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A B S T R A C T

Objective/Background: Totally blind individuals are highly likely to suffer from Non-24-Hour Sleep-
Wake Disorder due to a failure of light to reset the circadian pacemaker in the suprachiasmatic nuclei.
In this outpatient case series, we investigated whether daily caffeine administration could entrain the
circadian pacemaker in non-entrained blind patients to alleviate symptoms of non-24-hour sleep–
wake disorder.
Patients/Methods: Three totally blind males (63.0 ± 7.5 years old) were studied at home over ~4 months.
Urinary 6-sulphatoxymelatonin (aMT6s) rhythms were measured for 48 h every 1–2 weeks. Partici-
pants completed daily sleep–wake logs, and rated their alertness and mood using nine-point scales every
~2–4 h while awake on urine sampling days. Caffeine capsules (150 mg per os) were self-administered
daily at 10 a.m. for approximately one circadian beat cycle based on each participant’s endogenous
circadian period τ and compared to placebo (n = 2) or no treatment (n = 1) in a single-masked manner.
Results: Non-24-h aMT6s rhythms were confirmed in all three participants (τ range = 24.32–24.57 h). Daily
administration of 150 mg caffeine did not entrain the circadian clock. Caffeine treatment significantly
improved daytime alertness at adverse circadian phases (p < 0.0001) but did not decrease the occur-
rence of daytime naps compared with placebo.
Conclusions: Although caffeine was able to improve daytime alertness acutely and may therefore provide
temporary symptomatic relief, the inability of caffeine to correct the underlying circadian disorder means
that an entraining agent is required to treat Non-24-Hour Sleep–Wake Disorder in the blind appropriately.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The circadian pacemaker in the suprachiasmatic nuclei (SCN)
of the hypothalamus is synchronized daily to the 24-h light–dark
cycle primarily via blue-light-sensitive melanopsin-containing retinal
ganglion cells that project to the SCN via the retinohypothalamic
tract (RHT) [1]. Most totally blind individuals have a nonfunc-
tional RHT, and thus the circadian clock cannot be entrained by
light and reverts to its intrinsic non-24-h period, leading to dis-
ruption of circadian rhythms, including melatonin, cortisol, sleep–
wake cycles, alertness, and performance [2–4]. The resultant clinical
disorder, Non-24-Hour Sleep–Wake Disorder (N24HSWD), is char-
acterized by cyclic episodes of poor nighttime sleep, an increased

frequency and duration of daytime sleep, and disruptions in daytime
alertness and performance [3,4]. While we and others have shown
that daily melatonin administration can entrain the circadian clock
in blind individuals [5,6], we aimed to investigate whether caf-
feine could perform this role. Although a direct phase-shifting
effect of caffeine was not demonstrated in one study in mammals
[7], several in vitro studies suggest that caffeine can phase-shift
the clock [8–11] with a phase response curve similar to that of
light [12,13]. We therefore hypothesized that morning caffeine
administration (CT1-4) could induce the daily phase advance re-
quired to reset the circadian clock in the majority of totally blind
people [14], and have direct stimulant benefits on daytime alert-
ness and performance [15,16] while minimizing the negative impact
on nighttime sleep.

2. Materials and methods

Three blind males (63.0 ± 7.5 years) who were habitual caffeine
users (6–15 cups of tea/coffee per day) and had no light perception
according to self-report (n = 2; S84 and S85) or no eyes (n = 1; S33)
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were studied at home. All participants were healthy and drug-free
(Supplementary Table S1). Sequential urine samples were collected
every ~4 h (~8 h overnight) for 48 h every 1–2 weeks and assayed for
6-sulphatoxymelatonin (aMT6s), the major urinary metabolite of
melatonin and a reliable marker of the circadian clock, by radioim-
munoassay [17] (Stockgrand Ltd., University of Surrey, Guildford, UK).
Each participant was studied for at least two circadian beat cycles
based on circadian period (τ) estimates over four weeks of screen-
ing (Supplementary Materials). The period of the aMT6s rhythm was
assessed using a regression analysis [2] (Origin 8.5 Pro, OriginLab
Corporation, Northampton, MA, USA) weighted by the inverse of
the squared standard error of the cosinor-derived acrophase (peak)
times. Participants completed daily sleep–wake logs (Supplementa-
ry Materials) [3,18]. Alertness and mood were assessed using four
nine-point scales (alert–sleepy, cheerful–miserable, calm–tense, and
depressed–elated) every ~2–4 h while awake on urine sampling
days [4].

Caffeine (150 mg fast-release preparation; Martindale Pharma-
ceuticals, UK) was administered daily at 10 a.m. uninterrupted for
approximately one circadian beat cycle in a single-masked design.
Caffeine treatment was scheduled to be initiated at CT1-4 at or just
after each participant reached a normal circadian phase (ie, aMT6s
peak = 04:30 a.m.). Placebo was also administered in S33 and S85
for approximately one circadian beat cycle split before and after caf-
feine treatment (see Fig. 1); S84 received caffeine only. The study
was approved by the University of Surrey Ethics Committee (EC/
2003/144/SBMS). Written informed consent was obtained prior to
the study and participants were informed that they were free to
withdraw at any time.

