = 0.008, see Fig. 6], but not in the control group 

[F(1,66) = 5.486, R2 = 0.077, β = 0.002, P = 0.022, corrected-P = 0.888]. No significant 

association between graph measures and expression of other genes were found. Cook’s 

distance indicated the presence of 3 influential data points, that is, the left (c = 0.14) and 

right banks of the superior temporal sulcus (c = 0.18), and the left caudal anterior cingulate 

(c = 0.11). However, the association between ZDHHC9 expression and clustering coefficient 

in the ZDHHC9 group was also present when these regions were removed [F(1,63) = 23.68, 

R2 = 0.273, β = 0.006, P < 0.001, corrected-P = 0.001].

Discussion

Loss of function mutations in ZDHHC9 result in pervasive differences in white matter 

volumes and integrity (Bathelt et al. 2016), alongside a cognitive profile that includes 

profound expressive language deficits (Baker et al. 2015). Topographical analysis of 

clustering coefficient and local efficiency indicated differences in nodes of the frontal, left 

parietal, and right temporal lobe. These results suggest that these nodes are less integrated 

with the rest of the network in the ZDHHC9 group. These regionally specific effects may 

provide a basis for the cognitive profile that these individuals show. Reduced connectivity 

between nodes of a network involving frontal and temporoparietal nodes is consistent with 

the previously described language deficits in this group (Baker et al. 2015). Deficits in 
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inhibitory control (Baker et al. 2015) may arise from the reduced integration of nodes of the 

anterior cingulate and prefrontal cortex.

Furthermore, the regional variation in clustering coefficient within the ZDHHC9 group is 

predicted by regional expression levels of ZDHHC9. The higher the expression patterns of 

ZDHHC9, the higher the clustering coefficient in this group. For example, expression of 

ZDHHC9 is highest in left temporoparietal regions and frontal regions. The largest reduction 

in regional comparison of clustering coefficient in the ZDHHC9 group were also found in a 

frontal region. This convergent finding supports the suggestion that ZDHHC9 may play a 

critical role in shaping long-range white matter connectivity of these regions.

The influence of ZDHHC9 mutation on structural brain organization shows both similarities 

and differences when compared with other groups with a similar phenotype or genetic 

mechanisms. Like ZDHHC9 mutation (Raymond et al. 2007), Fragile-X syndrome (FXS) is 

a cause of XLID. Leow et al. (2014) investigated local and global properties of the white 

matter connectome in FXS. FXS is caused by CGG trinucleotide repeats in the Fragile-X 

mental retardiation 1 (FMR1) gene on the X chromosome (Belmonte and Bourgeron 2006). 

Leow and colleagues reported an association between the number of trinucleotide repeats in 

the FMR1 gene and global network efficiency in male premutation carriers as well as local 

differences in efficiency and clustering coefficient in left temporal nodes (also see Bruno et 

al. 2016). Our results for ZDHHC9 also indicated a reduction in global efficiency of the 

structural network similar to that reported for FXS, suggesting that this observation relates 

nonspecifically to low IQ. However, topographical analysis of clustering coefficient and 

local efficiency indicated reductions in the frontal lobe in the ZDHHC9 group, whereas 

reductions in temporal areas were statistically indistinguishable from the control group. In 

other words, mutations in ZDHHC9 and FXS show a convergent reduction in global network 

efficiency, but different local patterns of efficiency and clustering coefficient that distinguish 

the groups.

