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Abstract. Monoclonal antibody technology plays a vital role 
in biomedical and immunotherapy, which greatly promotes the 
study of the structure and function of genes and proteins. To 
date, monoclonal antibodies have gone through four stages: 
murine monoclonal antibody, chimeric monoclonal antibody, 
humanised monoclonal antibody and fully human monoclonal 
antibody; thousands of monoclonal antibodies have been used 
in the fields of biology and medicine, playing a special role 
in the pathogenesis, diagnosis and treatment of disease. In 
this review, we compare the advantages and disadvantages of 
hybridoma technology, phage display technology, ribosome 
display technology, transgenic mouse technology, single B cell 
monoclonal antibody generation technologies, and forecast 
the promising applications of these technologies in clinical 
medicine, disease diagnosis and tumour treatment.
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1. Introduction

Tumours are a series of diseases caused by uncontrolled cell 
proliferation mainly due to a change in genes. A tumour often 
forms in a local site and invades the surrounding tissues so 
as to induce metastasis (1). As the most prevalent disease in 
the world, it arises under the synergistic and sequential effects 
of multiple oncogenic factors such as chemical carcinogens, 
ionising radiation, viruses and bacteria, which can induce the 
transformation of proto‑oncogenes to oncogenes and the inac‑
tivation of tumour‑suppressor genes (2,3). Under the influence 
of these factors, alterations in apoptosis regulatory genes and 
DNA repair genes develop, accompanied by abnormal expres‑
sion levels of cellular proteins (4).

According to the cellular characteristics, tumour 
morphology, treatment method and degree of harm to the 
body, tumours can be divided into: i) solid tumours which 
can be detected by clinical examination such as X‑ray, CT 
scan, ultrasound, or palpation (5,6), and ii) non‑solid tumours 
which are mainly present in the blood circulation and not 
visible to the naked eye or on imaging (7). In general, 
non‑solid tumours have a wide distribution of tumour cells 
in the blood and bone marrow, and thus cannot be removed 
surgically, but only by chemotherapy (8). In contrast, the 
majority of solid tumours can be treated with a wider range 
of strategies, such as surgery, chemotherapy, radiotherapy, 
immunotherapy, tumour biotherapy, oncolytic virotherapy, 
target treatment, hormone therapy, minimally invasive 
interventional therapy, microwave therapy, radiofrequency 
therapy and cryotherapy (9,10). Among these treatments, 
immunotherapy, characterised as having high specificity, 
precise targeting capability, powerful antitumour effects 
and low side effects, relies on activation of the patient's own 
immune system to kill tumour cells which makes the target 
different from other treatments (surgeries, chemotherapy, 
radiotherapy and targeted therapies), and shows bright and 
unparalleled prospects due to the unusual and miraculous 
effects (11).
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As the most prominent component of immunotherapy, 
monoclonal antibodies (mAbs) are highly homogeneous 
antibodies produced by a single B‑cell clone and directed 
only against a specific antigenic epitope (12). While it has 
the advantages of high purity, high sensitivity, high speci‑
ficity, low cross‑reactivity and low cost of preparation, some 
disadvantages also exist, such as its production and prepa‑
ration requiring certain technology (13). However, with the 
optimisation of preparation techniques and the production 
of numerous mAb drugs (such as abciximab and rituximab) 
over the years, the scope of application of mAbs has gradu‑
ally broadened, and they have been widely used in immune 
checkpoint therapy, targeted tumour therapy, radioimmuno‑
therapy and near‑infrared photoimmunotherapy (NIR‑PIT) 
to date, specifically showing great development prospect in 
tumour therapy (9,14,15). As mAb research can be applied 
to many other areas of technical research, it not only drives 
the research process of full human mAb preparation, but 
also perfectly demonstrates its unparalleled value in tumour 
control and treatment research, under the efforts of countless 
researchers.

In view of these factors, this review will focus on the rela‑
tively mature techniques for the preparation of mAbs and the 
application of mAbs to demonstrate the importance of mAb 
research. This review reviewed 242 articles published mainly 
between 2005 and 2021, including the PubMed, Excerpt 
Medica Database, Medline, OVID and the Cochrane Library 
databases, by searching the key word monoclonal antibody, 
immunotherapy or tumour.