The mean and standard deviation of each sleep–wake and mood
parameter were calculated for each condition for each participant
(PROC MEANS, SAS v9.2; SAS Institute, Cary, NC, USA). Statistically
significant differences between conditions were calculated using the
Wilcoxon Rank-Sum Test (PROC NPAR1WAY, SAS v9.2). The Stu-
dents’ t-test was used to assess whether τ differed significantly from
24 h, whether participants were entrained to the 24-h day, and to
compare τ between conditions. A general linear model (PROC GLM
in SAS 9.2) was used to compute statistical differences between
treatment conditions (placebo/no treatment vs. caffeine) across
all individuals with respect to circadian phase [calculated as the
difference between the midpoint of the sleep episode (for sleep–
wake parameters) or the time of the mood assessment (for alertness/
mood) and the aMT6s acrophase divided by the estimated circadian
period and multiplied by 360 (degrees), in 45° bins] (α < 0.05 after
Bonferroni correction). Post-hoc comparisons for significant
treatment-by-phase interactions were conducted using PROC
MULTTEST (SAS v9.2).

3. Results

No participant entrained to 24 h during the caffeine treatment
(Fig. 1) and τ did not differ from placebo/no treatment based on
overlap of the regression 95% confidence intervals (CIs). The non-
24-h circadian periods (mean ± 95% CI) over the entire study were
24.44 ± 0.02 h (S33), 24.32 ± 0.01 h (S84), and 24.57 ± 0.01 h (S85),
equivalent to beat cycle lengths of 56, 76, and 43 days, respective-
ly. Post-hoc analyses of these circadian periods showed that caffeine
treatment was given for 70% (39 days), 111% (84 days), and 91%
(39 days), and placebo/no treatment was given for 159% (89 days),
74% (56 days), and 205% (88 days) of the full circadian cycle for S33,
S84, and S85, respectively. Furthermore, when all aMT6s acrophases
obtained prior to the caffeine condition were included in a post-
hoc regression, the τ estimates were 24.41 ± 0.07 h, 24.25 ± 0.06 h,
and 24.51 ± 0.06 h for S33, S84, and S85, respectively, resulting in
the first dose of caffeine being given at ~CT 15.50 for S33, ~CT 21.25
for S84, and ~CT 6.75 for S85 rather than CT1-4 as targeted.

The direct effects of caffeine on sleep were variable across par-
ticipants, with shorter sleep latencies in two participants compared
with placebo/no treatment (p = 0.007 and 0.02 for S33 and S85,
respectively), but longer latencies during caffeine in S84 (p = 0.01)
(Table 1). Nighttime and 24-h sleep duration were significantly
different across all three conditions for S33 (p = 0.02 for both).
Post-hoc comparisons showed significant differences between the
no treatment and placebo conditions (p = 0.03 and 0.01, respective-
ly): total sleep amounts were lower during no treatment, which
coincided with an adverse circadian phase (Fig. 1A). Although
sleep offset was significantly different across conditions for S33
(p = 0.03), post-hoc comparisons revealed no pairwise differences
(Table 1).

As expected, significant circadian rhythms were observed in
nighttime awakening duration, nighttime sleep duration (Fig. 1D),
sleep offset (Fig. 1E), number of naps, and duration of naps (Fig. 1F)
(both placebo/no treatment and caffeine, all p < 0.03) and sleep
onset and sleep quality (caffeine only, p = 0.0006 and 0.0005,
respectively), but no significant main effect of treatment or
treatment-by-phase interaction was observed for any sleep–wake
parameters.

Alertness and mood changes were not consistent across partici-
pants (Table 1); caffeine improved alertness and cheerfulness in S33,
and S84 and S85 rated themselves calmer during caffeine treat-
ment (Table 1). A significant circadian rhythm was observed in alert–
sleepy scores for both the placebo/no treatment (p = 0.04) and
caffeine (p = 0.0004) conditions when averaged across partici-
pants, with peak sleepiness occurring during the biological night
at the aMT6s acrophase (Fig. 1G). There was a significant group-
alerting effect of caffeine (p = 0.0005), with interaction effects at 135°
(p = 0.03) and 225° (p = 0.002), equivalent to ~1.30 p.m. and ~7.30
p.m., respectively, under normal entrainment (ie, sleep at night,
awake during the day); caffeine significantly increased alertness
when participants were awake at these adverse circadian phases.
A similar trend was observed for the circadian rhythm in cheerful–
miserable assessments (p = 0.07); participants rated themselves more
cheerful during caffeine treatment. No significant circadian rhythms
were observed in the calm–tense or depressed–elated scores.

