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Abstract

Combining the information coming from multiview acquisitions is a problem of great

interest in light-sheet microscopy. Aligning the views and increasing the resolution of

their fusion can be challenging, especially if the setup is not fully calibrated. Here, we

tackle these issues by proposing a new reconstruction method based on autocorrela-

tion inversion that avoids alignment procedures. On top of this, we add a blind

deconvolution step to improve the resolution of the final reconstruction. Our method

permits us to achieve inherently aligned, highly resolved reconstructions while, at the

same time, estimating the unknown point-spread function of the system.

Research Highlights

• We tackle the problem of multiview light-sheet deconvolution with a blind

approach of autocorrelation inversion

• Our method recovers the object and PSF, requires no alignment and calibration,

and enhances the reconstruction of the specimen.

1 | INTRODUCTION

Image formation in microscopy can be described mathematically by the

convolution of the perfectly resolved object with the microscope’s point
spread function (PSF) (Mertz, 2019). The latter represents the impulse

response of the system and, ideally, should be as narrow as possible to

obtain the best image resolution. When the PSF diverges from the ideal

delta function, image-restoration techniques may be used to improve

the three-dimensional image quality. Among others, deconvolution (the

process of inverting the convolution) aims to retrieve a sharper estima-

tion of the object, reducing optical blur and noise by reassigning the

energy distribution of the signal according to the PSF.

In Light Sheet Fluorescence Microscopy (LSFM) (Huisken &

Stainier, 2009; Olarte et al., 2018), the illumination and detection opti-

cal paths are independent and orthogonal to each other: the PSF

depends on both the illumination and detection optics and, typically,

results in a function that is more elongated along the detection axis.

For this reason, multi-view acquisitions are frequently adopted as a

method to obtain isotropic resolution (Calisesi et al., 2020; Swoger

et al., 2007). Moreover, in the presence of slightly absorbing diffusive

specimens (Rieckher et al., 2018), multiview acquisition facilitates the

reconstruction of the entire imaged volume by accessing favorable

views of the object. However, preprocessing steps are necessary to

align and fuse all the acquisitions. In a typical multi-view LSFM pipe-

line, stacks of images are acquired from various angles, they are

rotated, aligned, and combined together. Each of these steps requires

dedicated care. The alignment procedure involves finding the rigid

shift that guarantees the best overlaps of each view against each

other. In general, the fusion can be performed by computing simple

averages or with more advanced methods, for example, by
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considering Poisson statistics (Swoger et al., 2007) or optimized

Bayesian strategies (Fernandez et al., 2010; Guo et al., 2020; Preibisch

et al., 2014).

To complicate the reconstruction further, the knowledge of the

PSF is not always accessible (Kundur & Hatzinakos, 1996). In a light

sheet microscope, the acquisition of the PSF is performed by acquir-

ing beads placed in the imaging chamber. However, this procedure

may be impractical: this is the case in some clearing media (Ueda

et al., 2020) where it is difficult to prepare beads phantoms, or in

fluidic-based systems (Sala et al., 2020). In these cases, blind

deconvolution is the only possible approach to increase imaging reso-

lution (Kundur & Hatzinakos, 1996).

To solve the issues of alignment and fusion, we have proposed

the Anchor Update (AU) algorithm (Ancora & Bassi, 2021). The proto-

col works out a deconvolved reconstruction from the autocorrelation

estimation, exploiting the fact that working in the shift space guaran-

tees implicit alignment. This implies that the solution of the autocorre-

lation problem always returns reconstructions that are aligned

intrinsically at sub-pixel resolution [14].

In the present manuscript, we describe a strategy for tomographic

reconstruction in multi-view acquisitions corrupted by unknown blurring,

that can be utilized in those cases when the PSF is not easily measurable.

To this end, we design a blind deconvolution approach that acts in the

autocorrelation space. This permits the formation of inherently aligned

reconstructions, increasing the resolution simultaneously without any

prior knowledge of the PSF of the system. We take inspiration from the

Richardson-Lucy deconvolution (RLD) (Lucy, 1974; Richardson, 1972)

and its blind implementation (Fish et al., 1995), extending the blind

approach to the autocorrelation domain. First, we introduce the compu-

tational methods by validating the protocol thanks to the reconstruction

of synthetic samples. Here, generated images for the object and PSF are

used as ground truth to assess the convergence of our algorithm. Once

validated, we test our reconstruction method on real data acquired by a

custom LSFM setup, with the aim of retrieving both the PSF and the

aligned reconstruction. Lastly, we discuss the potential of our method in

the field of image processing for optical microscopy applications.