Rolandic epilepsy is another relevant neurodevelopmental condition for comparison due to 

the overlapping phenotype of expressive language deficits and epilepsy with centro-temporal 

spikes that were also observed in the carriers of ZDHHC9 mutation (Baker et al. 2015). A 

study by Besseling and colleagues identified a reduction in structural white matter 

connectivity of the Perisylvian system, including the left inferior frontal, supramarginal, and 

postcentral gyrus (Besseling et al. 2013b). Studies of functional connectivity indicated 

reduced integration of these areas and delayed convergence of structural and functional 

connectivity in RE (Besseling et al. 2013a, 2013b; Besseling et al. 2014). Further, graph 

theoretical analysis of the functional connectome indicated reduced clustering coefficient 

and local efficiency in areas of the parietal and frontal lobe in RE similar to the findings of 

structural connectivity differences in the current study (Xia et al. 2013). In summary, studies 

of functional and structural connectivity in a neurodevelopmental condition of mixed 

etiology with a similar phenotype to ZDHHC9 mutation showed reduced connectivity in 

areas of the parietal and frontal lobe akin to the structural connectivity changes observed in 

the current investigation. We are not aware of another connectome analysis of a 

developmental language disorder (either of known or unknown origin) against which to 

compare the results of our study.
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The findings of the current investigation are associated with some limitations. In addition to 

general limitation of diffusion-weighted imaging, such as low signal-to-noise ratio, issues 

regarding the fit of the diffusion model, presence of crossing fibers (Jones et al. 2013), there 

are specific limitations related to structural connectome approaches (Fornito et al. 2013). A 

multitude of methods for structural connectome analysis of diffusion-weighted MR data 

have been reported in the literature (Qi et al. 2015) and there is currently no consensus on 

best practices or published rigorous comparisons across different methods (Zalesky et al. 

2010; Qi et al. 2015). One major issue is the presence of false positive and false negative 

connections associated with the tractography algorithm (Garrison et al. 2015; Zalesky et al. 

2016). In ew of this ongoing debate within the field, we conducted various control analyses 

based on deterministic tracking along the maximum direction of an alternative diffusion 

model shown in the. These are included in the Supplementary Materials section, and show 

similar results as reported in the main analysis.

The connection weights in the current analysis were based on the average FA along the 

entire tract, which is likely to minimize some of the problems associated with streamline 

measures. However, this measure is also less sensitive to localized effects and may be 

influenced by crossing fibers. To address this, control analyses using a metric that is able to 

incorporate crossing fibers, that is, Generalized FA (Cohen-Adad et al. 2008), were 

conducted. The results of these converged with the findings of the main analysis, and are 

included in the Supplementary Materials.

Another limitation concerns the node definitions. The current study used a relatively coarse 

anatomical parcellation of the cortex and subcortical areas, because this enabled us to 

explore relationships with gene expression, which was only available in this parcellation 

scheme. Given the pervasive differences in diffusion tensor metrics at voxel resolution 

(Bathelt et al. 2016), we think that is unlikely that a more detailed parcellation would 

provide much additional information.

Further, the possible sample size of studies of this kind is inherently limited, because of the 

rarity of single gene mutations. Therefore, the current findings are based on a small sample, 

which increases the chance of false positive findings and may exaggerate effect sizes 

(Button, et al. 2013). However, investigations of homogeneous etiology groups as presented 

in the current work provide unique insight into the effect of single gene disorders that is not 

afforded in large heterogeneous samples of behaviorally defined groups. In a future study 

with larger number of participants and more detailed clinical and behavioral evaluations, it 

may be possible to correlate variation in neuroanatomical differences within the ZDHHC9 
group with specific outcomes.

Conclusion

The current investigation aimed to elucidate the association between a neurodevelopmental 

disorder of known monogenic origin and white matter organization. Mutations in the 

ZDHHC9 gene were associated with reductions in connection weight that resulted in altered 

network properties, including reduction in mean clustering coefficient and global efficiency. 

Topological analysis of these differences indicated that reductions in edge weight in the 
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ZDHHC9 group were most pronounced for frontal and temporo-parietal nodes. Furthermore, 

comparison of graph theory metrics with ZDHHC9 expression data obtained from the Allen 

Brain Human Brain repository indicated that higher expression of ZDHHC9 related to 

higher local clustering. The results of the study suggest that mutations in the palmitoylation 

gene ZDHHC9 impact on large-scale white matter organization. The organization of white 

matter networks may represent an important intermediate phenotype to understand the effect 

of genetic mutations on cognitive development.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the processing steps to derive the diffusion-weighted structural connectome.