2. Immunotherapy and antibodies

Tumour immunotherapy is a therapy used to restore the 
normal antitumour immune response of the body by restarting 
and maintaining the tumour immune cycle for tumour control 
and clearance, which has a major impact on the treatment of 
metastatic tumours and has altered the standards of care for 
many types of tumours (16). As its indispensable components, 
antibodies are specific binding immunoglobulins produced 
by plasma cells derived from B lymphocytes or memory cells 
in response to antigen stimulation by the body's immune 
system (17,18). Its functions refer to combining with antigens 
and effectively removing foreign bodies such as invading 
microorganisms and parasites (19).

In general, antibodies can be divided into polyclonal 
antibodies and mAbs. Polyclonal antibodies are produced 
from multiple B cell clones after the body is stimulated by a 
variety of antigenic determinants, which can be regarded as 
a mixture of multiple mAbs (20). In contrast, mAbs are the 
antibodies that can target the particular antigen determining 
cluster, characterised as high specificity, strong binding 
force, high purity, low cost and mass production (18). As a 
kind of highly specific and homologous antibody, the mAb 
was first produced by Köhler and Milstein in 1975 with 
the use of the hybridoma technique, which used the HAT 
culture medium to screen for hybridoma cells that could 
grow steadily, recognise a particular antigenic epitope and 
produce mAbs (21). In 1982, Levy of the Stanford Medical 
Centre in the US prepared a unique mAb against B‑cell 
lymphoma; the patient's condition was alleviated and the 

tumour disappeared after treatment with this unique anti‑
body. This was the first time that mAbs had been used in 
clinical treatment (22), and showed promise for applica‑
tion as targeted therapies for tumours, inflammation, and 
cardiovascular, autoimmune and infectious diseases. Due 
to the great contribution that hybridoma technology has 
made to the field of life sciences, Milstein and Köhler 
were awarded the Nobel Prize in Medicine and Physiology 
in 1984 (14), which indicated the people's recognition of 
mAbs and how optimistic people are about their prospects 
to some extent. Soon after this, orthoclone was produced by 
Ortho Biotech, which was also named muromomab‑CD3. 
This was approved by the food and drug administration 
(FDA) as the first mAb drug in 1986 and was used to inhibit 
acute rejection of kidney transplantation and treat human 
diseases (23), opening a new era of mAb therapy.

To date, mAbs have undergone different stages of 
optimisation and development, including murine mAbs, 
humanised mAbs and fully human mAbs (24). The advent 
of hybridoma technology has made possible the implemen‑
tation of the large‑scale preparation of uniform murine 
mAbs (25). Compared with the polyclonal antibodies studied 
in the past, murine mAbs showed a huge difference in terms 
of specificity and consistency, as even the different batches 
of polyclonal antibodies prepared with the same antigen 
cannot guarantee their consistency but perfectly consis‑
tent murine mAbs can be produced continuously once the 
hybridoma is successfully prepared (21,26). Nevertheless, 
the murine mAbs, as the heterologous protein, may lead 
to an immune response and the production of the human 
anti‑murine antibody (HAMA) in vivo which can in turn 
clear the murine mAbs, resulting in the emergence of auto‑
immune diseases and an ultimate reduction in therapeutic 
effectiveness (27,28).

The humanised mAb refers to the murine mAb recon‑
structed by gene cloning and DNA recombination (29). The 
construction forms the constant parts of mAb (the CH and CL 
regions) or all parts of the mAb encoded by human antibody 
genes, leading to the basic preservation of the affinity and 
specificity of the original murine mAb and a reduction of its 
heterology (30). As the most widely used mAb, the advantage 
of humanised mAbs is that they can overcome the human 
anti‑murine antibody reaction, preventing the rapid elimina‑
tion of mAbs as foreign proteins by the immune system, and 
improving the biological activity of mAbs (31).

As the ideal antibody for treatment, fully human mAbs 
have the humanised V and C regions (29). With the use of 
transgenes, the transchromosome technique or some other 
technique, all of the genes encoding human antibodies can 
be transferred into genetically engineered animals with 
their antibody genes deleted, so that the animals can express 
human antibodies and achieve the goal of full humanisa‑
tion (32). At present, the human hybridoma technique, the 
EBV transformation of B lymphocytes, phage display, the 
transgenic mouse technique and the preparation of a single 
B cell antibody can all be used to produce fully human 
mAbs (33‑35) (Fig. 1). Among them, mAbs obtained by 
transgenic mouse technology are relatively complete, and 
those obtained by phage display technology are generally 
incomplete (35).
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3. Monoclonal antibody preparation techniques and their 
applications

To date, many relatively mature mAb preparation technologies, 
e.g. the hybridoma technique, the phage display technique, 
the transgenic mouse technique, the ribosome display tech‑
nique, and single B cell antibody preparation techniques, can 
be selected depending on the characteristics of the desired 
antibody (Fig. 2).