2 | RESULTS AND DISCUSSION

2.1 | Working principle of blind deconvolution

The goal of any blind deconvolution algorithm is to obtain a deblurred

version of the original image without any knowledge of the response of

the optical system used for image acquisition. It requires solving the

deconvolution problem, oμ ¼ o�h, recovering o, the original object,

from the blurred measurement oμ without knowing the blurring func-

tion h. There are infinite couples of images and PSFs that may repro-

duce the observed blurred output; thus, it may appear as a seemingly

impossible problem to solve. It has been shown, however, that mean-

ingful solutions are achievable by having weak, or even null,

knowledge of the object under study and of the PSF (Kundur &

Hatzinakos, 1996).

When the PSF is unknown, one of the most effective strategies is

provided by a modified blind RLD method, which acts alternatively in

the object and PSF domain. This protocol, introduced by Fish et al.

(Rieckher et al., 2018), consists in dividing the deconvolution process

into two steps, in which the object and the PSF commute their roles.

First, it executes a certain number of RLD iterations to improve the

object reconstruction by using a fixed guess for the PSF. Then, the

PSF estimation is improved by using the previously reconstructed

object as the kernel of another RLD. This cycle is repeated several

times until reaching optimal reconstructions.

Since we are interested in aligned multi-view measurements, we

propose an extension of this blind method to the autocorrelation

space. This approach is aimed at treating alignment and blind

deconvolution together. As previously demonstrated by Ancora

et al. (2021) in the case of known blurring, the AU algorithm inverts

the autocorrelation of the measurement, obtaining an aligned and

deconvolved reconstruction orec. In this case, the problem that we try

to solve is the inversion of the average autocorrelation, which we call

χμ, estimated from the measured views:

χμ ¼
1
m

Xm
i¼1

o ið Þ
μ ?o ið Þ

μ

In the previous equation, we have denoted the autocorrelation

operator with the symbol ? and with m the total number of acquired

views. In practice, the problem that we tackle is separating the object

from the PSF given the average autocorrelation χμ ¼ orec ?orecð Þ�H,
where H¼ h?h is the autocorrelation of the PSF. In this representa-

tion, orec is the average of the aligned and deconvolved views o ið Þ, and

h represents the PSF that blurs the fused multiview data, computed as

the average of the PSFs of each view. In a multiview setting, the PSFs

simply differ by a rotation angle. Here, we aim to accomplish the same

result without having any information about the microscope’s PSF, h.
We address the problem as schematized in Figure 1,

implementing the strategy via the iterated execution of two consecu-

tive blocks. We keep the PSF fixed, and we reconstruct the object

within the first block. We do the opposite for the second block, fixing

the previously obtained object while focusing the reconstruction on

the PSF. For the sake of clarity, here, we omit the index k that counts

the iterations of the blocks. We start from the autocorrelation of the

measurement χμ by providing two initial guesses: one for the object,

o0, and another for the PSF, h0. We begin by executing the AU algo-

rithm to recover an object from the blurred autocorrelation (Ancora &

Bassi, 2021) as if we knew the PSF (upper block of Figure 1). At each

iteration step t, the AU algorithm calculates an intermediate kernel

that contains the previous reconstruction of the object and the auto-

correlation of the PSF, as in Kt ¼ ot ?H. The kernel is defined so that

its convolution with the reconstructed object matches the measured

autocorrelation, χμ ¼ orec �K, once reaching the reconstruction orec.

Introducing this quantity makes the AU fixed-point update described

in Equation (1) similar to the RL deconvolution. After a certain number

of iterations, we reverse the role of object and PSF inside the iterative

process: we focus on reconstructing the PSF while keeping the object
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fixed as if we knew it (bottom block of Figure 1). The process is for-

malized in Equation (2). This equation is similar to Equation (1), except

for the introduction of a different kernel Kt0 ¼ ht
0
?O. Now, K takes

the current PSF and the autocorrelation O¼ o?o of the previously

reconstructed object. We cycle through these AU blocks several times

until obtaining accurate reconstructions for the PSF and object. Since

we assume that we have no information about the PSF, we will refer

to this strategy as the Blind-AU reconstruction protocol. By denoting

with the indexes t and t0 the iterations within AU cycles, and with the

subscript k the steps that run through the AU-blocks, formally, the

Blind-AU can be written as:

Kt
k ¼ otk ?Hk�1

otþ1
k ¼ otk

χμ
otk �Kt

k

 !
� eKt

k

" #
8>>>><>>>>: ð1Þ

Kt0
k ¼ ht

0
k ?Ok

ht
0þ1
k ¼ ht

0
k

χμ

ht
0
k �Kt0

k

 !
� eKt0

k

" #
8>>>><>>>>: ð2Þ

As previously mentioned, the object and the PSF are den-

oted with o and h, whereas we indicate their autocorrelation with

the uppercase letters O and H. Here, the tilde specifies that the

element is expressed with reversed coordinates: eK¼K �xð Þ. The code

for blind deconvolution is available on GitHub (Ancora &

Corbetta, 2021).