4. Discussion

Daily administration of 150 mg of caffeine was unable to entrain
the non-24-h rhythms in any of the three totally blind individuals
studied. These results indicate that a daily 150 mg dose of caffeine
at 10.00 a.m. is not effective as a circadian entraining agent. Our
results do show, however, that the morning administration of
caffeine directly mitigates some of the negative impact of non-
entrained rhythms on daytime alertness and mood, without
addressing the underlying circadian disorder.

The strength of this study is that the circadian effects of caf-
feine were studied in non-entrained individuals and in the absence
of light, considered a gold-standard approach for assessing circa-
dian rhythm entrainment. Although we cannot exclude the possibility
that caffeine had a small resetting effect at some phases of admin-
istration that exceeded the limit of detectability in this study, we
can state definitively that caffeine at this dose and duration of
administration did not entrain the circadian clock, which was the
primary aim of the experiment, as evidenced by a failure to observe
a change in the intrinsic circadian period during the caffeine phase
of the protocol. While the study was limited to a small number of
cases, the distinct non-entrained phenotype would have permit-
ted clear evidence of entrainment, if present, at this single dose
and preparation even with this limited number of participants.
The response to other doses may vary, however, and we did not
screen for interindividual differences in caffeine sensitivity
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Fig. 1. (A–C) Raster double plots of the self-reported sleep times (horizontal black bars), including naps, in totally blind participants S33 (A), S84 (B), and S85 (C). Sequen-
tial study days are shown on the ordinate and clock time is double-plotted on the abscissa. Circadian acrophases, which were estimated from cosinor fits to 48-h profiles of
aMT6s rhythms, are superimposed (open circles) along with a best-fit regression line (dashed lines) to illustrate the intrinsic non-24-h period. The size of the circle is in-
versely proportional to the standard error of the circadian phase estimate; the best-fit regression was weighted based on these standard errors. Circadian period was estimated
for each condition for each participant. S33: no treatment τ = 24.49 ± 0.21 h; placebo τ = 24.28 ± 0.27 h; caffeine τ = 24.46 ± 0.11 h. S84: no treatment τ = 24.25 ± 0.06 h; caf-
feine τ = 24.35 ± 0.02 h. S85: no treatment τ = 24.51 ± 0.10 h; placebo t = 24.59 ± 0.03 h; caffeine τ = 24.59 ± 0.03 h. (D–G) Nighttime sleep duration (D), sleep offset (E), and
daytime nap duration (F) plotted as a function of beat cycle phase and alert–sleepy scales (G) plotted as a function of circadian phase during the placebo/no treatment
(gray circles) and caffeine (black squares) arms of the study across all three participants. Each parameter was normalized in each participant as the deviation from the mean
(y-axis; 45° bins), where 0° represents the time at which the midpoint of sleep (for D–F) or the rating assessment (G) coincided with the acrophase of the aMT6s rhythm
(x-axis) as a function of the treatment condition (placebo/no treatment vs. caffeine). Significant circadian rhythms are indicated by filled symbols and nonsignificant rhythms
by open symbols. Phase bins in which caffeine was significantly different from the placebo/no treatment condition are indicated (*).
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(eg, ADORA2A gene polymorphisms [19,20]). Despite exposure to
multiple additional non-photic time cues (eg, activity, meal timing,
exercise, and alcohol) [21,22], there was also no evidence of en-
trainment to the 24-h day during no treatment and placebo
conditions, consistent with our previous work [2,5,23].

Although we attempted to initiate caffeine treatment at the same
circadian phase across participants, post-hoc analysis of the initial
treatment phase showed that it was not consistent (Fig. 1). Admin-
istering caffeine for most or all of a circadian beat cycle ensured that
caffeine was administered during both the advance and delay phases
of any theoretical phase response curve, however, thereby mitigat-
ing this confound. Even among participants who did not receive
treatment for a full beat cycle (S33 and S85), all participants re-
ceived treatment for almost all the phase advance portion of the
phase response curve. If the caffeine phase response curve is similar
to that of light as we assumed [12,13], then we would expect to see
evidence of phase advances, such as a shortened circadian period,
even in the absence of full entrainment, which we did not observe
[23]. In addition, although we used sleep–wake logs rather than
actigraphy recordings to measure nocturnal sleep and daytime
naps, prior studies in blind individuals [3,18] have reported a good
correlation between the two methods to measure the timing and
duration of the sleep episode (r = 0.48–0.88) [18].

In conclusion, daily administration of 150 mg caffeine failed to
entrain the circadian pacemaker in totally blind patients. Caffeine
was able to increase alertness and mood directly, however, and may
therefore be a useful adjunct therapy to provide temporary relief
for the sleepiness symptoms of N24HSWD in the absence of
appropriate treatment with a circadian regulator.
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