Hybridoma technique
Development history. As the earliest technology used to 
produce mAbs, the hybridoma technique, also known as the 
lymphocytic hybridoma technique, is developed from somatic 
cell fusion technology, which enables the realisation of the 
large‑scale preparation of the uniform murine mAbs (26). It 
was first invented by Köhler and Milstein in 1975 to produce 
hybridoma cells through the fusion of mouse myeloma cells 
and immunised animal spleen cells, which have the ability 
to reproduce endlessly and secrete highly specific antibodies 
that can recognise specific antigens‑mAbs (21). As they did 
not choose to patent the hybridoma technique, it is allowed to 
be used in academia and the pharmaceutical industry, leading 
to potential future treatments for a range of diseases including 
tumours (36).

Advantages and disadvantages. Although antibodies produced 
by the hybridoma technique possess attractive advantages, 
such as good specificity, high purity and large‑scale produc‑
tion (25), some defects of murine‑derived antibodies remain 
unavoidable. On the one hand, the low affinity of murine mAbs 

to the Fc fragment on the immunocyte surface, can cause 
light antibody‑dependent cell‑mediated cytotoxicity (ADCC), 
resulting in a mild killing effect on tumour cells (37). In addi‑
tion, the killing effect has a short time in which to take effect 
because of the short half‑life of murine mAbs in the blood (38).

On the other hand, murine mAbs cause immunoge‑
nicity (39) and can further produce HAMA (27), which means 
that the repeated use of murine mAbs can lead to decreased 
efficiency and harm to humans due to allergic reactions (26). 
Additionally, it is not uncommon for patients treated with mAbs 
to produce human anti‑murine immunoglobulin responses, 
possibly due to the immune deficiency associated with certain 
types of tumours (40). Therefore, some early murine mAbs, 
such as the E5 murine mAb, not only failed to achieve the 
desired effect in the treatment, but increased the mortality of 
patients, leading to a period of downturn in the development of 
mAb preparation and mAb treatment (41).

Clinical therapeutic applications. Rituximab, as the first 
lymphoma mAb developed in 1982, was shown to alleviate the 
condition of tumour patients, which raises great hope for the 
use of mAbs in tumour treatment (42). In addition, the first 
mAb drug, anti‑cd3 mAb OKT3, was approved by the US 
FDA to enter the market in 1986; this mAb can alleviate the 
anti‑rejection reaction during organ transplantation (23,34). 
Overall, the mAb drugs produced at that time were murine 
mAbs and rabbit mAbs, which have some clinical draw‑
backs (26). Recently, with the advances in technology, human 
hybridoma technology has been developed as a new mAb 
preparation technology on the basis of mouse hybridoma 
technology and rabbit hybridoma technology, which causes 

Figure 1. Schematic overview of humanization from murine antibodies (blue domains) to fully human antibodies (green domains) and associated suffixes. 
(A) The murine monoclonal antibody. (B) The chimeric monoclonal antibody: V regions are of murine origin, and the rest of the chains are of human origin. 
(C) Humanized monoclonal antibody: only contain the hypervariable segments of murine origin. (D) Human monoclonal. (E) Antibody‑drug conjugate. 
CH, domains of the C region of the heavy chain; CL, C domain of the light chain; VH, V domain of the heavy chain; VL, V domain of the light chain; Fab 
and Fc, fragments resulting from proteolysis.
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the fusion of immunised human B cells and human myeloma 
cells to produce hybrid cells that can divide indefinitely and 
secrete antibodies (26). However, the technology has produced 
a very limited number of multiple myeloma cell lines, has a 
low cell fusion success rate and easily causes the loss of chro‑
mosomes (43).

DNA recombinant antibody technique
Development process. Advances in genetic engineering tech‑
niques facilitate the development of chimeric (murine/human) 
mAbs. With the use of DNA recombination technology, 
chimeric genes consisting of a combination of the Variable (V) 
region gene of murine antibodies and the Constant (C) region 
gene of human antibodies, inserted into the expression vector 
containing the C region of human antibodies, is used to 
express chimeric mAbs which possess a humanised C region 
and heterogeneous V region. The resulting antibody (44) 
causes reduced immunogenicity of the allogenic antibody 
while retaining the ability of the parental antibody to specifi‑
cally bind to the antigen. However, because there is still some 
residual immunogenicity in the FR of V region, HAMA may 
be induced (45). In view of this, primate antibodies produced 
by immunising macaques can be chosen as the heterologous 
antibody to chimerism with the C region, because the V region 
of primate antibodies show few differences to the V region of 
human antigens, thus decreasing the immunogenicity.

