
Root Digger: a root placement program
for phylogenetic trees
Ben Bettisworth1*  and Alexandros Stamatakis1,2 

Background
In standard phylogenetic inference, most tools [1, 2] yield unrooted trees. This is because
they typically implement time-reversible nucleotide substitution models [3] as they yield
the phylogenetic inference problem computationally tractable. However, time-reversible
models are incapable of identifying the root, as they disregard the direction of evolu-
tion. This is the result of the so-called pulley-principle [3]. Nevertheless, a rooted phy-
logeny is often required for downstream analyses and interpretation of results as it can
resolve long standing disputes regarding the placement of large clades on the tree of life
for example [4]. Often then, researchers will have to use a dedicated tool or include addi-
tional information in the analysis to recover the root of an inferred unrooted phyloge-
netic tree.

To root a tree when the primary phylogenetic inference is performed via a revers-
ible model, researchers typically deploy one of the two following methods: including
a set of outgroup taxa in the analysis, or using some form of molecular clock analysis.

Abstract 

Background:  In phylogenetic analysis, it is common to infer unrooted trees. However,
knowing the root location is desirable for downstream analyses and interpretation.
There exist several methods to recover a root, such as molecular clock analysis (includ-
ing midpoint rooting) or rooting the tree using an outgroup. Non-reversible Markov
models can also be used to compute the likelihood of a potential root position.

Results:  We present a software called RootDigger which uses a non-reversible
Markov model to compute the most likely root location on a given tree and to infer a
confidence value for each possible root placement. We find that RootDigger is suc-
cessful at finding roots when compared to similar tools such as IQ-TREE and MAD, and
will occasionally outperform them. Additionally, we find that the exhaustive mode of
RootDigger is useful in quantifying and explaining uncertainty in rooting positions.

Conclusions:  RootDigger can be used on an existing phylogeny to find a root, or
to asses the uncertainty of the root placement. RootDigger is available under the
MIT licence at https://​www.​github.​com/​compu​tatio​ns/​root_​digger.

Keywords:  Phylogenetic analysis, Phylogenetic rooting, Maximum likelihood

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Bettisworth and Stamatakis ﻿
BMC Bioinformatics (2021) 22:225
https://doi.org/10.1186/s12859-021-03956-5

*Correspondence:
ben.bettisworth@h-its.org
1 Computational Molecular
Evolution Group, Heidelberg
Institute for Theoretical
Studies, Heidelberg, Germany
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-9130-6878
https://www.github.com/computations/root_digger
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-03956-5&domain=pdf

Page 2 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

Unfortunately, both approaches exhibit their own challenges and pitfalls [5]. Includ-
ing outgroup taxa in the analysis increases the amount of work that must be conducted
in order to infer a tree, and, more importantly, can also affect the ingroup topology in
unexpected ways [6]. Molecular clock analysis can be complicated by the need to cali-
brate the molecular clock, as this often requires appropriate and a sufficient number of
fossil records that are related to the organisms under study [5, 7].

Alternatively, one can use a non-reversible model as, under such a model, the root
placement does affect the likelihood of the tree [8]. Examples of non-reversible models
include gene tree species tree reconciliation methods that account for gene duplication,
loss, and transfer [9], or non-reversible Markov substitution processes for character evo-
lution. It is the latter process that RootDigger uses to root an existing phylogeny. This
allows RootDigger to circumvent the compute-intensive step of inferring a tree under
a non-reversible model, and instead only use a non-reversible model to root the inferred
tree in a final step. By doing this, one can combine the advantages of both, fast tree infer-
ence under reversible models, and rooting the tree under a non-reversible model.

The rest of this paper is organized as follows. First, we provide some more background
on the theory and operation of RootDigger, as well as a justification for our method.
Then, we describe the operation of RootDigger in detail. Next, we outline the meth-
odology used to experimentally verify RootDigger and present the respective results.
Finally, we discuss the effectiveness of RootDigger.

Methods that use additional topological information take advantage of prior knowl-
edge about the world, which is not present in the, generally molecular, data that is used
to infer the tree. In particular, knowledge about specific species which are not too dis-
tantly related to the species in question can be included as a so-called outgroup. This
outgroup can then be used to place the root on the tree, as the most recent common
ancestor of the ingroup and the outgroup should be the root of the tree.

There are challenges to including an outgroup to an analysis. Gatsey et al. [10] showed
how adding a single taxon to an analysis can substantially change the resulting tree
topology, even for the taxa which were already present in the analysis (i.e., the ingroup).
Holland [6] investigates this phenomenon in simulations, and finds that outgroups that
affect or alter the ingroup topology are common.

Alternatively, molecular clock analysis can be used to place a root without prior topo-
logical knowledge [11]. The molecular clock hypothesis assumes that the substitution
process exchanges bases (i.e., “ticks”) at a stochastically constant rate. Using this sup-
position a likely location can be inferred for the root on an existing phylogenetic tree.
A simple version of this is midpoint rooting, which relies on a constant molecular clock
assumption in order to produce a phylogenetically meaningful rooting yet it can be
applied to any binary tree, regardless of whether it is ultrametric or not. Other meth-
ods, such as Minimum Ancestor Deviation (MAD) [12] and MinVar [13] also rely on the
molecular clock assumption. They attempt to solve the potentially poor performance of
midpoint rooting in the presence of a violation of a strict molecular clock by allowing for
variation in the rate of the molecular clock.

