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A radiomics-based model on non-contrast
CT for predicting cirrhosis: make the most
of image data
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Abstract

Background: To establish and validate a radiomics-based model for predicting liver cirrhosis in patients with
hepatitis B virus (HBV) by using non-contrast computed tomography (CT).

Methods: This retrospective study developed a radiomics-based model in a training cohort of 144 HBV-infected
patients. Radiomic features were extracted from abdominal non-contrast CT scans. Features selection was
performed with the least absolute shrinkage and operator (LASSO) method based on highly reproducible features.
Support vector machine (SVM) was adopted to build a radiomics signature. Multivariate logistic regression analysis
was used to establish a radiomics-based nomogram that integrated radiomics signature and other independent
clinical predictors. Performance of models was evaluated through discrimination ability, calibration and clinical
benefits. An internal validation was conducted in 150 consecutive patients.

Results: The radiomics signature comprised 25 cirrhosis-related features and showed significant differences
between cirrhosis and non-cirrhosis cohorts (P < 0.001). A radiomics-based nomogram that integrates radiomics
signature, alanine transaminase, aspartate aminotransferase, globulin and international normalized ratio showed
great calibration and discrimination ability in the training cohort (area under the curve [AUC]: 0.915) and the
validation cohort (AUC: 0.872). Decision curve analysis confirmed the most clinical benefits can be provided by the
nomogram compared with other methods.

Conclusions: Our developed radiomics-based nomogram can successfully diagnose the status of cirrhosis in HBV-
infected patients, that may help clinical decision-making.
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Introduction
As reported by the World Health Organization (WHO),
chronic hepatitis B (CHB) has been a major public
health problem with an estimated 240 million infectors
and 650,000 deaths due to it [1]. The complications of
CHB mainly include cirrhosis and hepatocellular carcin-
oma, leading to poor prognosis [2]. CHB is highly
endemic in China with more than 74 million hepatitis B
virus (HBV) surface antigen (HBsAg) carriers [3, 4]. For
controlling the spread of CHB in China, it is necessary
to conduct early diagnosis and therapeutic interventions
in allusion to HBV.
Liver cirrhosis is a diffuse hepatic process character-

ized by fibrosis and structurally abnormal nodules, with
serious complications (e.g. gastroesophageal varices,
ascites, hepatic encephalopathy, and renal and cardiac
disturbances), which has been reported as a serious
cause of death in all developed countries [5]. According
to 2017 European Association for the Study of Liver
(EASL) guideline for HBV [6], it was emphasized that
HBV-infected patients with compensated or decompen-
sated cirrhosis require treatment regardless of HBV
DNA or alanine aminotransferase (ALT) levels. There-
fore, early detection of cirrhosis is needed. Liver biopsy
is traditionally regarded as a reference standard for
staging fibrosis [7]. However, it was restricted by several
defects including invasiveness, expensiveness and sample
biases [8–11]. For this, various noninvasive tests have
been developed in the past decades [12]. Noninvasive
staging mainly depends on serum biomarkers-based
formula or elasticity-based imaging techniques (such as
transient elastography [TE], also called Fibroscan). In
China, Fibroscan is not widespread because of its high
cost (€34,000 for a portable device and €5000 for its
annual maintenance). Liver stiffness of patients cannot
be measured during physical examination. Hepatocellu-
lar carcinoma often occurs in patients with chronic
hepatitis or cirrhosis [13], and 2018 practice guidance of
the American Association for the Study of Liver Diseases
(AASLD) did not recommend contrast-enhanced
computed tomography (CT) and magnetic resonance
image (MRI) for tumor surveillance due to limited cost-
effectiveness [14]. Although CT is frequently suggested
for HBV carriers in annual clinical examinations in
China, many patients only accepted non-contrast CT
examinations.
Radiomics is a new field of image analysis technology,

which can covert images into large amount of quantita-
tive data for more biological information [15]. Several
studies have used radiomics on shear wave elastography
or MRI for the prediction of liver fibrosis [16, 17]. Con-
sidering non-contrast CT is easily obtained in clinical
examinations, the predictive value is worth detecting
with radiomics. The aim of this study was to establish a

radiomics-based model on non-contrast CT for the
prediction of liver cirrhosis.

Materials and methods
This retrospective study was approved by the institu-
tional review board of our institution. The requirement
for written informed consent was waived due to its
retrospective nature.