Bathelt et al. Page 15

Cereb Cortex. Author manuscript; available in PMC 2019 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
Illustration of the FA-weighted structural connectome in the ZDHHC9 and control group. 

The connection matrix was thresholded at a high cut-off at FA > 0.15 for illustration 

purposes.
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Figure 3. 
Comparison of node strength between the ZDHHC9 and control group for left and right 

hemisphere connections, subcortical–cortical connections, and interhemisphere connections. 

The line indicates the median in each group. The error bars indicate the bootstrapped 95% 

confidence interval around the median. The area under the curve across thresholds was used 

for statistical comparison between the groups to avoid the potential biasing effects of an 

arbitrarily selected threshold (Wijk et al. 2010).
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Figure 4. 
Comparison of global graph metrics between the ZDHHC9 (orange) and control group 

(blue) across a range of streamline thresholds for (a) mean node degree, (b) mean node 

strength, (c) clustering coefficient, and (d) global efficiency. The line indicates the median 

value for each group. The error bars indicate the bootstrapped 95% confidence interval 

around the median. Panels (c and d) solid lines show the result for the native networks and 

dashed lines show results for networks after group consensus thresholding.
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Figure 5. 
Comparison between the ZDHHC9 and control group in node measures of (a) node degree, 

(b) node strength, (c) clustering coefficient, and (d) local efficiency. The maps show P-

values of paired-sample t-tests corrected for multiple comparison using false discovery rate 

(FDR).

Bathelt et al. Page 19

Cereb Cortex. Author manuscript; available in PMC 2019 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 6. 
(a) Normalized expression of ZDHHC9 across the cortex (b) Relationship between average 

node clustering coefficient in the ZDHHC9 and control group and normalized regional 

expression of ZDHHC9. Regression analysis indicated a significant positive relationship 

between clustering coefficient and ZDHHC9 expression in the ZDHHC9 group (Bonferroni-

corrected: P = 0.003), but not the control group (Bonferroni-corrected, P = 0.444)
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Table 1

Comparison of edge weight for subcortical-cortical (subcort.), left-hemispheric (lh), right hemispheric (rh), 

and interhemispheric (interhem.) connections in the ZDHHC9 and control group

ZDHHC9 Control P Corr.-P

Mean SE Shapiro-W Shapiro-P Mean SE Shapiro-W Shapiro-P t(6)

Subcort. 0.08 0.011 0.97 0.92 0.18 0.018 0.93 0.54   5.32   0.002   0.007

lh 0.19 0.012 0.98 0.95 0.33 0.012 0.82 0.07 11.68 <0.001 <0.001

rh 0.16 0.010 0.82 0.06 0.30 0.022 0.90 0.36   7.02 <0.001   0.002

Interhem. 0.01 0.004 0.84 0.11 0.06 0.005 0.91 0.38   8.76 <0.001 <0.001
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Table 2

Comparison of graph metric between the ZDHHC9 and control group. Statistical comparison based on the 

area under the curve over different streamline count thresholds indicated lower node degree and node strength 

in the ZDHHC9 group. Comparison in group-consensus-thresholded networks also indicated a lower global 

clustering coefficient and lower global efficiency in the ZDHHC9 group

ZDHHC9 Control t(6) P Corr.-P

Mean SE Shapiro-W Shapiro-P Mean SE Shapiro-W Shapiro-P

Degree 22.23 0.921 0.96 0.85 33.18 1.056 0.9 0.34 10.14 <0.001 <0.001

Strength   9.57 0.487 0.97 0.86 16.34 0.645 0.9 0.31 13.08 <0.001 <0.001

Clust. coef.   0.20 0.003 0.90 0.34   0.21 0.003 0.95 0.75   5.91   0.001   0.004