In the following section, we test our new Blind-AU method to

reconstruct a synthetic sample, mimicking a misaligned acquisition

with differently orientated point spread functions.

2.2 | Blind PSF and object reconstructions of
synthetic data

In multi-view light-sheet microscopy, the sample is observed from dif-

ferent angles and always exhibits a point spread function elongated

along the detection axis (Swoger et al., 2007). In Figure 2, we simulate

a typical tomographic section of a sample measured in an LSFM setup.

For our case study, we consider a generic sample made by a random

arrangement of vessel-like structures, blurred by two PSFs elongated

along the vertical (Figure 2a) and horizontal (Figure 2b) directions.

F IGURE 1 Schematics of the blind-AU algorithm. The algorithm starts receiving as input two initial guesses, one for the object and the other
for the PSF. In the first step, the autocorrelated signal χμ is deconvolved and deautocorrelated to improve the object estimation ok. After that, the
same signal is used to restore the PSF, maintaining ok unchanged. Upon completion of the outer cycle indicated by arrows, the estimations ok and
hk are retrieved, and the process iterated. We choose the number of iterations for each step and the number of times the outer cycle is
performed depending on the experimental or simulated conditions

F IGURE 2 Synthetic sample for blind
deconvolution. Blurred and noisy
orthogonal views generated starting from
an image simulating blood vessels.
(a) Synthetic measurement of the ground
truth image corrupted by the PSF
represented in the inset. (b) Orthogonal
measurement with its corresponding PSF
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These directions would correspond to the direction of the mechanical

scanning of the sample through the light sheet.

We test our image reconstruction method with this dataset,

aiming at obtaining a tomographic slice sharper than the mere aver-

age of both images. The original section of the synthetic sample,

which is our ground truth, is shown in Figure 3a. Aligning and fusing

the orthogonal views leads to the blurred reconstruction in Figure 3b

(top-left triangle). The alignment was accomplished by locating the

peak of their cross-correlation and compensating for its opposite

shift (Guizar-Sicairos et al., 2008). As a result of the fusion, the

blurred reconstruction is affected by the combination of the two

orthogonal PSFs that generate a star-like point spread function

(Figure 3c).

Our Blind-AU method allows for the reconstruction of both the

object, sharper than each single view, and the PSF. Since our algo-

rithm assumes that we do not have any information about the system,

we set the initial guess of the PSF to be an isotropic Gaussian with

σ¼4px (Figure 3d). This initialization is larger than the ground truth

PSF in both directions. On the other hand, we keep the aligned aver-

age as initial guess for the object. Ideally, our protocol will adjust the

guess of the PSF to the actual PSF that blurred the synthetic

measurements.

We run a total of 2�105 AU iterations to obtain the reconstruc-

tions: the protocols are executed in steps of 50 iterations for both the

object and the PSF, and the outer blind cycle is repeated 2000 times.

With this choice, the object and the PSF are processed for 105 itera-

tions each. The result of the object reconstruction is shown in the

bottom-right triangle of Figure 3b. The reconstructed image exhibits

higher contrast and enhanced void regions, even when not directly

discernible in the blurred version. We use intensity profiles to quantify

the resolution increase by comparing the ground truth, the initial

guess, and the de-autocorrelated and deconvolved image (Figure 3f).

We observe the profiles along the red line drawn in Figure 3a. Starting

from a hump, in which the opposite walls are indistinguishable, the

two peaks of the original image are recovered. The deconvolution

process transfers the signal energy from the center to the two oppo-

site lobes. Moreover, the recovered PSF reaches a remarkable result:

if we start from an isotropic Gaussian function, the kernel quickly con-

verges toward a star-like shape (Figure 3g). For completeness, we

report that the cross takes form after a few hundred iterations, and its

overall shape continues to refine during the following steps.