Patients
632 HBV-infected patients with pathologic results of
liver fibrosis who underwent non-contrast CT at our
institution from January 2018 to December 2019 were
retrospectively reviewed. The exclusion criteria were:
(1) lack of pathological records of liver fibrosis (n = 27);
(2) lack of abdominal non-contrast CT images at 1.5
mm thickness (n = 128); (3) an interval of more than 3
months between CT scans and biopsy (n = 16); (4) poor
image quality (n = 42); (5) co-infected with other virus
(e.g. hepatitis C virus [HCV], hepatitis D virus [HDV]
and human immunodeficiency virus [HIV]) (n = 17); (6)
focal hepatic lesion (e.g. hepatocellular carcinoma, hep-
atic tuberculosis and any other) (n = 45); (7) significant
alcohol intake (> 20 g/day) (n = 24); (8) incomplete
clinical data (n = 39). 294 patients were finally included
in this study (Fig. 1). Based on the date of biopsy, 144
patients between January 2018 and December 2018
were allocated to the training cohort, and 150 between
January 2019 and December 2019 were for validation.
The dates of clinical data were at the first diagnosis of
CHB. Table 1 shows their baseline characteristics.
Clinical characteristics and the data of CT scan

were obtained from medical records. Clinical data
included age, sex, blood routine tests (red blood cell
[RBC], white blood cell [WBC], platelet [PLT] count
and hemoglobin [Hb]), liver function examinations
(ALT, aspartate aminotransferase [AST], alkaline
phosphatase [ALP], glutamyl transpeptidase [GGT],
lactate dehydrogenase [LDH], total bilirubin [TB],
conjugated bilirubin [CB], albumin [ALB], globulin
[GLOB], total bile acid [TBA] and leucine arylamidase
[LAP]), lipid metabolism tests (total cholesterol [TC],
high density lipoprotein cholesterol [HDL-C], low
density lipoprotein cholesterol [LDL-C], apolipopro-
tein A1 [Apo A1] and apolipoprotein B [Apo B]), C
reactive protein (CRP) and blood coagulation function
(prothrombin time [PT] and international normalized
ratio [INR]).

Liver biopsy
Percutaneous liver biopsy was performed in the right
lobe of a liver under the ultrasonic guidance by ultraso-
nologists. Liver samples were histologically analyzed by
two pathologists in consensus. Each of pathologists had
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more than 5 years of work experience, and they were
both blinded to the clinical information. Liver fibrosis
was determined according to the Metavir scoring system
[18]. F ≥ 2 was considered as significant fibrosis, F ≥ 3 as
serious fibrosis and F4 as cirrhosis.

CT image acquisition and radiologic evaluation
All patients underwent CT examination in the supine
position on an identical model CT scanner (Lightspeed,
VCT, or Discovery HD 750, GE Healthcare, US). The
unified parameters of CT scan were: tube voltage 120
kVp, tube current 250–350 mA, collimating slice thick-
ness 5 mm, reconstruction slice thickness 1.25 mm, slice
interval 5 mm, rotation time 0.6 s, helical pitch 1.375,
the field of view between 35 and 40 cm, matrix 512 ×
512. A standard reconstruction algorithm was applied.

Two radiologists reviewed all non-contrast CT scans
to evaluate the presence of cirrhosis for each patient.
Image findings suggestive of cirrhosis on CT scans
include a nodular or irregular hepatic surface, a blunt
liver edge, parenchymal abnormalities, intrahepatic
morphological changes and manifestations of portal
hypertension [19]. Both radiologists were aware of the
diagnosis of CHB but were blinded to the clinical-
radiological details. Any disagreement was resolved
through consultation.

Serum fibrosis tests
Because of easily obtained parameters, the aspartate
aminotransferase-to-platelet ratio index (APRI) and
the fibrosis-4 index (FIB-4) are frequently used for

Fig. 1 Patient selection flow chart. HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HDV, hepatitis D virus; HIV, human
immunodeficiency virus
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the prediction of fibrosis. Formulas are shown as
below [20, 21]:

APRI ¼ AST IU=Lð Þ=ULNð Þ � 100

Platelet count 109=Lð Þ

FIB − 4 ¼ age yearsð Þ � AST IU=Lð Þ
Platelet count 109=Lð Þ � ALT IU=Lð Þ^1=2

These two indices were calculated using results of
laboratory tests within a month from biopsy.