Advantages and disadvantages. Compared with murine 
mAbs prepared by the hybridoma technique which are limited 
in clinical application due to their ability to cause HAMA 
reactions in vivo, the chimeric mAbs prepared by DNA recom‑
binant antibody technique can significantly alleviate adverse 
reactions because of an approximately 70% reduction in 
immunogenicity of the heterologous antibody, thus improving 
the curative effect (46). For example, infliximab is capable of 
preventing and reducing inflammation as the chimeric mAb to 
tumour necrosis factor (TNF)‑α in the treatment of rheumatoid 
arthritis (RA) and Crohn's disease (47). In addition, it also has 
the effector functions of human antibodies because of the exis‑
tence of a humanised Fc fraction, which makes the chimeric 
mAb possess more potent complement‑dependent cytotoxicity 
(CDC) and ADCC (48). On the basis of the mechanism, the 
rituximab chimeric anti‑CD20 mAb was developed to treat 
relapsed indolent lymphoma because the cell‑surface antigen 
CD20 is expressed on more than 90% of B‑cell lymphomas 
and chronic lymphocytic leukaemias (49). Abciximab, a 
Fab fragment of a chimeric mAb, functions as a GP IIb/IIIa 
receptor antagonist to significantly decrease the size of coro‑
nary artery aneurysms in children with Kawasaki disease 
by promoting vascular remodelling, and decrease the risk to 
go through early stent thrombosis in diabetic patients with 
ST‑segment elevation myocardial infarction (50,51). In addi‑
tion, basiliximab and cetuximab, serving as chimeric mAb, 

Figure 2. Approaches for the preparation of therapeutic monoclonal antibodies (mAbs). (A) Hybridoma technique. The traditional murine hybridoma technique 
starts by the immune response of mice triggered with the desired antigens. After that, splenocytes are harvested and fused with myeloma cells to produce 
hybridoma cells. After the screening, selected hybridoma cells are used to persistently generate chimeric or humanized monoclonal antibodies. (B) Phage 
display. A human phage‑displayed antibody library is used to select the antigens of interest. After immuno‑positive phage clones screened by ELISA and DNA 
sequences, construction of the mAb is made to help express humanized mAb. (C) Ribosome display. ‘Protein‑ribosome‑mRNA’ complex is constructed to 
help establish the Protein library of phage display by using specificity of antigen‑antibody binding. Following dissociation with the use of EDTA, the acquired 
specific mRNA can help establish the DNA library of the specific antibody by RT‑PCR, which expressed the specific humanized mAb with high affinity. 
(D) Transgenic mouse technique. Similar to the mouse hybridoma technique. (E) The single B cell technique. peripheral blood mononuclear cells (PBMCs) 
are prepared from infected or vaccinated donors so as to isolate suitable B cells by flow cytometry. After that, VH and VL information of each B cell informs 
the generation of human mAbs by RT‑PCR.
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can function to prevent early acute or slow rejection reaction 
after organ or allogeneic hematopoietic stem cell transplan‑
tation so as to treat acute graft‑vs. ‑host disease (52,53), and 
treat different cancers including recurrent and metastatic head 
and neck squamous cell carcinoma and metastatic colorectal 
cancer (54,55), respectively. However, chimeric antibodies can 
partially solve the problem of heterologous protein rejection, 
but they may still induce an HAMA reaction, interfere with 
antibody efficacy and induce a hypersensitivity reaction due 
to the fact that they also contain the murine V region which 
limits their clinical application to some extent (56,57).

Phage display. Phage display techniques can clone the 
peptide‑coding or protein‑coding gene fragment into the appro‑
priate position of the phage shell protein structure (58), so that 
the foreign polypeptide/protein and shell protein are expressed 
in the form of a fusion of each other and then displayed on the 
phage surface as the progeny phage reassembles (59,60). The 
demonstrated polypeptide or protein can maintain a relatively 
independent spatial structure and biological activity, which is 
conducive to the recognition and binding of target molecules, 
providing a way to screen for single‑chain antibodies with 
high specificity and binding ability (61). In theory, as long as 
enough of this type of peptide is expressed in the library, one 
or more phage can bind to these targets.