The image quality of the reconstruction and the convergence

trend of the algorithm can be quantified with the metrics defined in

Section 4. For the sake of comparison, the synthetic measurement has

been deconvolved also with the RLD, using the exact PSF used for

blurring. Our algorithm converged with a mean squared error (MSE) of

2:92�10�11a:u:, whereas the RLD achieves a MSE of 8:76�
10�13a:u: The initial signal-to-noise ratio (SNR) of the synthetic

F IGURE 3 Simulated blind-AU reconstruction. (a) Original synthetic sample resembling a vessel network. (b) Upper-left triangle: Blurred
reconstruction of synthetic data obtained by averaging orthogonal views of the object. Bottom-right triangle: Reconstruction obtained with our
blind-AU strategy. (c) Blurring kernel resulting from the fusion of orthogonal views. (d) Initial guess for the blurring kernel from which we start our
blind reconstruction. (e) PSF kernel obtained at the end of the blind-AU algorithm. (f) Intensity profiles along the red line drawn in panel (a) of the
ground truth, simulated measurement, and blind-AU result. (g) PSF profiles along the red dashed line drawn in panel c: Blurring kernel computed
as the average of the PSFs from multiple angles, initial guess for the PSF, and PSF reconstructed at the end of the blind-AU. The software used to
generate this figure is available on GitHub (Ancora & Corbetta, 2021)
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measurement image over its background noise is 69.10 dB, whereas it

increases to 80:28dB for the Blind-AU reconstruction and to

82.89dB for the RLD. Remarkably, our blind method gets very close

to what found with standard RLD where, instead, the PSF is supposed

to be known.

2.3 | Multiview blind deconvolution of zebrafish
samples

After validating the method with synthetic samples, we tested it

experimentally in a multiview light-sheet microscope. We report the

reconstruction results obtained with zebrafish (Danio rerio) embryos

having the vasculature stained with a fluorescent protein. Experimen-

tal details are provided in the Materials and Methods section. For this

experiment, we acquired four orthogonal views of the specimen,

focusing on the central region of the tail. In experimental measure-

ments, we do not have access to the ground truth reconstruction of

the specimen, so we compare our reconstructions with the one pro-

vided by standard RLD by assuming known the blurring PSF. To

obtain this reconstruction, we initially align each acquisition against

the other by locating the position of the maximum within their cross-

correlation. Once aligned, we fuse the volumes by calculating their

average. Figure 4a shows the maximum intensity projection (MIP) of

the fused volume (upper panel) and a tomographic slice along the

dashed blue line (bottom panel). We estimate the PSF of a single view

by measuring fluorescent nanobeads, fitted with a three-dimensional

Gaussian function. Finally, the PSF that blurs the multiview recon-

struction is obtained by rotating the single-view PSFs accordingly to

the acquisition angle of each dataset. We use the average PSF to

enhance the resolution of the dataset via RLD; the resulting volume is

shown in Figure 4b. For the Blind-AU, we compute the average auto-

correlation of each view, as described in the previous section. We

recall that this step does not require any alignment process. Then, we

feed this estimation to the algorithm described in Equations (1) and (2)

and schematized in Figure 1. After running a total of 25�104 itera-

tions, we obtain the result displayed in Figure 4c. Our reconstruction

is sharper and highly resolved compared to the standard fused data

and to the deconvolved one (Figure 4a,b). In particular, we can appre-

ciate the improvement along the tomographic plane (bottom panels of

Figure 4), where our method neatly discriminates the two vessels

located in opposite regions of the spine. To quantitatively assess the

improvement, we examine the profiles of the three volumes along the

direction indicated by the red line in Figure 4a. The plot of the profiles

is shown in Figure 4d. As expected, the RLD gives results sharper than

the initial guess. Our method further surpasses this result by better

separating the opposite vessels, reconstructing details sharper than

standard approaches. Respectively for RLD and Blind-AU, the conver-

gence MSE is 4:06�10�16 a:u: and 3:20�10�15 a:u. The image qual-

ity of the direct measurement is quantified by the image SNR and is

equal to 63:55dB. RLD brings the metric of the reconstruction to

72:01dB, which is further improved by the Blind-AU algorithm

to 79:93dB.

Having assessed the image reconstruction ability, we now focus

on the quality of the PSF obtained at the end of the process. We take

a slice along the tomographic plane obtained by fusing orthogonal

views (Figure 5a). We first average the autocorrelations of all the

views. The Blind-AU is initialized with the fused object reconstruction

and a completely random guess for the PSF (Figure 5b). The object

reconstruction and PSF are optimized alternatively with our method.