Efficiency   0.18 0.003 0.85 0.12   0.20 0.002 0.90 0.32   5.81   0.001   0.005
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Table 3

Regional comparison of (a) node degree, (b) node strength, and (c) clustering coefficient, and (d) local 

efficiency (node eccentricity). Comparisons were corrected for multiple comparison using false discovery rate 

correction (Benjamini–Hochberg)

ZDHHC9 Control t(6) P Corr.-P

Mean SE Shapiro-W Shapiro-P Mean SE Shapiro-W Shapiro-P

(a) Node degree

    Left-caudate   26.71 3.220 0.87 0.193   44.57 2.861 0.88 0.241   4.14 0.006 0.031

    Right-caudate   19.29 2.661 0.83 0.088   33.86 2.586 0.92 0.472   4.85 0.003 0.020

    Right-putamen   17.71 4.927 0.91 0.392   36.86 5.938 0.92 0.493   4.34 0.005 0.028

    lh-inferiortemporal   14.29 2.466 0.90 0.336   28.57 1.850 0.86 0.156   4.33 0.005 0.028

    lh-medialorbitofrontal   23.43 1.412 0.96 0.800   38.00 2.837 0.91 0.405   3.83 0.009 0.035

    lh-middletemporal   10.71 1.248 0.86 0.157   18.71 1.267 0.87 0.195   4.00 0.007 0.034

    lh-parsopercularis   11.43 2.369 0.92 0.499   22.14 1.752 0.90 0.331   5.16 0.002 0.018

    lh-pericalcarine   22.00 2.000 0.82 0.070   36.14 2.198 0.97 0.913   3.87 0.008 0.035

    lh-precentral   60.86 4.803 0.95 0.723 107.43 4.064 0.83 0.078   7.36 0.000 0.008

    lh-superiorfrontal   76.29 5.402 0.86 0.140 135.71 6.643 0.91 0.425   8.55 0.000 0.006

    lh-superiorparietal   50.14 5.049 0.83 0.079   85.29 5.126 0.83 0.088   5.15 0.002 0.018

    lh-superiortemporal   50.57 2.125 0.95 0.728   65.29 2.222 0.93 0.569   4.39 0.005 0.028

    rh-lingual   13.43 2.742 0.96 0.819   34.86 3.453 0.91 0.366   6.51 0.001 0.009

    rh-middletemporal   22.00 2.370 0.93 0.525   39.14 4.636 0.96 0.800   3.75 0.010 0.035

    rh-parahippocampal     7.43 1.232 0.88 0.249   20.43 1.395 0.87 0.205   7.17 0.000 0.008

    rh-parsorbitalis     7.29 0.837 0.93 0.555   13.71 1.822 0.83 0.089   3.72 0.010 0.035

    rh-precuneus   54.00 3.748 0.95 0.735   98.86 6.296 0.91 0.423   9.40 0.000 0.006

    rh-superiorparietal   62.71 5.317 0.97 0.923 125.57 5.559 0.86 0.151   6.93 0.000 0.008

    rh-superiortemporal   40.57 4.418 0.82 0.063   71.29 2.917 0.96 0.844   5.31 0.002 0.018

(b) Node strength

    Brain-stem 117.17 5.576 0.94 0.594 144.22 5.829 0.91 0.401   4.37 0.005 0.018

    Right-caudate     9.20 1.258 0.89 0.262   17.23 1.552 0.97 0.920   4.43 0.004 0.018