Development process. Phage display was pioneered by Greg 
Winter and his colleagues (59). In 1985, G.P. Smith developed 
phage display technology (62) based on the research of phage 
biology and molecular biology, which show unique advan‑
tages in virus infection, including HIV infection and tumour 
diagnosis and treatment. Later, in 1987, Geysen et al proposed 
that short peptides containing key amino acid residues can 
mimic the antigenic determinants of proteins and the interac‑
tion between proteins is achieved by the interaction between 
local peptides (63). In 1988, Parmley and Smith proposed the 
idea that the construction of a random peptide library could 
provide insight into the antigen‑determining cluster epitopes 
recognised by antibodies (64). Subsequently, Scott and Smith 
fused random short peptides to the surface protein PIII of 
filamentous phage and displayed it on the surface of the phage, 
creating the first phage random peptide library (65). In the 
same year, McCafferty et al used phage display technology 
to screen for single‑chain antibodies to lysozyme bacteria, 
propelling phage display technology into an era of widespread 
application (66). Recently, because of the pioneering work and 
application in the phage display of peptides and antibodies, 
Professors George P. Smith and Gregory P. Winter both won a 
quarter share of the 2018 Nobel Prize in Chemistry (59). Until 
now, the application scope of phage display technology has 
been expanding, and the technology has also been constantly 
improving and developing.

Advantages and disadvantages. The emergence of phage 
display technology has opened up a simple and fast route for the 
production of genetically engineered mAbs, which bypasses 
the technical difficulty of hybridomas (35). It clones and 
amplifies VH and VL gene fragments in human lymphocyte 
spectrum by RT‑PCR, and randomly combines gene fragments 
into expression vectors, in order to construct a large‑capacity 

human antibody library (27). In addition, the phage display 
can simplify the cloning process and acquire a large amount of 
material to produce peptides or proteins because of the small 
size of the phage genome and high efficiency of the phage 
infection (67,68).

The phage display offers the direct physical link between 
a protein and its genetic material, which helps people to effec‑
tively screen the desired cloning again and again, and then 
amplify it (67). In the process of library screening, specific 
phage clones are enriched continuously due to their specific 
affinity for ligands, and relatively rare clones that can bind 
ligands can be quickly and effectively screened out from a 
large library (58). Therefore, the biggest advantage of phage 
display is that once the phage library is established, specific 
antibodies against the target antigen can be directly screened 
from the library according to the needs within 23 weeks, 
which greatly reduces the preparation cycle of mAbs (61). In 
addition, by specific construction, the filamentous phage may 
act as a vector, and generate a peptide library of phage display 
that contains hundreds of millions of unique peptides, which 
are conducive to their application in antiviral research (69). 
However, due to the different binding properties of antibodies 
in bacteria and eukaryotic cells, the applicability of the 
technology is limited to a certain extent (70). The processes 
of the phage display refer to bacterial transformation, phage 
packaging, and even transmembrane secretion processes, 
which limit the capacity of the phage display library and their 
molecular diversity. At present, the capacity of the phage 
display library is usually 1011 (27). Also, limited by the expres‑
sion system, the antibody library is not large enough to support 
the acquisition of some rare antibodies and not all sequences 
are well expressed in phages, because the realisation of some 
protein functions acquire folding, transportation, membrane 
insertion and complexation, resulting in the need for additional 
selection pressure during in vivo screening (45). It is difficult 
to obtain antibodies that inhibit the growth or function of 
phages or the expression host, as the phage display system 
depends on the expression of intracellular genes, which may 
make the diversity of the library decrease rapidly (71). Also, 
a phage display library cannot take on the effective mutation 
and recombination in vitro, which in turn limits the genetic 
diversity of the molecules in the library (72,73). Nevertheless, 
these temporary shortcomings cannot obscure the great poten‑
tial of its applications.

Clinical therapeutic applications. Nowadays, with the estab‑
lishment of more phage display libraries, the construction of 
advanced genetic operating system and the development of 
more efficient phage display systems, phage display technology 
plays an important role in different fields, especially in protein 
and antibody‑related fields (34). Phage display technology 
has become an advantageous tool for detecting the protein 
spatial structure, exploring the binding sites between receptors 
and ligands, and searching for ligands with high affinity and 
biological activity (74). It has had a far‑reaching impact on 
research into the mutual recognition of protein molecules, the 
preparation of phage‑functionalised biosensors, the develop‑
ment of new vaccines and tumour therapy (75,76). In addition, 
Humira, ramucirumab and other mAbs developed by phage 
display technology have been widely used in clinical practice, 
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especially Humira, which is widely applied in the treatment of 
rheumatoid arthritis (RA), psoriatic arthritis, Crohn's disease, 
ankylosing spondylitis and uveitis (45).