Radiomic feature extraction and selection
The workflow is depicted in Fig. 2. Two radiologists
(reader 1&2) were involved in image segmentation
and radiomic feature extraction. Reader 1 selected
region of interest (ROIs) in the liver of all patients
using 3D slicer (version 4.8.0; http://www.slicer.org).
ROIs for the liver were delineated along the margin
of the right hepatic lobe, at the level of the right
portal vein, by excluding large hepatic vessels on

non-contrast CT images (mean area of ROIs, 47 cm2 ±
15; range, 19–106 cm2) (Fig. S1). Image preprocessing
and feature extraction were performed with the open-
source Pyradiomics package (http://www.radiomics.io/
pyradiomics.html). The voxel spacing was standard-
ized with the size of 1 × 1 × 1 mm and voxel intensity
values were discretized with a bin width of 25 HU to
reduce the interference of image noise and normalize
intensities [22]. Eight hundred twenty-eight radiomic
features (18 first-order statistics, 74 textural features,
and 736 wavelet-based transformations) were ex-
tracted from each ROI. Values of features were
standardized using z-scores in the training cohort; z-
scores which was applied in the validation cohort
used the mean and standard deviation determined in
the training cohort.
The reproducibility of each radiomic feature was

quantified using intra- and interobserver intraclass
correlation coefficient (ICC) based on 50 randomly
chosen patients. Reader 1 repeated ROI segmentation

Table 1 Baseline characteristics

Parameter Training (n = 144) Validation (n = 150) P value

Sex .88

No. of men 117 (81.3) 120 (80.0)

No. of women 27 (18.7) 30 (20.0)

Age .49

< 60 (years) 68 (47.2) 77 (51.3)

≥ 60 (years) 76 (52.8) 73 (48.7)

CT-reported cirrhosis .81

Cirrhosis-negative 98 (68.1) 100 (66.7)

Cirrhosis-positive 46 (31.9) 50 (33.3)

Laboratory findingsa

AST (IU/mL) 31.6 (23.5–48.2) 29.3 (21.1–38.5) .13

ALT (IU/mL) 31.2 (22.0–50.0) 26.9 (19.6–39.6) .07

GGT (IU/mL) 53.5 (32.0–111.4) 54.9 (29.5–91.2) .26

Total bilirubin (ng/mL) 13.5 (9.2–18.5) 12.9 (10.0–17.8) .16

Platelet count (109/L) 141.5 (91.8–182.3) 138.5 (100.5–188.3) .70

INR 1.04 (0.98–1.11) 1.04 (0.98–1.11) .31

APRI 0.63 (0.41–0.98) 0.53 (0.33–0.91) .16

FIB-4 2.65 (1.70–4.14) 2.30 (1.62–3.76) .21

Histologic grade .59

F0 18 (12.5) 14 (9.3) .46

F1 24 (16.7) 32 (21.3) .37

F2 13 (9.0) 18 (12.0) .45

F3 26 (18.1) 29 (19.3) .88

F4 63 (43.8) 57 (38.0) .34

Note. —Except where indicated, data are numbers of patients, with percentages in parentheses. ALT alanine aminotransferase, APRI aspartate aminotransferase-to-
platelet ratio, AST aspartate aminotransferase, FIB-4 fibrosis-4 index, GGT γ-glutamyl transferase, INR international normalized ratio
aData are medians, with interquartile range in parentheses
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twice in a week and reader 2 independently
performed ROI segmentation to calculate intra- and
interobserver reproducibility, respectively. The mini-
mum acceptable threshold of ICC in this study was
0.8 [23].
A two-step procedure was followed to select signifi-

cant radiomic features. First, features with high reprodu-
cibility (ICC > 0.8 in both intra- and interobserver
settings) were kept for subsequent analysis. Second, the
least absolute shrinkage and selection operator (LASSO)
logistic regression algorithm [24], with penalty param-
eter tuning conducted by 10-fold cross-validation, was
used to select cirrhosis-related features (with nonzero
coefficients) (Fig. 3).

Radiomics model establishment in the training cohort
The radiomics model for predicting cirrhosis (R-cirrho-
sis) was established as a binary classifier to distinguish
between stages F0–3 and F4. Support vector machine
(SVM) was performed based on selected radiomic fea-
tures for training model by using “e1071” package
(https://CRAN.R-project.org/package=e1071) on R soft-
ware (version 3.6.1, http://www.r-project.org).