After running 5�104 iterations, we obtain the reconstructions of the

object displayed in Figure 5c, and of the PSF in Figure 5d. Also, in this

case, the increase in the resolution can be verified by the intensity

plot along the red line of panel a: our method reconstructs edges that

are sharper than the original fused data (Figure 5e). The gain in resolu-

tion is made possible thanks to the recovery of an accurate PSF esti-

mation, shown in Figure 5d. We notice that the recovered PSF is

elongated towards orthogonal directions, as expected in the recon-

structions based on multiview LSFM. We have previously estimated

the elongation of the point spread function along the scanning axis

F IGURE 4 Four-view RLD and blind-AU reconstructions of the tail of a zebrafish embryo. (a) Top: Maximum intensity projection (MIP) of the
fusion of four orthogonal views (45�, 135�, 225�, 315�) of the zebrafish tail section, used as the initial guess for RLD and blind-AU algorithms.
Bottom: Tomographic section of the same sample taken at the location of the dashed blue line. Scale-bar: 50 μm. (b) MIP and tomographic
section of the RLD reconstruction. (c) MIP and tomographic section of the reconstruction using the blind-AU algorithm. (d) Intensity profile along
the red line traced on the tomographic section (a) plotted for the initial guess, RLD, and blind-AU reconstruction
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(the worse resolution in the image); thus, we compare it with the pro-

file along the elongated direction of the recovered PSF. The resulting

graph is plotted in Figure 5f. Our method blindly recovers a PSF close

to the measured one, guarantying a resolution increase even when

completely ignoring the optical response of the system. Quantita-

tively, the Blind-AU algorithm improves the image quality of the sam-

ple also in the case of a random PSF initial guess: starting from an

image SNR of 64:47dB the value is increased to 76:77dB after the

iterative process. In this case, we assume convergence when the MSE

is 1:42�10�10a:u.

3 | CONCLUSIONS

In this article, we have introduced a new method to form aligned

reconstructions in multi-view light-sheet microscopy. Compared to

the state-of-the-art algorithms, our implementation obtains sharp and

inherently aligned reconstructions in the case where we have limited

knowledge of the optical response of the measuring setup. To achieve

this, we have generalized the AU algorithm (Ancora & Bassi, 2021),

which we used for alignment-free multiview reconstruction imaging

(Ancora et al., 2021), by including the blind deconvolution feature.

Our choice was to alternate the reconstruction of the object with that

of the point-spread function, keeping one fixed while solving for the

other. To this end, we took inspiration from blind strategies grounded

on the Richardson-Lucy deconvolution approach (Fish et al., 1995;

Richardson, 1972) but here, instead, starting from the estimation of a

global autocorrelation. We have already proven that autocorrelations

can form implicitly aligned reconstructions down to the sub-pixel level

(Ancora et al., 2021); thus, we decided to extend further its range of

applicability. Thanks to its design, our method forms accurate recon-

structions from multi-view acquisitions without knowing the PSF of

the system. The validation was assessed under three different regimes

and followed the actual software development. Initially, a blurred syn-

thetic specimen was reconstructed by fusing multiviews in the auto-

correlation domain, proving the fidelity of the reconstruction against

the known ground truth. Once validated numerically, we tested it with

experimental acquisitions of a three-dimensional specimen. We exam-

ined the vasculature of a zebrafish, a well-known model organism that

permits us to spot the formation of eventual artifacts in the recon-

structions. These reconstructions were compared with those obtained

by standard deconvolution routines, demonstrating a contrast

increase and robustness to experimental noise. Although we have not

studied the effect of increased noise, a similar level of SNR for the

synthetic (purely Poissonian) and experimental samples leads to com-

parable results. This is in line with what is commonly assumed in

deconvolution works (Lucy, 1974; Richardson, 1972). On the other

hand, additive noise accumulates in autocorrelation space as a delta

centered in the origin (Ancora & Bassi, 2021) Then, since the effect of

random intensity fluctuations in χμ is localized, finding the correct

value associated to the zero-shift pixel could potentially provide

denoised reconstructions. In the ultimate analysis, we have assessed

F IGURE 5 Multiview blind-AU reconstruction of a sample slice starting with a random PSF initial guess. Blind-AU algorithm applied on a
tomographic selected slice of the four orthogonal views of the tail of a zebrafish embryo (45�, 135�, 225�, 315�). (a) Initial guess for the sample,
corresponding to the aligned fusion of the four orthogonal views. (b) Random initial guess for the PSF. We assume to have null information about
the structure of the PSF of our volume. (c) Tomographic slice reconstructed with our blind-AU method. (d) the PSF obtained after the blind
optimization routine. (e) Intensity profiles plotted along the red line traced in (a) for the sample initial guess and blind-AU reconstruction. (f)
Intensity profiles plotted along the red dashed line in (d) for the PSF ground truth and blind-AU reconstruction
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the correct recovery of the PSF in our multiview LSFM setup, compar-

ing it with the measured optical response along the scanning axis. The

setup used in our experiment was a custom-made light-sheet fluores-

cence microscope with a rotating stage but, our technique is readily

usable in any omnidirectional LSFM setups (Weber & Huisken, 2012),

or in techniques directly based on autocorrelation inversion such as

hidden tomography (Ancora et al., 2020).