Molecular clock analyses exhibit their own difficulties. In particular, the clock does not
generally “tick” at a constant rate over the tree [14, 15]. Relaxed clock models exist which
can alleviate this problem, but are not always successful at correctly identifying the root

Page 3 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

as shown in [5] and come with their own set of inference errors and methodological
challenges.

The final method that can place a root on a tree is to perform the phylogenetic analy-
sis under a non-reversible model of evolution. When using a non-reversible model, the
direction of time affects the likelihood of the tree [8]. Using this property, the most likely
location on the tree for the root can be found, so long as the model has an appropriate
fit. Indeed, early results suggested that some non-reversible models (particularly those
based on character substitution) are inappropriate for the purposes of rooting a tree
[16]. However, in this work we find that these concerns appear to be mostly overstated
(see Results). Several software packages are able to infer or score a phylogenetic tree
under a non-reversible model, and as a by-product also identify a root [1, 17].

Non-reversible models for phylogenetic trees come in many forms. For example,
accounting for duplication, transfer, and loss events yields a non-reversible model [9]. In
particular, duplication events have been used for rooting trees [18]. Another method, the
one primarily used in this work, is to eliminate the reversibility assumption of standard
character (e.g., nucleotide or amino acid) substitution models. Unfortunately, eliminat-
ing this assumption significantly increases the computational effort required to find a
good (high likelihood) phylogenetic tree. This is due to the resulting inapplicability of
the pulley principle [3], which allows phylogenetic inference tools to ignore root place-
ment during tree inference. Therefore, by adopting a non-reversible model, the location
of the root on a phylogenetic tree affects the likelihood of that tree.

As the location of the root affects the likelihood of the tree, when using standard tree
search techniques all possible rootings would need to be evaluated for each tree con-
sidered in order to find the rooting with the highest likelihood. In the worst case, this
increases the work per tree being visited during the tree search by a factor of O(n) where
n is the number of taxa in the dataset. Therefore, eliminating the reversibility assump-
tion drastically increases the computational effort required to infer a tree. Hence, stand-
ard inference tools choose to adopt the reversibility assumption, as phylogenetic tree
inference would be computationally intractable otherwise.

As an alternative to the computationally expensive process of inferring a tree with a
root, an unrooted tree which has already been inferred under a reversible model can
be evaluated a posteriori for possible root locations under a non-reversible model. This
requires less computational effort, as it skips the expensive step of looking for “good”
rootings in intermediate trees during the tree search. With this method, we can find
the most likely root location for a given phylogenetic tree. Even this approach still faces
numerical challenges, as previous research suggests that the likelihood function for root-
ing a phylogenetic tree may exhibit several local maxima [16], although we did not find
this to be a major issue in our experiments (see discussion).

We implemented the open source software tool RootDigger which uses a non-
reversible model of character substitution to infer a root on an already inferred, given
tree. The inputs to our tool are a multiple sequence alignment (MSA) and an unrooted
phylogenetic tree. RootDigger then returns a rooted tree. RootDigger imple-
ments fast and a slow root finding modes, called Search mode and Exhaustive mode,
respectively. The search mode simply finds the most likely root quickly via appropri-
ate heuristics, and is intended for users who simply intend to root the tree. For a more

Page 4 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

through exploration of the possible roots, we provide the exhaustive mode, which thor-
oughly evaluates the likelihood of placing the root into every branch of the given tree,
and reports the likelihood weight ratio [19] for placing a root on that branch for every
branch on the tree. In other words, the exhaustive mode allows to quantify root place-
ment uncertainty.

Additionally, RootDigger supports both thread and process level parallelism, over
the potential data partitions of phylogenomic alignments and over distinct search start-
ing locations (i.e., parallelization of the root search procedure), respectively. Finally, to
support root inferences on extremely large datasets using compute clusters, we have
implemented a checkpoint system in RootDigger, which allows for the search to be
halted and resumed at a later point in time in case of hardware failures or when the job
time limit has been reached.

The Software
Usage of RootDigger is straight-forward. All that is required is a tree in newick for-
mat, and a MSA in either PHYLIP or FASTA format. RootDigger is open source,
released under the MIT license, and written in C++, and is targeted at the Linux plat-
form. The code, documentation, test suite, as well as any modifications to existing librar-
ies can be found at https://​www.​github.​com/​compu​tatio​ns/​root_​digger.

In order to implement both, likelihood computations, and non-reversible models,
RootDigger has three major dependencies: the GNU Scientific Library (GSL) [20], the
Phylogenetic Likelihood Library (LibPLL) [21], and L-BFGS-B [22]. GSL is used for the
decomposition of the non-symmetric substitution rate matrix, LibPLL is used for effi-
cient likelihood calculations, and L-BFGS-B is used for multi-parameter optimizations.

Implementation
The input to RootDigger is a MSA and a phylogenetic tree with branch lengths in
expected mean substitutions per site. RootDigger then uses the tree and branch
lengths to find the most likely root location by calculating the likelihood of a root
location under a non-reversible model of DNA1 substitution (specifically, UNREST
[23] with a user specified number of Ŵ discrete rate categories, and an optional pro-
portion of invariant sites, i.e., UNREST+Ŵ+I). The UNREST model is used because
numerous other models (including models which are in the Lie group detailed in [24])
have been derived from this model. The optimal position of the root along a specific
branch of length t is calculated by splitting the given branch in two with resulting
branch lengths βt and (1− β)t , with 0 ≤ β ≤ 1.0 . We then find the maximum likeli-
hood value of β , and report the likelihood for the given branch as the likelihood of
the root location on that branch. By formulating the problem this way, we can use
single parameter optimization techniques such as Brent’s Method, which are com-
putationally more efficient compared to multi-parameter optimization routines