Clinical factors selection
We devised a two-step procedure for selection of clinical
factors. First, we used spearman correlation analysis to
preliminarily screen out factors with significant correl-
ation (spearman correlation analysis, P < 0.05) for subse-
quent analysis. Second, forward conditional logistic
multivariable analysis (input and output P value: 0.05

and 0.1, respectively) was used to select factors for pre-
dicting cirrhosis. The details are described in Supple-
ment Materials and Methods. The cutoff value of each
independent factor was determined by receiver operating
characteristic (ROC) analysis (maximizing the Youden
index).

Development and validation of a radiomics-based model
Multivariate logistic regression analysis was performed
to establish a model for predicting cirrhosis in the train-
ing cohort. A Nomogram was constructed to provide a
more understandable outcome measure. The perform-
ance of models was subsequently internally tested in the
independent validation cohort by using the formula and
cutoff values derived from the training cohort. Details
are described in Supplement Materials and Methods.

Statistical analysis
Categorical and continuous variables were compared
with χ2 test and the Mann-Whitney U test, respectively.
All statistical analyses were performed using R software
(version 3.6.1, http://www.r-project.org). The diagnostic
performance of established models was evaluated by the
ROC curve and area under the curve (AUC) value.
Delong test was used to compare AUC values. Decision
curve analysis (DCA) was used to calculate the net bene-
fit from the use of models at different threshold prob-
abilities. Calibration curves were plotted to assess the
calibration of the radiomics model, accompanied by the
Hosmer-Lemeshow test. A two-sided P value less than
.05 was considered statistically significant.

Fig. 2 Workflow of necessary steps in this study. a ROI was manually delineated on non-contrast CT scans at the level of right portal veins. b
Radiomic features including first-order statistics, textural features and wavelet transforms were extracted. c Intra- and interobserver reproducibility
and subsequent lasso regression were used for feature selection. d A radiomics signature was constructed with SVM and a radiomics-based
nomogram integrates radiomics signature and clinical predictors. e The performance of established models was evaluated by ROC, calibration
and DCA curves. ROI, region of interest; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; ROC, receiver
operator characteristic; DCA, decision curve analysis
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Results
Baseline characteristics
As summarized in Table 1, there were no differences
in clinical-radiological-pathological characteristics be-
tween the training and validation cohorts. No differ-
ences were found in rates of cirrhosis between the
two cohorts (Training: 43.8%, 63 of 144; Validation:
38.0%, 57 of 150; P = .34). The overall discrimination
accuracy of the CT report of cirrhosis was 77.6% (228
of 294), with a sensitivity of 62.5% (75 of 120), a spe-
cificity of 87.9% (153 of 174), positive predictive value
of 78.1% (75 of 96) and negative predictive value of
77.3% (153 of 198).

Radiomics analysis
Of 828 extracted features, 85 features (8 first-order
statistics, 21 textural features, and 56 wavelet-based
transformations) with high reproducibility were se-
lected for subsequent analysis. Twenty-five cirrhosis-
related features with nonzero coefficients in the lasso
regression model were selected based on the training
cohort (Fig. 3).
A radiomics signature was constructed using SVM

algorithm (Supplement Materials and Methods). A dif-
ference in radiomics score was obtained between pa-
tients with and those without cirrhosis in the training
cohort (mean, 0.279 vs − 0.649, P < .001), and then con-
firmed in the validation cohort (mean, 0.141 vs − 0.585,

P < .001). The radiomics signature showed favorable
discriminatory ability with an AUC of 0.879 (95%
confidence interval [CI]: 0.827, 0.932) in the training
cohort and 0.858 (95% CI: 0.795, 0.921) in the validation
cohort.

Cirrhosis-related clinical factors
In the training cohort, WBC, PLT, ALT, AST, CB, ALB,
GLOB, TBA, TC, LDL-C, Apo B, PT and INR were sim-
ultaneously related to cirrhosis (P < .05 for all, Spearman
correlation analysis). The multivariable conditional logis-
tic regression analysis identified ALT, AST, GLOB and
INR as independent cirrhosis predictors (Table 2).
Cutoff values of them were 25.9 U/L, 32.6 U/L, 33.9 g/L
and 1.10, respectively.