Transgenic animal technology
Development process. Transgenic animal technology is mainly 
based on the idea of ‘why can't mice be more like people’. It 
transfers human antibody loci into animals including mice, 
chickens and cows, and rearranges and re‑expresses human 
antibody V region genes in their lymphocytes, so that trans‑
genic animals can produce B lymphocytes which fully express 
human antibodies; this is essentially the partial humanisation 
of animals (77‑79). Under the stimulation of antigens, these 
lymphocytes can be cloned and differentiated continuously to 
form plasma cells that are capable of producing high‑affinity 
human antibodies (80). In addition, transgenic animals 
carrying human DNA fragments have complete functions, 
including effective homologous conversion and affinity matu‑
ration, which can produce high affinity human antibodies after 
the animals are immunised by any target antigen (37).

As early as 1985, the production of fully human antibodies 
using transgenic mice was first proposed by Alt et al (81). 
Later, many difficulties, including the large size of the human 
Ig loci, were followed but overcome one after another (82). 
In 1996 and 1997, Medarex and Abgenix successfully estab‑
lished the HuMab‑Mouse® (Medarex), which significantly 
improved the efficiency of full human mAb production (83) 
and XenoMouse™ (Abgenix) (84,85).

Advantages, disadvantages and clinical therapeutic applica‑
tions. In the past three decades, transgenic animal technology 
through genetic engineering has been envisaged to improve 
food quality, animal production and the production of biolog‑
ical products, to reduce or minimise the environmental impact 
of animal production and to add value to animal products. 
Recently, with the advance of the ability for targeted genome 
engineering via genome editing methods such as TALENs, 
ZFN and the CRISPR/Cas9 system, this technique has been 
widely used to obtain a series of human mAbs against the 
interleukin‑6 (IL‑6) receptor, TNF receptor and epidermal 
growth factor receptor (EGFR), which play important roles 
in the treatment of tumours and other diseases (86,87). mAbs 
against the human IL‑6 receptor can show strong antitumour 
activity in vivo against multiple myeloma cells by inhibiting 
IL‑6 functions (87). H‑R3, as a humanised anti‑EGFR anti‑
body with antitumour, anti‑proliferative, anti‑angiogenic 
and pro‑apoptotic properties, can act as an effective EGFR 
antagonist to inhibit signal transduction, in order to directly 
or indirectly affect cell proliferation, cell survival and 
angiogenesis‑inducing capacity (88). As an important mile‑
stone in validating XenoMouse strains as well as other human 
immunoglobulin‑producing mouse technologies, the first 
fully human mAb, panitumumab, which was developed from 
XenoMouse technology and approved by a regulatory agency, 
has a positive risk‑benefit profile in advanced, chemotherapy 
refractory colorectal tumours and has the potential to increase 
treatment rates of this disease in earlier lines of therapy (89). 
Recently, the first transgenic rabbit strain for human antibody 
production has been created with the discovery that the anti‑
body diversification mechanism at work in rabbits can act 

on the fragments of the human transgenic immunoglobulin 
gene (90), which further expands the application of human 
mAbs in drug development and promises to lead to new 
treatments for various diseases.

Ribosome display technology. Ribosome display technology 
is a powerful tool for protein screening using functional 
protein interactions in vitro (91). By associating genotypes 
with protein phenotypes, it can use specific ligands of target 
proteins to select target proteins and corresponding gene 
sequences from the protein display library (92). It combines 
the correctly folded protein and its mRNA on the ribosome 
at the same time to form mRNA‑ribosome‑protein trimer, 
in order to screen some high‑affinity proteins with specific 
binding to target molecules, including antibodies, peptides and 
enzymes (93,94). The preparative technique involves different 
key processes, including specific processing and modification 
of the DNA that encodes proteins, transcription and transla‑
tion, affinity screening in vitro, the separation of mRNA and 
molecular orientation evolution in vitro (95).

Development process. The ribosomal display technology has 
undergone a certain period of research from the time it was 
proposed to the time it was developed and matured. In 1994, 
Mattheakis et al of the Afflymax Institute in the US put the 
ideas of their predecessors into practice for the first time and 
established the prototype of ribosome display technology, 
which mainly used ‘polypeptide‑polyribosome‑mRNA’ 
complex to construct peptide libraries on polyribosomes, 
thus screening the polypeptide ligands of immobilized mAbs 
with an affinity constant of 109 (Nmol level) from a peptide 
library with a capacity of 1012 (96). Later, Hanes and Plückthun 
improved the polyribosome display technology and established 
a new technology, ribosome display technology, in 1997, for the 
screening of complete functional proteins such as antibodies 
in vitro, on the basis of previous research results (93).