1  Typically tree inference which uses AA data does not allow for using the fully unrestricted General Time Reversible
(GTR) rate matrix, instead picking from one of several precomputed empirical substitution matrices. This substantially
limits the number of free parameters, thereby reducing the risk for over fitting. In contrast, the fully unrestricted revers-
ible AA rate matrix would have 380 free parameters. Therefore, we choose to limit RootDigger to DNA data because
the equivalent model for AA data would have far too many parameters to reliably optimize.

https://www.github.com/computations/root_digger

Page 5 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

such as the BFGS algorithm (named for its creators: Broyden, Fletcher, Goldfarb,
and Shanno). Note that we specifically selected Brent’s Method instead of Newton’s
Method, because it does not require the calculation of the second derivative to opti-
mize the function. While an analytical computation of the second derivative could be
implemented, initial estimates showed that the savings were not sufficient to justify
the increased complexity and potential numerical issues. Nonetheless, in principle,
the computation of the second derivative of the likelihood is feasible and could be
implemented.

A potential problem of Brent’s and analogous methods is that they find extrema by
identifying roots for the derivative of the objective function. In order to find maxima,
though, it is required that the objective function’s value is evaluated, as a root of the
derivative could correspond to a minimum. In addition, Brent’s method will fail to
find all extrema. To alleviate this, we need to search for bracketing windows that can
be used to safely find extrema. Unfortunately, we are not aware of a general method
for finding such bracketing windows, so a recursive method is employed, were the
search range is bisected and adequately searched for appropriate windows. Appro-
priate here means that the sign of the function in question has opposite signs at the
respective endpoints of the window.

As already mentioned, RootDigger offers two modes of operation. These modes
will be discussed individually, starting with search mode:

1.	 Initialize numerical model parameters:

•	 α-shape parameter for discrete Ŵ rates to 1.0 (if applicable),
•	 Character substitution rates to 1

4(4−1)
=

1

12

•	 Base frequencies to 1
4

2.	 According to one of the following strategies (default 1% of possible root positions)

•	 Modified MAD (Default) or,
•	 Randomly.

3.	 For each starting root:

1.	 Optimize model parameters

•	 α-shape parameter for Ŵ distributed rates (if applicable, and only every 10
iterations),

•	 Character substitution rates,
•	 Base Frequencies.

2.	 Find the best root location for the current model

1.	 Create a list of high likelihood root locations evaluated at the midpoint of every
branch.

2.	 For the top roots (default 1%), optimize the root location along their specific branch.

Page 6 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

3.	 Repeat from 3(a) until a stopping condition is met:

•	 The difference between likelihoods between the current iteration and the
previous iteration is sufficiently small (below user defined parameter atol),

•	 If early stopping is enabled, the new root location is sufficiently close to the
old root location by distance along the branch (below user defined param-
eter brtol) or,

•	 More than 500 iterations have passed.

4.	 Report the best found root, along with its log-likelihood

In order to select the initial branches in search mode, we have developed two strate-
gies: modified MAD and random selection. When using modified MAD, we compute
the approximate MAD ranking for each branch via a simplified version of the MAD
algorithm for the purposes of computational efficiency. This approximate metric is
used to rank branches for selection as initial root positions. There is a possibility that
this option will bias the results, so we also provide a random branch strategy for these
cases.

During the search, we re-estimate the base frequencies in every iteration to suffi-
ciently optimize the likelihood, and because the cost of optimizing these parameters
is small (approximately 10% of overall run time). Furthermore, because we use a non-
reversible substitution matrix, the base frequencies might not be stable across every
branch of the tree. Therefore, to ensure a good fit, we need to optimize the base fre-
quencies every time. The algorithm for the exhaustive mode is analogous; the core
optimization routines are the same as in search mode. The major difference is that
now, all branches are being considered:

1.	 For every branch on the tree:

1.	 Place root at current branch.
2.	 Initialize numerical parameters:

•	 α-shape parameter for discrete Ŵ rates to 1.0 (if applicable),
•	 Character substitution rates to 1

4(4−1)
=

1

12

•	 Base frequencies to 1
4

3.	 Optimize model parameters

•	 α-shape parameter for Ŵ (if applicable, and only every 10 iterations),
•	 Character substitution rates,
•	 Base Frequencies.

4.	 Repeat from 1(c) until a stopping condition is met:

•	 The difference between likelihoods between this iteration and the previous
iteration is sufficiently small (below atol) or,

Page 7 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

•	 If early stopping is enabled, the new root location is sufficiently close to the
old root location by distance along the branch (below brtol).

•	 More than 500 iterations have passed.

2.	 Report the tree with annotations for every branch:

•	 The root position along the branch,
•	 The log-likelihood,
•	 and the Likelihood Weight Ratio [19].

We re-initialize the initial model parameters in every iteration (from (3) in search
mode and (1) in exhaustive mode) to avoid the numerous local minima, as discussed
in [16]. In both modes, there is an upper limit to the number of iterations of 500. In
empirical and simulated datasets this limit has never been reached, and only exists to
ensure that the program will eventually halt.