Development, performance, and validation of the
established model
As is shown in Fig. 4a, a radiomics-based nomogram in-
tegrated the radiomics signature, ALT (0, ≤25.9 U/L; 1,
> 25.9 U/L), AST (0, ≤32.6 U/L; 1, > 32.5 U/L), GLOB (0,
≤33.9 g/L; 1, > 33.9 g/L) and INR (0, ≤1.10; 1, > 1.10).
The formula of the radiomics model was: Y = 0.734 ×
ALT + 0.468 × AST + 1.385 × GLOB + 2.372 × Radiomics
signature – 0.454.
ROC analyses comparing the discrimination ability of

the radiomics-based nomogram to those of the CT-
reported cirrhosis alone, APRI and FIB-4 are given in

Fig. 3 Selections of radiomic features using the least absolute shrinkage and selection operator (LASSO) regression. a Optimal λ value was
determined by the LASSO model using 10-fold cross-validation via minimum criteria. The binomial deviance curves were plotted versus log(λ).
Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1 –
standard error criteria). The optimal λ value of 0.0383 was chosen. b LASSO coefficient profiles of the 85 selected features is presented
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Fig. 4b, c. As summarized in Table 3, in the training co-
hort, the radiomics-based model had the best discrimin-
atory ability with an AUC value of 0.915 (95% CI: 0.869,
0.961), which was significantly higher than that of the
CT-reported cirrhosis alone (AUC: 0.752; 95% CI: 0.683,
0.821; P < .001), APRI (AUC: 0.752; 95% CI: 0.683, 0.821;
P < .001) and FIB-4 (AUC: 0.664; 95% CI: 0.575, 0.753;
P < .001). In the validation cohort, the radiomics nomo-
gram also yielded the highest AUC of 0.872 (95% CI:
0.814, 0.930) compared with the CT-reported cirrhosis
alone (AUC: 0.755; 95% CI: 0.683, 0.827; P = .006), APRI
(AUC: 0.731; 95% CI: 0.649, 0.814; P = .003) and FIB-4
(AUC: 0.688; 95% CI: 0.601, 0.775; P < .001). The optimal
cutoff value of 0.014 for the radiomics nomogram was
determined at the point of the maximum Youden index
from the entire cohort. The nomogram achieved the

overall correctly classified rate of 82.0%, with a sensitiv-
ity of 77.5%, a specificity of 85.1%, positive predictive
value of 78.2% and negative predictive value of 84.6%,
respectively.
The calibration curve of the nomogram demon-

strated great agreement between predicted and actual
cirrhosis in the training cohort (Fig. 4d). The
Hosmer-Lemeshow test yielded a p value of 0.317,
indicating no departure from the good fit. The
favorable calibration of the nomogram was further
confirmed in the validation cohort by the calibration
curve (Fig. 4e) and the Hosmer-Lemeshow test (P =
0.534).
DCA for the radiomics nomogram, CT-reported

cirrhosis, APRI and FIB-4 is presented in Fig. 5.
Across the range of reasonable threshold probabilities