Although it guarantees excellent reconstruction capabilities, our

method may have room for further improvements in several aspects.

Concerning the multiview aspect, the objects that appear sharp in one

view may display less contrast compared to the view belonging to the

opposite sides of the specimen. Even assuming the scattering to be

negligible, the presence of tissue absorption weakens the signal com-

ing from deep inside the tissue and makes the fusion problem non-

trivial. In turn, this implies that to consider the average of a view may

not be the ideal choice to obtain the best reconstruction even if the

datasets are perfectly aligned. If the datasets are misaligned (as it typi-

cally is), the problem gets even worse and binds to the fusion problem:

the optimal fusion does depend upon prior alignment. As thoroughly

discussed, our method avoids the alignment procedure by using auto-

correlations, and we fuse the views by taking their average. A further

in-depth study on the assessment of the optimal choice for fusion

might indeed be facilitated with our method, since fusion does not

rely on alignment anymore. Our intention is to tackle this problem in

follow-up studies, thus, pushing the quality of autocorrelation-based

tomography further.

From a computational perspective, algorithms based on autocor-

relation inversions, such as AU and Blind-AU, make use of intense cal-

culations. When working with large three-dimensional volumes,

carrying out numerical convolutions and correlations could be chal-

lenging. For this reason, we decided to write our Python library to

exploit GPU computations, and all the operations are carried out in

the Fourier domain using real FFTs implemented in CUDA via the

CuPy library. The use of GPUs permits the reduction of computing

time by orders of magnitudes and renders the three-dimensional

problem approachable.

In terms of the solution of the inverse problem, the AU algo-

rithm is a slowly converging method (Ancora et al., 2021) which

we iterate blindly for tens to hundreds of iterations within each

cycle. Trying with a different number of blind iterations and

selecting a careful choice of initial guesses may speed up the

recovery process. Similar Bayesian approaches have already benefit

enormous speed-up by choosing ad-hoc backpropagating kernels

(Guo et al., 2020). This idea is suitable for our implementation and

can lead to faster solutions. Since our formulation is structurally

similar to RLD, regularizing the solution is an attainable refinement.

Total variation (Laasmaa et al., 2011) and sparsity constrained

(Shaked et al., 2011) are two choices we plan to incorporate in our

formalism to further enhance the reconstructions. Including priors

could also enhance the performance of our method. For example,

in multiview geometry, the angle of rotation is generally known.

Designing a functional form for the PSF that accounts for the

angular rotation could ease the reconstruction process. Lastly, our

algorithm assumes uniform PSF blurring thorough the entire

imaged volume. Although this is often considered a good approxi-

mation, higher image quality can be reached when considering spa-

tially anisoplanatic deconvolutions (Toader et al., 2021) or mixed

optical aberration corrections (Furieri et al., 2022). These consider-

ations fall beyond the scope of the present manuscript, which may

open new paths for further studies.

4 | MATERIALS AND METHODS

4.1 | Synthetic sample generation and
measurement

To test the Blind-AU algorithm, we generated an image simulating

blood vessels. The simulated multi-view measurement is composed of

two orthogonal views of the sample, generated by convolving the

original image with an elongated Gaussian PSF (with standard devia-

tion σz =2.7 px, σx=1 px), oriented along two different axes (θ1 ¼0�

and θ2 ¼90�). Then, images are normalized to 216 and Poisson noise is

added, with average and variance equal to λ¼28. For N different

views, identified by the subscript θi, each simulated measurement is

determined by:

fμ,θi ¼ o�hθi þϵθi ð3Þ

Where hθi is the PSF rotated by the angle θi, and ϵθi is the Poisson

noise added to every single view. Each matrix has an odd dimension

of 191 �191 pixels, so the rotation of the PSF is applied around the

central pixel, and the Gaussian is perfectly symmetric with respect to

the center of the image. The resulting fμ,1 and fμ,2 are displayed in

Figure 2.

4.2 | Light-sheet fluorescence microscopy

Light-sheet fluorescence microscopy is an optical technique that

exploits decoupled illumination and detection, placed orthogonal to

each other, to achieve optical sectioning. The illumination arm gener-

ates a light sheet (a single plane of illumination) on the sample. The

emitted fluorescence is collected and filtered along the detection

path, and forms an image on a widefield detector (CMOS camera).

Having independent illumination and detection, the PSF is determined

by the product between illumination and detection PSFs and is elon-

gated, typically, along the axial direction (Power & Huisken, 2017).