Advantages and disadvantages. Traditional screening tech‑
niques have insurmountable drawbacks, mainly related to cell 
transfection, phage packaging, transmembrane secretion and 
protein degradation in library construction and screening (97,98). 
The library capacity and molecular diversity of phage or mRNA 
display technology are somewhat limited, which reduces the 
efficiency of library screening (71). In contrast, a ribosome 
display is a powerful way to screen large libraries and acquire 
molecular evolution (99,100). It has the advantages of simple 
library construction, large library capacity, strong molecular 
diversity, simple screening methods and no need for selection 
pressure, and can even improve the affinity of target proteins 
by introducing mutation and recombination technology (93,94). 
As a system to produce and screen folded proteins entirely 
in vitro, the ribosome display technique is shown to greatly 
exploit replicability of mRNA, allowing efficient enrichment of 
target genes, avoiding the step of bacterial transformation and 
making the technique unconstrained by the efficiency of cellular 
transformation (101). On the one hand, the technique greatly 
increases library capacity and screening throughput, and makes 
it easy to build a very large volume of antibody library (101). On 
the other hand, while the expressed proteins have the correct 
spatial fold conformation, the technique can be combined with 
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some special PCR techniques to improve the protein expression 
diversity (28,102,103). It also can be used for the screening and 
research of cytotoxic fractions (94).

However, there are still some technical problems that 
need to be further advanced. Undoubtedly, maintaining 
mRNA stability and preventing the degradation of mRNA is 
the first problem in a ribosome display system (28). Facing 
the problem, Yamaguchi et al reported a novel screening 
method‑cDNA display, which prevents the degradation of 
mRNA by promoting the binding of mRNA to linkers and 
the reverse transcriptional synthesis of cDNA, thus converting 
mRNA‑protein fusions to cDNA‑protein fusions and avoiding 
problems due to the stability of mRNA (104). The use of modi‑
fied nucleotides as substrates for transcription reactions can 
also stabilise mRNA (105). In addition, how to construct the 
more stable ‘mRNA‑ribosome‑protein’ complex was one of the 
problems (106), as it only occurs in cases where the complex is 
complicated but its stability is poor in practice due to ribosomal 
display. To solve the problem, Roberts and Szostak developed 
a simpler and more effective display system‑mRNA display 
system, which allows mRNA to bind to its encoded polypeptide 
in the presence of puromycin to form a stable mRNA‑peptide 
complex that screens for the target peptide (107). The 
anti‑small stable RNA A (anti‑SsrA) oligonucleotides were 
designed by Muranaka et al to inhibit the function of SsrA and 
obviously promote the form of the ‘mRNA‑ribosome‑protein’ 
complex (108). In addition, how to improve the display of large 
molecular protein in the ribosome is also a problem that needs 
to be solved.

Clinical therapeutic applications. At present, there are 
numerous reports on the preparation of human mAbs by 
ribosomal display technology, and the advantages of this tech‑
nology represent the developmental direction of mAbs (28). On 
the one hand, it can be applied widely in antibody engineering, 
proteomics, epitope mapping, and synthetic enzymes (93,103). 
On the other hand, it also opens up a new way to screen new 
therapeutic antibodies and new drugs for diagnosis and treat‑
ment in tumours, autoimmune diseases, infectious diseases, 
and inflammatory disorders (94). Ribosome display tech‑
nology, as a new cloning display technology, will show a more 
extensive application space in protein interaction research, 
new drug development and proteomics (95,109).

A single B‑cell monoclonal antibody generation technology
Development process. As early as 2003, Wardemann et al 
prepared autoreactive antibodies with the use of early human 
B‑cell precursors isolated from the bone marrow, to examine 
the structure, development and silencing of autoreactive B 
cells (110). In 2004, Traggiai et al immortalised the isolated 
human memory B cell with EBV and screened 35 mAbs that 
were well neutralised against influenza virus, which makes it 
possible for memory B cells to produce mAbs (111). Since then, 
monoclonal B‑cell technology for generating mAbs has been 
gradually applied to various experimental research and has 
made great contributions to the development of many fields of 
life science as an important tool for modern life science research.