In addition to the two search modes, there is an optional early stop mode, which
can be combined with either of the root search modes. In this early stop mode, the
search will terminate if the root placement is nearly the same twice in a row. This is
to say, if the location of the best root position is on the same branch as in the pre-
vious iteration and the value inferred for the root position on that branch is suffi-
ciently close the position in the previous iteration, the program will terminate. While
the early stop optimization does improve rooting times substantially (approximately
by a factor of 1.7 on some empirical datasets), the likelihood of each root placement
will not be fully optimized. In practice, this does not substantially affect the final root
placement, but it does render comparison of the likelihood with results from other
tools invalid.

We utilize both OpenMP [25] and MPI to parallelize parts of the computation. First,
we use the thread level parallelism of OpenMP to optimize each partition (sections of
the alignment which are given their own model parameters) independently. If there
are too few partitions present in the dataset to achieve ’good’ parallel efficiency, we
also parallelize the transition matrix calculations over the branches. We use process
level parallelism to parallelize searches over the initial search locations. This is most
efficient in exhaustive mode, where there are many independent searches that can be
carried out in parallel. To synchronize the processes, the results from each independ-
ent search are written to an append only binary log file. By using an append only file,
synchronization of file locations is handled by the underlying filesystem, simplifying
multinode checkpointing. At the end of the search, the results (root locations and
their associated log-likelihoods, as well as the associated model parameters) in the
checkpoint filed are reviewed, and the final step of finding the best root is performed
by the master node. Using this strategy, we are able to (with sufficient independ-
ent searches) achieve a ’good’ parallel efficiency of 0.58 (see Fig. 12) on how many
cores?. Furthermore, by using this append only logging method, we can also imple-
ment check pointing for the search. If the computations are interrupted during the
search, when the search is re-started, the previous results are taken into account, and
the search continues where it left off. In order to ensure that no write corruption has

Page 8 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

occurred during and that all writes are complete, a checksum is computed. To com-
pute the checksum, we use the Alder-32 algorithm, which is implemented as a part of
zlib [26]. To avoid a dependency on zlib for the checksum RootDigger includes the
algorithm in its own code base.

Results
To validate RootDigger, we conducted several experiments on both simulated and
empirical data. Furthermore, we also used Likelihood Weight Ratios (LWR) [19] to asses
the confidence of root placements on empirical datasets. Finally, we investigated the
effects of the early stop mode on the final results.

Experimental design

In the following sections we will describe the experimental setup for both simulated data
and empirical data. Here, we will describe how we measured and computed the error for
each of the methods. For simulations and empirical data, we computed the topological
distance from the estimated root (by both IQ-TREE and RootDigger in search mode)
to the true root, and normalized it by the number of nodes in the tree (both internal
nodes as well as tips). If the correct root is picked, the distance is zero. For empirical
data, the true root was taken to be the root indicated by the outgroup.

Evaluating the exhaustive search mode is difficult, since to our knowledge there are
no other tools which perform the same task. Instead, we show the LWR distributions of
empirical data which have been annotated onto trees. Additionally, these trees have the
true root (again, as indicated by the outgroup) indicated.

Simulations

Tests with simulated data were conducted to both, validate the software, and to compare
against IQ-TREE version 2.0.4 [27] which also implements the non-reversible UNREST
model. We created a pipeline to

1.	 Generate a random rooted tree with ETE3 [28] and random model parameters.

•	 Substitution parameters for INDELible were generated by drawing uniformly
between 0.01 and 1.01.

•	 Frequency parameters for INDELible were generated by an exponential distribu-
tion and then normalizing the parameters so that the frequency parameters sum
to 1.

•	 Otherwise, options for INDELible were left to defaults.
•	 Branch lengths were generated via an exponential distribution using a scale

parameter of 0.5

2.	 Simulate an MSA with indelible [29]
3.	 Execute RootDigger and IQ-TREE [27] with the simulated MSA, given the gener-

ated random tree.
4.	 Repeat from (2) for a total of 100 iterations
5.	 Compute comparisons

Page 9 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

1.	 Calculated rooted RF distance with ETE3 [30]
2.	 Mapped root placement onto original tree with the true root.

Both IQ-TREE and RootDigger were given the same model options for all runs.
RootDigger was executed with the arguments.
rd--msa<MSA FILE>--tree<TREE FILE>

By default RootDigger uses no Ŵ rate categories, and currently only supports the
UNREST model [23]. IQ-TREE was executed with the arguments
iqtree2-m 12.12-s<MSA FILE>-te<TREE FILE>

The -m 12.12 argument to IQ-TREE specifies that the UNREST model should be
used [24] and the -te<TREE FILE> option constrains the tree search to the given
user tree. When given a fully resolved unrooted tree, this has the effect of rooting the
tree. We used this option to simulate the operation of RootDigger. For all runs, the
UNREST model was used. Furthermore, we vary two additional parameters to control
dataset size: the number of MSA sites and taxa. In total, we ran 9 simulated trials with
MSA sizes of 1000, 4000, and 8000 sites as well as tree sizes of 10, 50, and 100 taxa. The
results from these experiments, as well as the execution times, are shown in Fig. 1.

Empirical Data

In addition to simulated data, we conducted tests with empirical data using IQ-TREE
and additionally MAD [12]. The datasets used are described in Table 1 with additional
statistics about the datasets in Table 2. The empirical datasets were chosen from Tree-
BASE [31, 32] and helpfully provided by fellow researchers [33] to include an existing,
strongly supported outgroup. For each of the empirical datasets, we ran RootDigger
in exhaustive mode to obtain likelihood weight ratios (LWR) for each branch. We ran the
experiments on the datasets with the outgroup included, as well as with the outgroup
excluded.