The system starts with a single-mode blue laser emitting at 473nm

(MBL-FN-473, 50mW power), operating in CW mode. The laser beam

is collimated to a diameter of 4mm (Thorlabs collimator RC04FC-

P01), and its width is reduced to 1mm by a vertical slit. Then, the light

is sent to a galvanometric mirror (Thorlabs GVS001) which is conju-

gated with the sample position along the optical illumination path.

The galvanometric mirror is controlled by a sinusoidal voltage signal

and oscillates with an amplitude of �1� and frequency of 250Hz. This
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pivots the illumination beam to remove shadowing artifacts that are

common for side illumination of the sample (Di Battista et al., 2019).

Then, the beam is expanded by a factor of 3 by a telescope

(4f system, with f1 ¼50 mm and f2 ¼150mm), and a cylindrical lens

(f¼200mm) generates the light sheet, focusing light only along the

vertical direction. The beam diameter is halved by a second 4f system

(f1 ¼400mm,f2 ¼200mm), and the light is collimated towards the

back focal plane of the illumination objective (Olympus water immer-

sion objective, 10�, NA¼0:3). The emitted fluorescence is collected

by a second identical objective, mounted in a perpendicular direction

with respect to the illumination path. Then, the light crosses a GFP fil-

ter (center wavelength of 520 nm), the tube lens (f¼180mm), and is

collected by a low noise sCMOS camera (Neo 5.5 sCMOS Andor

Technology). The size of the beam after the vertical slit results in an

illumination numerical aperture NAill ¼0:0055 and an axial resolution

δzill ¼5:65μm, whereas the lateral resolution is δρdet ¼0:87μm. In the

central unit of the microscope, the sample is mounted fixed to the

mechanical support that controls its position and orientation using a

translator (PI M-403) and a rotator (PI M-037). Volumes are acquired

by scanning the sample through the illumination beam, with minimum

exposure time for each slice (0:0101305s) and displacement along

the detection axis between two consecutive acquisitions of 1:3μm.

This value is also the lateral dimension of the region imaged by every

single pixel, by applying a 2�2 binning to the camera.

4.3 | PSF characterization

The point-spread function (PSF), representing the intensity impulse

response of the microscope, describes the image degradation process.

The PSF was estimated experimentally by measuring a sample com-

posed of sparse fluorescent nanobeads, much smaller than the micro-

scope resolution. They act as individual point sources, whose

recorded image describes the impulse response of the system. Beads

should be measured under the same experimental conditions as the

sample, to avoid variations due to wavelength changes, and retrieve

information about the alignment of the optical elements

(Sibarita, 2005). We used fluorescent nanobeads (Estapor, XC dye,

100 nm size) absorbing between 460 and 500nm and emitting in the

515�570nm range. They are embedded in phytogel with a concen-

tration of 1 :105 and inserted in a cylindrical FEP tube with an internal

diameter of 2mm and an external one of 4mm. To characterize the

3D PSF, we acquired an entire volume of beads at the same experi-

mental conditions as the sample; then, we selected one fluorescent

bead located in the center of the FOV and applied a Gaussian fit along

the three dimensions to retrieve an analytical expression. The ground-

truth PSF of the 2D reconstruction (Figure 5) was estimated, instead,

by fitting a bead located in the same region of the FOV as the sample

slice. In general, the microscope PSF may vary when moving away

from the center of the FOV, but the isoplanatic hypothesis can be

considered valid in the portion of the FOV used in this work. In fact,

experimental beads maintain a homogeneous shape and dimensions in

the volumetric region occupied by the sample.

4.4 | Zebrafish handling and preparation

Adult zebrafish were maintained according to National (Italian D.lgs

26/2014) and European laws (2010/63/EU and 86/609/EEC), control-

ling experiments on live animals. Embryos, collected by natural

spawning, were staged and raised at 28�C in fish water (Instant Ocean,

0.1% methylene blue). We used zebrafish embryos (Danio rerio) belong-

ing to the line Tg(fli1a:EGFP)y1. The entire vascular tree can be visual-

ized in vivo, thanks to the expression of Enhanced Green Fluorescent

Protein (EGFP) under the control of the endothelial-specific gene pro-

moter fli1a (Kimmel et al., 1995; Lawson & Weinstein, 2002). At

48 hours post-fertilization, embryos have a typical dimension of

700�700�3000μm3. They are anesthetized and mounted in Fluori-

nated Ethylene Propylene (FEP) tubes (outer diameter of 1.6mm,

inner diameter of 0:8mm, 3 cm long), filled with 0:1% agarose, and a

final tricaine concentration of 160mg=L (Kaufmann et al., 2012). The

tube is mounted in the microscope chamber, filled with a stock solu-

tion composed of fish water with 0:016% tricaine concentration.