    Right-putamen     7.09 2.028 0.90 0.336   16.58 3.006 0.95 0.717   4.21 0.006 0.020

    lh-caudalmiddlefrontal     9.15 0.583 0.97 0.910   13.81 1.210 0.99 0.989   3.48 0.013 0.035

    lh-fusiform   14.26 2.449 0.92 0.495   23.41 1.717 0.94 0.626   3.39 0.015 0.037

    lh-inferiortemporal     6.38 1.339 0.90 0.341   14.66 0.787 0.97 0.925   5.38 0.002 0.011

    lh-isthmuscingulate     5.23 1.205 0.96 0.855   14.28 1.174 0.92 0.502   4.84 0.003 0.014

    lh-lingual     8.22 0.383 0.87 0.175   13.08 0.790 0.91 0.368   6.28 0.001 0.008

    lh-medialorbitofrontal     8.76 0.465 0.91 0.406   17.92 2.140 0.86 0.139   3.68 0.010 0.031

    lh-middletemporal     4.72 0.576 0.81 0.051   9.90 0.613 0.85 0.121   5.40 0.002 0.011

    lh-parsopercularis     5.17 1.095 0.94 0.632   10.51 1.149 0.92 0.482   4.69 0.003 0.015

    lh-pericalcarine   10.18 1.085 0.82 0.058   20.07 1.291 0.94 0.618   4.99 0.002 0.014

    lh-precentral   30.02 2.804 0.93 0.515   57.94 2.438 0.86 0.138   9.04 0.000 0.003

    lh-rostralanteriorcingulate     6.98 1.126 0.93 0.531   15.70 1.952 0.92 0.466   4.13 0.006 0.021

    lh-superiorfrontal   36.07 3.302 0.93 0.576   70.83 3.858 0.98 0.939   9.98 0.000 0.002
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ZDHHC9 Control t(6) P Corr.-P

Mean SE Shapiro-W Shapiro-P Mean SE Shapiro-W Shapiro-P

    lh-superiortemporal   22.68 0.827 0.92 0.489   33.89 1.677 0.87 0.195   4.87 0.003 0.014

    rh-lingual     5.38 1.233 0.97 0.932   18.49 1.984 0.92 0.499   6.99 0.000 0.005

    rh-medialorbitofrontal     5.76 0.739 0.93 0.561   11.10 0.872 0.99 0.990   4.39 0.005 0.018

    rh-middletemporal     8.15 0.933 0.91 0.364   19.10 2.706 0.98 0.943   4.39 0.005 0.018

    rh-parahippocampal     3.27 0.613 0.84 0.100   10.74 0.728 0.89 0.288   8.32 0.000 0.003

    rh-postcentral     3.99 1.483 0.86 0.168   14.66 2.370 0.93 0.528   3.36 0.015 0.037

    rh-precuneus   26.26 2.302 0.94 0.637   52.14 3.591 0.96 0.807 12.42 0.000 0.001

    rh-rostralanteriorcingulate     5.60 0.727 0.95 0.761   11.87 2.223 0.82 0.069   3.17 0.019 0.044

    rh-superiorparietal   29.04 2.939 0.96 0.789   64.64 3.058 0.87 0.169   7.39 0.000 0.004

    rh-superiortemporal   18.20 2.316 0.89 0.258   35.87 1.937 0.95 0.716   6.02 0.001 0.008

    rh-frontalpole     2.40 0.683 0.81 0.054     4.45 0.565 0.85 0.111   3.74 0.010 0.031

(c) Clustering coefficient

    rh-insula     2.73 0.208 0.83 0.077     5.68 0.951 0.88 0.214   3.13 0.020 0.044

    lh-isthmuscingulate     1.07 0.433 0.84 0.098     3.62 0.287 0.90 0.333 10.01 0.000 0.005

    lh-parsopercularis     0.75 0.157 0.90 0.341     1.81 0.162 0.91 0.409   6.39 0.001 0.027

(d) Local efficiency

    rh-caudalmiddlefrontal   76.81 5.653 0.90 0.345 120.94 4.369 0.91 0.401 10.00 0.000 0.005

    rh-rostralmiddlefrontal   83.09 4.541 0.92 0.504 124.14 6.102 0.95 0.725 6.56 0.001 0.017
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