Table 2 Clinical characteristics of the training cohort related to cirrhosis

Spearman correlation analysis Multivariable analysis ROC analysis

Variables r2 value P value b coefficient P value AUC Cutoff value

Age (years) 0.021 .08 NA NA NA NA

Sex (male, female) 0.003 .50 NA NA NA NA

RBC (109/L) 0.020 .08 NA NA NA NA

WBC (109/L) 0.078 .02 NA .24 NA NA

PLT (109/L) 0.106 < .001 NA .07 NA NA

Hb (g/L) 0.020 .08 NA NA NA NA

ALT (U/L) 0.066 .002 0.060 .02 0.65 (0.56, 0.74) 25.9

AST (U/L) 0.073 .001 −0.092 .01 0.66 (0.57, 0.75) 32.6

ALP (U/L) 0.016 .12 NA NA NA NA

GGT (U/L) 0.002 .57 NA NA NA NA

LDH (U/L) 0.013 .16 NA NA NA NA

TB (umol/L) 0.001 .65 NA NA NA NA

CB (umol/L) 0.027 .04 NA .56 NA NA

ALB (g/L) 0.098 < .001 NA .51 NA NA

GLOB (g/L) 0.049 .006 0.219 .01 0.63 (0.54, 0.73) 33.9

TBA (umol/L) 0.066 .001 NA .53 NA NA

LAP (U/L) 0.000 .81 NA NA NA NA

TC (mmol/L) 0.066 .002 NA .50 NA NA

HDL-C (mmol/L) 0.000 .86 NA NA NA NA

LDL-C (mmol/L) 0.053 .005 NA .44 NA NA

Apo A1 (g/L) 0.009 .25 NA NA NA NA

Apo B (g/L) 0.057 .003 NA .24 NA NA

CRP (mg/L) 0.006 .34 NA .19 NA NA

PT (s) 0.142 < .001 NA .58 NA NA

INR 0.149 < .001 16.558 < .001 0.73 (0.65, 0.82) 1.10

Note. ——b coefficients are from multivariable logistic regression. Clinical variables found to be significantly related to cirrhosis through spearman correlation
analysis entered into forward conditional logistic multivariate analysis. ALB albumin, ALP alkaline phosphatase, ALT alanine aminotransferase, Apo A1
apolipoprotein A1, Apo B apolipoprotein B, AST aspartate aminotransferase, AUC area under the curve, CB conjugated bilirubin, CRP C reactive protein, GGT
glutamyl transpeptidase, GLOB globulin, Hb hemoglobin, HDL-C high density lipoprotein cholesterol, INR international normalized ratio, LAP leucine arylamidase,
LDH lactate dehydrogenase, LDL-C low density lipoprotein cholesterol, PLT blood platelet, PT prothrombin time, RBC red blood cell, ROC receiver operating
characteristic, TB serum total bilirubin, TBA total bile acid, TC total cholesterol, WBC white blood cell
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in both cohorts, DCA graphically demonstrated that
the radiomics nomogram provided a larger net benefit
to predict liver cirrhosis than the other three
methods.

Discussion
This study established and validated a radiomics-based
model to predict liver cirrhosis in patients with HBV.
The radiomics signature consisted of 25 stable radiomic

Fig. 4 Radiomics nomogram presented with ROC and calibration curves. A radiomics-based nomogram was established due to the training
cohort, with radiomics signature, ALT, AST, GLOB and INR incorporated (a). Comparison of ROC curves between radiomics nomogram, CT-
reported cirrhosis status, APRI and FIB-4 in the training (b) and validation (c) cohort. Calibration curves of radiomics nomogram in the training (d)
and validation (e) cohort. ALT, alanine transaminase; APRI, aspartate transaminase-to-platelet ratio index; AST, aspartate aminotransferase; FIB-4,
fibrosis-4; GLOB, globulin; INR, international normalized ratio; ROC, receiver operating characteristic
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features and had the great ability to identify patients
as cirrhosis or non-cirrhosis cases. A user-friendly
nomogram that integrates radiomics signature, ALT,
AST, GLOB and INR achieved significantly better
diagnostic performance and provided more clinical
benefits compared with CT-reported cirrhosis alone,
APRI and FIB-4.
Several less-invasive methods for staging liver fibrosis

have been developed including serum indices and elasto-
graphy. TE and MR elastography (MRE) are known to
achieve great diagnostic performance for staging liver
fibrosis [24, 25]. However, these well-performed modal-
ities are not widely applied because of high prices. CT is
frequently suggested for HBV carriers in China, but
many patients only accept non-contrast CT examina-
tions because of limited cost-effectiveness. Contrast-
enhanced CT or MRI can provide more information
than non-contrast CT, but we would like to develop
noninvasive models for predicting cirrhosis on the basis
of easily obtained data with relatively low cost. Not only
the diagnostic performance but also the cost and applic-
ability should be considered.
Previous studies detected the feasibility of computer-

ized analysis of MRI and used radiomics to obtain great
prediction results for liver fibrosis [17, 26]. CT is more
readily available than MRI and Koichiro et al. investi-
gated the predictive value for liver cirrhosis based on
portal phase CT images using deep learning techniques,
of which the AUC value was 0.73 (95% CI: 0.62, 0.84)
[27]. In our study, we provided the first evidence of the
feasibility of radiomics analysis of non-contrast CT and
established a robust radiomics signature. Moreover, we
included the independent serum predictors into the
nomogram to provide more clinical benefits. ALT, AST,
GLOB and INR have been reported in several cirrhosis-