We also performed some preprocessing. In order ensure that all branch lengths in all
trees used were specified in substitutions per site, the branch lengths were re-optimized
using RAxML-NG [34] version 0.9.0git. The original model was used when known,
otherwise the branch lengths were optimized under GTR+Ŵ4.

Annotations are suppressed for branches with a small LWR (less than 0.0001). The
trees with annotated LWR are shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, and 10. The analy-
sis errors are summarized in Table 3 and runtimes for each method are summarized in
Table 4.

Effect of early stopping on result

Finally, we investigated the effect of the early stopping criterion on the final LWR results.
To do this, we ran RootDigger in exhaustive mode on all empirical datasets with
early stopping enabled and disabled. For most runs, the results with and without early
stopping showed no meaningful (difference in LWR less than 0.000001) difference. The
dataset that showed the largest difference in LWR is shown in Fig. 11. In exchange, the
runtime for this dataset with early stopping enabled is about 1.7 times faster.

Run time improvements for early stopping in search mode are less pronounced. We
were not able to measure any significant difference in results or speed in search mode

Page 10 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

Fi
g.

 1
 B

ox
 p

lo
t o

f r
es

ul
ts

 a
nd

 e
xe

cu
tio

n
tim

es
 fo

r I
Q

-T
RE

E
an

d
R
o
o
t
D
i
g
g
e
r

 o
n

si
m

ul
at

ed
 d

at
a

w
ith

 a
nd

 w
ith

ou
t e

ar
ly

 s
to

pp
in

g
en

ab
le

d

Page 11 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

between early stopping enabled and disabled. We suspect that this is because the
speed gain from early stopping in exhaustive mode is primarily due to it “skipping”
low likelihood branches, which do not contribute significantly to the LWR.

Table 1  Table of empirical datasets used for validation

a The paper states that PartitionFinder was used, but the results were not provided.
b The dataset is partitioned, and the partition file was provided. UNREST was used instead of any substitution matrices, but
invariant sites and rate categories was preserved

Name Dataset Original model Model used Source

DS1 AngiospermsCDS12 GTR+Ŵ UNREST + Ŵ4 [35]

DS2 AngiospermsCDS GTR+Ŵ UNREST + Ŵ4 [35]

DS3 Grasses GTR+ G + I UNREST + Ŵ4 [36]

DS4 Ficus GTR​CAT​ UNREST + Ŵ4 [37]

DS5 SpidersMissingSpecies NAa UNREST + Ŵ4 [38]

DS6 SpidersMitocondrial NAa UNREST + Ŵ4 [38]

DS7 Beetles GTR+G4 UNREST + Ŵ4 [33]

DS8 BeetlesHomogeneous GTR+G4 UNREST + Ŵ4 [33]

Table 2  Table of statistics for the emperical datasets

a Defined here to be the longest path between two taxa.
b The length of the root branch if the tree was unrooted.
c Root branch length over tree diameter

Name Tree diametera Root branch
lengthb

Ratioc #Genes #Taxa #Sites

DS1 1.1204 0.2276 0.203 1308 35 864,029

DS2 0.5236 0.1089 0.208 1308 35 1,296,043

DS3 0.6657 0.0856 0.129 3 245 4,973

DS4 0.0985 0.0316 0.320 5 200 5,552

DS5 0.0628 0.0099 0.158 1019 33 1,097,842

DS6 0.4189 0.0283 0.068 15 34 12,479

DS7 2.5334 0.0842 0.033 2948 14 4,098,894

DS8 1.6601 0.0539 0.032 101 14 186,499

Fig. 2  SpidersMissingSpecies dataset analyzed without an outgroup. LWR is the Likelihood weight ratio of
placing a root on the branch. The true root branch is indicated in red

Page 12 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

Parallel efficiency

Finally, we also evaluated the parallel efficiency of RootDigger. Figure 12 plots the
speedup (how many times faster than 1 node) vs perfect efficiency for dataset DS7. We

Fig. 3  SpidersMissingSpecies dataset analyzed with an outgroup. LWR is the Likelihood weight ratio of
placing a root on the branch. The true root branch is indicated in red

Fig. 4  SpidersMitocondrial dataset analyzed without an outgroup. LWR is the Likelihood weight ratio of
placing a root on the branch. The true root branch is indicated in red

Fig. 5  SpidersMitocondrial dataset analyzed with an outgroup. LWR is the Likelihood weight ratio of placing
a root on the branch. The true root branch is indicated in red

Page 13 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

choose DS7 because it is one of the larger datasets at hand, and therefore is ideal for dis-
playing the strengths and weaknesses of RootDigger’s parallelization strategy. Results
were computed on a cluster, using MPI to communicate between nodes with RootDig-
ger’s exhaustive mode. The parallel efficiency ranges from 0.94 on 2 nodes, to 0.50 on
32 nodes, each with 16 cores.

Discussion
Compared to IQ-TREE, RootDigger performs competitively, as can be seen in both
sides of Fig. 1. The results on simulations are mixed, with IQ-TREE performing slightly
better in terms of root placement in all simulated scenarios. RootDigger is faster than
IQ-TREE on all datasets we tested. When analysing empirical data, RootDigger also
performed well, though not as well as IQ-TREE or MAD for most datasets, producing
minimal errors in most cases. A notable exception is dataset DS3, for which RootDig-
ger obtained a better result than either MAD or IQ-TREE. Examining the dataset with
RootDigger’s exhaustive mode (see Fig. 8), we see that there is a number of branches
with good support for a root placement. This suggests that there is conflicting signal as
to the root location for this dataset, which naturally leads to confusion in generally reli-
able methods like MAD.