4.5 | Richardson–Lucy deconvolution

Richardson–Lucy deconvolution (RLD) algorithm is an iterative numer-

ical method for image restoration, stable in presence of high noise

levels (Lucy, 1974; Richardson, 1972). It is derived by interpreting

images and PSFs as probabilities and applying Bayes theorem. In

microscopy, the system’s point spread function, h, is not ideal; thus,

the measurement fμ of an object o can be described by the convolu-

tion fμ ¼ o�hþϵ. In this description, we can state that pixel-value of

fμ is determined by the re-distribution of the energy of o accordingly

to h: Assuming that the PSF is shift-invariant (isoplanatic condition),

the RLD iterative process can be written in a convolutional form:

o tþ1ð Þ ¼ o tð Þ fμ
o tð Þ �h�

eh� �
: ð4Þ

With the notation eh, we indicate the PSF with reversed coordi-

nates: eh¼ h �xð Þ, and the index t identifies iterations. Starting from an

initial guess o0 ≥0, nonnegativity is preserved during the iteration pro-

cess, without the need for positivity constraints (Fish et al., 1995).

4.6 | Anchor-update deconvolved
deautocorrelation

Our blind method strongly relies on the Anchor-update (AU) algorithm

(Ancora & Bassi, 2021) that, here, we recall for completeness. The goal
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is to recover a sharp object orec from the measurement of the autocor-

relation χμ blurred by a given function H so that:

χμ ¼ orec ?orecð Þ�H¼ orec �hð Þ? orec �hð Þ: ð5Þ

Since in our specific case, H¼ h?h. The solution with respect to

orec can be approached via an iterative fixed-point multiplicative

method similar to RL deconvolution:

otþ1 ¼ ot
χμ

ot �Kt

� �
� eKt

� �
, ð6Þ

where Kt ¼ ot ?H is an effective kernel continuously updated as

the reconstruction progresses. Equation (6) defines the AU iteration

as a function of the iteration step t.

4.7 | Metrics to assess the image quality

We monitored the convergence trend by computing the mean

squared error (MSE) that estimates the similarity between the final

reconstruction blurred by the PSF of the system and the initial

measurement:

MSE sμ
���s� �

¼
ð
orec �h� sμ
	 
2

dx ð7Þ

Here we denote with orec the reconstruction obtained with the

iterative algorithm, with h being the PSF of the system, and with sμ

the initial measurement. If this metric is applied to the RLD algorithm,

h is the known PSF of the optical system. Instead, when considering

the AU algorithm, h is the PSF estimated by the blind iterative pro-

cess. The measurement sμ and the blurred image orec �h are energy-

normalized.

On the other hand, we assess the image quality by calculating the

signal-to-noise ratio (SNR) of the original measurements and the

reconstructions, according to the expression:

SNR s
���ϵ� �

¼20log10
smax

ϵ

h i
ð8Þ

where smax is the peak intensity of the image, and ϵ is mean value

of the background noise estimated by in a region of the image where

the sample is not present.

The metrics defined in Equations (7) and (8) permit us to compare

the convergence trend and reconstruction results among different

algorithms and whether the iterative process provides a feasible

reconstruction.

4.8 | Preprocessing of experimental data

In the present manuscript, a multiview measurement is composed of

four orthogonal views, acquired by rotating the sample by steps of 90�.

First, we subtract the background signal from each matrix by measuring

a full stack without laser illumination. Second, we rotate each stack

against the reference view: the passage is performed in multiples of 90�.

The measure passed to the algorithm lies in the autocorrelation space,

and it is computed by autocorrelating each stack and averaging them. It

guarantees intrinsic subpixel alignment (Ancora et al., 2021). Here, auto-

correlation is carried out as multiplication in the Fourier domain,

according to the cross-correlation theorem. To avoid numerical errors

before the fusion, we take the absolute value of each autocorrelation.

To determine an initial guess for the sample image, we decided to align

the views. This step is carried out by setting the first view as a reference,

then computing the cross-correlation between this stack and the others.

For each couple, the position of the cross-correlation maximum repre-

sents the translational shift to apply in the three spatial coordinates.

Finally, the initial guess is computed as the average of all the aligned

views. In addition, we removed all the null elements by substituting a

small value, taken as 1/100 of the image average. Otherwise, those

pixels will remain zero during deconvolution. It is worth noticing that the

alignment procedure is not strictly necessary to run the algorithm but

ensures convergence in case the object is truncated in the image plane.
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