related studies. AST and ALT can help identify patients
who requiring antiviral therapy prior to disease progres-
sion [28]. The AST to ALT ratio is frequently calculated
for predicting fibrosis stage or clinical outcomes in
chronic hepatitis [29, 30]. It was reported that globulin
is positively associate with mortality in patients with
cirrhosis [31]. Serum gamma-globulin ≥18 g/L is a sig-
nificant predictor of disease progression, tumor devel-
opment and death for cirrhotic patients [32]. INR is
used to assess bleeding risk and prognosis in
cirrhosis, and end-stage liver disease score that inte-
grates INR has the ability to prioritize patients for
liver transplantation [33].
The reproducibility of radiomic features was always

worried by several researchers [34, 35]. Our study set
up a reproducibility test, including intra- and interob-
server ICC calculations with the minimum threshold
of 0.80. Only 10.3% (85 of 828) radiomic features
were included in the subsequent analysis in this
study. The reason for this might be slightly different
regions of interest delineated by two radiologists and
relatively strict criteria of reproducibility test. More-
over, there would be a significant improvement in the
clustering reproducibility of radiomic features, by
selecting a smaller subset of more reproducible radio-
mic features [36].
This study focused on the radiomics-based predic-

tion model based on non-contrast CT. Although CT
is easily obtained and the model with great perform-
ance can become an alternative to elastography, it is
more meaningful to detect the image biomarker of
ultrasonography. Ultrasonography, as an annual
physical examination item, is frequently the initial
tool for liver tumor screening in patients with chronic
hepatitis in the world. However, most radiomics

Table 3 Diagnostic Performances of All Methods for Predicting Liver Cirrhosis in the training and validation cohort

Training (n = 144) Validation (n = 150) Training vs. Validation

Methods AUROC (95%CI) AUROC (95%CI) Delong test

Radiomics nomogram 0.915 (0.869, 0.961) 0.872 (0.814, 0.930) P = .257

CT-reported cirrhosis status 0.752 (0.683, 0.821) 0.755 (0.683, 0.827) P = .961

APRI 0.725 (0.642, 0.809) 0.731 (0.649, 0.814) P = .921

FIB-4 0.664 (0.575, 0.753) 0.688 (0.601, 0.775) P = .705

Comparison of AUROC (Delong test)

Radiomics nomogram vs. CT-reported cirrhosis status P < .001 P = .006

Radiomics nomogram vs. APRI P < .001 P = .003

Radiomics nomogram vs. FIB-4 P < .001 P < .001

CT-reported cirrhosis status vs. APRI P = .594 P = .651

CT-reported cirrhosis status vs. FIB-4 P = .073 P = .201

APRI vs. FIB-4 P = .040 P = .040

Note. ——Data in parentheses are the 95% confidence interval. APRI aspartate transaminase-to-platelet ratio index, AUROC area under the receiver operating
characteristic, FIB-4 fibrosis-4
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techniques are only applied to three-dimensional im-
ages (CT, MRI, PET/CT) [22], and software that can
systematically extract radiomic features from 2-D
ultrasound images is rare. We are also developing the
software that can extract radiomic features from 2-D
images according to related articles [37]. In the fu-
ture, we will also develop the model based on region
of interest of ultrasound images for more clinicians.
Several limitations in this study should be noted.

First, inherent selection biases cannot be avoided due
to the retrospective nature of this study. Second, the
radiomics-based nomogram was established and
validated on the basis of data obtained from a single
center. Multi-institutional studies are required for
further validations. Third, this study only focused on

the predictive value for liver cirrhosis, lacking signifi-
cant & advanced fibrosis, leading to the limited clinical
benefits. Two reasons for this: only cirrhosis can be
evaluated by radiologists due to image findings on non-
contrast CT; the diagnosis of cirrhosis remains more
clinically significant compared with other fibrosis stage.
Finally, the correlations of radiomic features with gen-
omic patterns were not investigated.
In conclusion, we proposed a noninvasive and user-

friendly radiomics-based model that integrates the
radiomics signature based on non-contrast CT scans
and independent serum indices to evaluate the liver cir-
rhosis status in patients with HBV. The radiomics model
can help clinical decision making and potentially provide
benefits for clinicians and selected patients.

Fig. 5 Decision curve analysis for each model in the training (a) and validation (b) dataset. The y-axis measures the net benefit. Across the
threshold probability, the application of radiomics nomogram to predict cirrhosis status provides more benefit than treating all or none of the
patients, CT-reported cirrhosis status alone, APRI and FIB-4. APRI, aspartate transaminase-to-platelet ratio index; FIB-4, fibrosis-4
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