Fig. 6  AngiospermsCDS12 dataset analyzed without an outgroup. LWR is the Likelihood weight ratio of
placing a root on the branch. The true root branch is indicated in red

Fig. 7  AngiospermsCDS12 dataset analyzed with an outgroup. LWR is the Likelihood weight ratio of placing
a root on the branch. The true root branch is indicated in red

Page 14 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

In general, exhaustive mode is more successful at identifying the correct root loca-
tion (see Figs. 2, 3, 6, 7, 8, and 9). This is to be expected, since exhaustive mode per-
forms a substantially more thorough search for the best root location. Nonetheless,

Fig. 8  Grasses dataset analyzed without an outgroup. LWR is the Likelihood weight ratio of placing a root on
the branch. The true root branch is indicated in red

Page 15 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

this shows that RootDigger is successful not only at identifying the correct root
location, but also at identifying any uncertainty or ambiguous signal for the dataset at
hand.

Parallel Efficiency of RootDigger is acceptable, but could be further improved.
Currently, it seems that losses in efficiency are largely due to the fact that different
initial search locations require different amounts of time to complete. When this hap-
pens, some of the nodes finish early, and must wait for the remaining nodes to com-
plete their computations. Due to this behavior, the parallel efficiency of RootDigger
is dataset dependent. Fortunately, this behavior generally only manifests itself when
each node has a small number of initial starting positions assigned to it. When this
is the case, small variations in runtime are not given a chance to “average out” over

Fig. 9  Beetles dataset analyzed without an outgroup. LWR is the Likelihood weight ratio of placing a root on
the branch. The true root branch is indicated in red

Fig. 10  BeetlesHomogeneous dataset analyzed without an outgroup. LWR is the Likelihood weight ratio of
placing a root on the branch. The true root branch is indicated in red

Table 3  Table of empirical datasets used for validation and results

RD distance and IQ distance are the average topological distances over 100 runs from the inferred root to the true root
normalized by the number of nodes (both tips and internal nodes). Similarly for MAD the distance is also normalized by the
number of nodes but only 1 iteration was performed
a Averaged over 100 independent executions
b In early stop mode
c In search mode
d Results obtained using UNREST (without rate categories)

Dataset RD distanceabc IQ distancea MAD distance

DS1 0.000 0.000 0.000

DS2 0.075 0.000 0.000

DS3 0.002 0.004 0.025

DS4 0.038 0.005 0.003

DS5 0.000 0.000 0.000

DS6 0.031 0.015 0.000

DS7 0.000d 0.000 0.000

DS8 0.158 0.000 0.000

Page 16 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

Table 4  Table of empirical datasets used for validation and results

Search and exhaustive times are for the respective modes of RootDigger
a Averaged over 100 independent executions
b In early stop mode
c In search mode
d Time obtained with UNREST+G4 (with rate categories)

Dataset Search timeab IQ-TREE timeac Exhaustive time MAD time

DS1 8.1m 48m 340m 0.00m

DS2 24m 114m 554m 0.00m

DS3 2.5m 1.5m 123m 0.02m

DS4 0.4m 0.4m 45m 0.00m

DS5 6.8m 25m 162m 0.00m

DS6 0.2m 1.5m 7m 0.00m

DS7 167md 327m 441m 0.00m

DS8 4.8m 19.2m 81m 0.00m

Fig. 11  Effect of early stopping on results. Dataset is SpidersMitocondrial and has the largest observed
difference of LWR between with and without early stopping

Page 17 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

many initial starting positions. In contrast, when a dataset is large with respect to the
number of taxa, the number of initial starting positions increases and consequently
the average time to complete computational work per node converges to an average
amount. Nonetheless, RootDigger could benefit from a heuristic method to intel-
ligently assign initial search locations to nodes.

Conclusions
In Huelsenbeck [16], it was shown that the prior probability of a root placement on a
sample tree did not have a strong signal when using a non-reversible model of character
substitution. While performing our verification of RootDigger using empirical data,
we found that this was often not the case. For example on the AngiospermsCDS12 data-
set (see Fig. 6), we found a clear signal for the root placement, both with and without the
outgroup.

Even in cases when the signal was not as strong, for example SpidersMitochondrial
(see Fig. 4), there is a substantially stronger signal for root placement than the results
in Huelsenbeck [16] would suggest we should obtain with this kind of analysis (which
is to say, analysis using a non-reversible model). Those results in Huelsenbeck would
suggest that we would essentially not be able to recover any signal at all. Instead, the
signal appears to be moderately strong, at least most of the time. The one exception
to this is the ficus dataset, which showed at least marginal support for the root on
nearly all branches of the tree. We suspect that this is due to Huelsenbeck perform-
ing the analysis on a 4 taxon tree with the distantly related taxa frog, bird, mouse, and
human. By only using 4 distantly related taxa, the rate matrix is less constrained by
the data present, which may lead to over-fitting. In contrast, for “localized clades” we
believe that we have shown that the methods presented here will typically produce a

Fig. 12  Plot depicting parallel efficiency, which is log nodes vs log speedup. Trials were run on 1, 2, 4, 8, 16,
and 32 nodes with 16 threads per node using DS7 in exhaustive mode with early stopping turned off. The
parallel efficiency ranges from 0.94 on 2 nodes to 0.50 on 32 nodes

Page 18 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

clear signal for the rooting of a tree, and when they do not we can identify such situa-
tions with the use of RootDigger’s exhaustive search mode.

Going forward with RootDigger, there are several developments that would be
useful. One of these is the support for additional models. Currently, we only support
the most complex model UNREST, but in the future it might be useful to support
less complex models, such as the Lie group models described in Woodhams [24]. In
particular, models with fewer parameters are generally regarded as being less prone to
over-fitting, which might lead to a better assessment of the true root location.

In addition to more models, other data types could be supported, in particu-
lar amino acid (AA) data. In this work, we decided to not use AA data as it would
increase the number of free parameters from 12 for DNA data to 380 for AA. Given
this number, we suspect that it is too prone to over-fitting to be useful, but this has
never been investigated.

Finally, there are a few parameters that are not part of the model that could be heu-
ristically set in a less naïve way. These parameters include the number of initial can-
didate roots in the search mode and the number of roots to fully optimize during
each step of the search mode. In this work these parameters were performing well on
simulations, but better results could possibly be obtained via an adaptive strategy.

As mentioned in the discussion, the parallel efficiency of RootDigger could be
improved using either of two techniques: Heuristically assigning initial search loca-
tions to nodes; or some dynamic scheduling of initial search locations to compute
nodes. In the first technique, we attempt to estimate how long each root would take
in relative terms, and then assign the initial search locations in such a way as to better
balance the computational load. Traditionally, this can be quite difficult to do effec-
tively, as the heuristic will often need to be finely tuned, which can cause degraded
performance on atypical datasets. Alternatively, the initial search locations can
be assigned dynamically. In this case, the initial search locations are passed out on
demand, when a node has no computational work to conduct. From this point, it is
not clear which method would perform better, and both should be investigated.

Availability and requirements
Project name: RootDigger Project home page: https://​www.​github.​com/​compu​
tatio​ns/​root_​digger Operating system(s): Linux Programming language: C++ Other
requirements: Bison/Flex, and optionally GNU Scientific library. License: MIT Any
restrictions to use by non-academics: None.

Abbreviations
AA: Amino acid; (L-)BFGS(-B): (Limited memory) Broyden–Fletcher–Goldfarb–Shanno (bounded); DNA: Deoxyribonucleic
acid; LWR: Likelihood weight ratio; MAD: Minimal ancestral deviation; MP:: Message passing interface; MSA: Multiple spe-
cies alignment; OpenMP: Open multi-processing.

Acknowledgements
The Authors would like to thank the fellow members of the Exelixis Lab at HITS: Pierre Barbera, Lucas Czech, Alexey
Kozlov, Benoit Morel, and Sarah Lutteropp for their valuable advice in general. Additionally, the authors gratefully
acknowledge the support of the Klaus Tschira Foundation. Finally, we would like to thank a reviewer for their very helpful
suggestions and comments.

https://www.github.com/computations/root_digger
https://www.github.com/computations/root_digger

Page 19 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225 	

Authors’ contributions
BB designed much of RootDigger, wrote the all of the code, designed and ran the experiments, and wrote the paper.
AS contributed to the design of RootDigger, and contributed to the editing of the paper. All authors have read and
approved this manuscript.

Funding
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement No 764840. Additionally this work was funded by the Klaus Tschira
Foundation. The funding sources had no influence on topic choice, experimental design, analysis or interpretation of the
results in this paper.

Availability of data and materials
The datasets analysed during the current study are available in the root_digger_exp repository, https://​github.​
com/​compu​tatio​ns/​root_​digger_​exp.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. 2 Institut
für Theoretische Informatik, Karlsruhe Institute of Technology, Karslruhe, Germany.

Received: 5 October 2020 Accepted: 1 January 2021

References
	1.	 Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating

maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.
	2.	 Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformat-

ics. 2014;30(9):1312–3.
	3.	 Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol.

1981;17(6):368–76.
	4.	 Dunn CW, Giribet G, Edgecombe GD, Hejnol A. Animal phylogeny and its evolutionary implications. Annu Rev Ecol

Evol Syst. 2014;45(1):371–95.
	5.	 Battistuzzi FU, Filipski A, Hedges SB, Kumar S. Performance of relaxed-clock methods in estimating evolutionary

divergence times and their credibility intervals. Mol Biol Evol. 2010;27(6):1289–300.
	6.	 Holland BR, Penny D, Hendy MD. Outgroup misplacement and phylogenetic inaccuracy under a molecular clock—a

simulation study. Syst Biol. 2003;52(2):229–38.
	7.	 Baele G, Li WLS, Drummond AJ, Suchard MA, Lemey P. Accurate model selection of relaxed molecular clocks in

Bayesian phylogenetics. Mol Biol Evol. 2012;30(2):239–43.
	8.	 Yap VB, Speed T. Rooting a phylogenetic tree with nonreversible substitution models. BMC Evol Biol. 2005;5(1):2.

https://​doi.​org/​10.​1186/​1471-​2148-5-2.
	9.	 Morel B, Kozlov AM, Stamatakis A, Szöllősi GJ. GeneRax: a tool for species tree-aware maximum likelihood based

gene tree inference under gene duplication, transfer, and loss. BioRxiv. 2019. https://​doi.​org/​10.​1101/​77906​6v1.
	10.	 Gatesy J, DeSalle R, Wahlberg N. How many genes should a systematist sample? Conflicting insights from a phylog-

enomic matrix characterized by replicated incongruence. Syst Biol. 2007;56(2):355–63.
	11.	 Yang Z. Computational molecular evolution. Oxford: OUP; 2006.
	12.	 Tria FDK, Landan G, Dagan T. Phylogenetic rooting using minimal ancestor deviation. Nat Ecol Evol. 2017;1(1):1–7.
	13.	 Mai U, Sayyari E, Mirarab S. Minimum variance rooting of phylogenetic trees and implications for species tree recon-

struction. PLoS ONE. 2017;12(8):e0182238.
	14.	 Li WH, Tanimura M. The molecular clock runs more slowly in man than in apes and monkeys. Nature.

1987;326(6108):93.
	15.	 Steiper ME, Young NM. Primate molecular divergence dates. Mol Phylogenet Evol. 2006;41(2):384–94.
	16.	 Huelsenbeck JP, Bollback JP, Levine AM. Inferring the root of a phylogenetic tree. Syst Biol. 2002;51(1):32–43.
	17.	 Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics.

2003;19(12):1572–4.
	18.	 Emms DM, Kelly S. STRIDE: species tree root inference from gene duplication events. Mol Biol Evol.

2017;34(12):3267–78.
	19.	 Strimmer K, Rambaut A. Inferring confidence sets of possibly misspecified gene trees. Proc R Soc Lond Ser B Biol Sci.

2002;269(1487):137–42. https://​doi.​org/​10.​1098/​rspb.​2001.​1862.
	20.	 Gough B. GNU scientific library reference manual. 3rd ed. Bristol: Network Theory Ltd.; 2009.
	21.	 Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer AJ, Nguyen LT, Minh BQ, et al. The phylogenetic likelihood library.

Syst Biol. 2015;64(2):356–62.

https://github.com/computations/root_digger_exp
https://github.com/computations/root_digger_exp
https://doi.org/10.1186/1471-2148-5-2
https://doi.org/10.1101/779066v1
https://doi.org/10.1098/rspb.2001.1862

Page 20 of 20Bettisworth and Stamatakis ﻿BMC Bioinformatics (2021) 22:225

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	22.	 Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained
optimization. ACM Trans Math Softw (TOMS). 1997;23(4):550–60. https://​doi.​org/​10.​1145/​279232.​279236.

	23.	 Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol. 1994;39(1):105–11. https://​doi.​org/​10.​1007/​
BF001​78256.

	24.	 Woodhams MD, Fernández-Sánchez J, Sumner JG. A new hierarchy of phylogenetic models consistent with hetero-
geneous substitution rates. Syst Biol. 2015;64(4):638–50.

	25.	 OpenMP Architecture Review Board. OpenMP Application Program Interface Version 4.5; 2015. Available from:
https://​www.​openmp.​org/​wp-​conte​nt/​uploa​ds/​openmp-​4.5.​pdf.

	26.	 Mark Adler. A Massively Spiffy Yet Delicately Unobtrusive Compression Library (Also Free, Not to Mention Unencum-
bered by Patents).

	27.	 Minh BQ, Schmidt H, Chernomor O, Schrempf D, Woodhams M, Haeseler A, et al. IQ-TREE 2: new models and effi-
cient methods for phylogenetic inference in the genomic era. bioRxiv. 2019. https://​doi.​org/​10.​1101/​84937​2v1.

	28.	 Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol.
2016;33(6):1635–8.

	29.	 Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence evolution. Mol Biol Evol.
2009;26(8):1879–88.

	30.	 Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981;53(1):131–47.
	31.	 Piel W, Chan L, Dominus M, Ruan J, Vos R, Tannen V. Treebase v. 2: a database of phylogenetic knowledge. e-Bio-

sphere. London; 2009.
	32.	 Vos RA, Balhoff JP, Caravas JA, Holder MT, Lapp H, Maddison WP, et al. NeXML: rich, extensible, and verifiable repre-

sentation of comparative data and metadata. Syst Biol. 2012;61(4):675–89.
	33.	 Vasilikopoulos A, Balke M, Beutel RG, Donath A, Podsiadlowski L, Pflug JM, et al. Phylogenomics of the superfamily

Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Mol Phylo-
genet Evol. 2019;135:270–85.

	34.	 Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable, and user-friendly tool for maximum
likelihood phylogenetic inference. bioRxiv. 2019. https://​doi.​org/​10.​1101/​447110.

	35.	 Ran JH, Shen TT, Wang MM, Wang XQ. Phylogenomics resolves the deep phylogeny of seed plants and indi-
cates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc R Soc B Biol Sci.
1881;2018(285):20181012.

	36.	 Christin PA, Spriggs E, Osborne CP, Strömberg CAE, Salamin N, Edwards EJ. Molecular dating, evolutionary rates, and
the age of the grasses. Syst Biol. 2014;63(2):153–65.

	37.	 Cruaud A, Rønsted N, Chantarasuwan B, Chou LS, Clement WL, Couloux A, et al. An extreme case of plant—insect
codiversification: figs and fig-pollinating wasps. Syst Biol. 2012;61(6):1029–47.

	38.	 Leduc-Robert G, Maddison WP. Phylogeny with introgression in Habronattus jumping spiders (Araneae: Salticidae).
BMC Evol Biol. 2018;18(1):24. https://​doi.​org/​10.​1186/​s12862-​018-​1137-x.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/279232.279236
https://doi.org/10.1007/BF00178256
https://doi.org/10.1007/BF00178256
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1101/849372v1
https://doi.org/10.1101/447110
https://doi.org/10.1186/s12862-018-1137-x

	Root Digger: a root placement program for phylogenetic trees
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	The Software
	Implementation
	Results
	Experimental design
	Simulations
	Empirical Data

	Effect of early stopping on result
	Parallel efficiency

	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	References