Advantages and disadvantages. In recent years, single B‑cell 
antibody preparation techniques have begun to spring up and 

have gradually become widely used, alongside the develop‑
ment of molecular cellular biology (112). This is because mAbs 
prepared by single B‑cell antibody technology have the charac‑
teristics of full human origin, high specificity and uniformity, 
showing unique advantages and good application prospects 
in the treatment of pathogenic microbial infections, tumours, 
autoimmune diseases and organ transplantation (113,114).

Compared with other mAb preparation techniques, 
monoclonal B‑cell technology, is a technique for the cloning 
and expression of B‑cell antibodies with single antigenic 
specificity in vitro, which preserves the natural pairing in the 
V region of the light and heavy chain, and has the advantages 
of good gene diversity, high efficiency, full humanisation and 
the small number of cells required (115). Studies have shown 
that human memory B cells can survive in humans for more 
than 50 years, providing a historical record of the specific 
antibodies produced during most of the host's lifetime (116). In 
contrast, antibodies in the body fluids used in most traditional 
methods usually decay after macroglobulin clearance, which 
means that people lose their protective antibody within a few 
years (117). In addition, it is proposed that memory B cells in 
the blood of virus‑infected patients may store records of early 
infection with the virus in patients‑the genes, which provide a 
new direction for the research and development of mAbs (118).

Therapeutic application in clinical. Currently, the prepara‑
tion of memory B‑cell antibodies has become a popular 
method used to prepare the humanised antibody, which also 
promotes immunological research including antibody affinity 
maturation, the defence mechanism against vaccine immunity, 
vaccine development, and the treatment of tumours and auto‑
immune diseases at the same time (1,119). With the maturity 
and improvement of B‑cell sorting technology, subsequent 
PCR gene amplification methods and the high‑throughput 
analysis and identification of antibody genes, memory B‑cell 
antibody preparation technology will play an unprecedented 
important role in the diagnosis, pharmacodynamic and clinical 
application in the future, leading to a new era of therapeutic 
antibody research (120‑122). As this approach has also been 
successful in widely isolating neutralizing antibodies against 
viruses including SARS and H5N1 influenza, it can provide 
not only neutralizing antibodies for passive serum therapy, but 
also information for vaccine design, and is expected to accel‑
erate the development of therapeutics in the field of infectious 
diseases (119,123). Additionally, Wrammert et al produced 
anti‑H1N1 antibodies in 2009 by isolating plasma cells from 
peripheral blood, to analyse the characteristics of antibodies 
in detail generated from plasma blasts induced by pandemic 
H1N1 infection (124).

4. Application of monoclonal antibodies in tumour therapy

Mechanisms of monoclonal antibodies as antitumour drugs. 
Traditionally, mAbs produce cytotoxic effects in tumour 
cells though ADCC, CDC, changing signal transduction, 
elimination of the cell‑surface antigen, and targeted conveying 
payloads (125).

ADCC. In general, ADCC is achieved by the specific binding 
of mAbs and the targeted antigen of tumour cells (126). 
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Namely, the Fc fraction of mAbs can bind to the receptor of 
immune effector cells (NK cells, macrophages, neutrophils, 
granulocytes), and achieve activation of intracellular signals 
in the next moment, resulting in ADCC (126,127). NK cells 
activated by antibodies can release cellular cytotoxic granules 
(perforin and granzyme) to achieve cell apoptosis on the one 
hand, while they can release cytokines and chemokines to 
inhibit cell proliferation and angiogenesis on the other (128).

CDC. CDC refers to the cytotoxic effect involving comple‑
ment; that is, after the binding of specific mAbs and the 
corresponding antigens on the surface of the cell membrane, 
the complex activates the classical pathway of complement and 
forms an attack membrane complex to induce a lysis effect 
on target cells (127,129). It is worth noting that, although 
CDC does not directly preside over the antitumour effects 
of most mAbs, it produces a variety of factors that enhance 
ADCC (130,131).

Changing signal transduction. Almost every clinically 
effective unconjugated mAb, directly or indirectly, interferes 
with the signal transduction that influences the prolifera‑
tion and survival of targeted cell populations (132). Growth 
factor receptors are some of the most commonly targeted 
tumour‑associated antigens whose activation under normal 
conditions induces mitotic reactions and promotes cell 
survival, are overexpressed in numerous malignancies, leading 
to promotion of tumour cell growth and insensitivity to chemo‑
therapy drugs (133‑135). Therefore, the use of mAbs is likely 
to normalise the cell growth rate and restore the sensitivity 
of cells to cytotoxic drugs by reducing the signal that passes 
through these receptors (136). For example, the pertuzumab 
block shows receptor heterodimerisation (the dimerisation 
of HER2 with HER3 and other HER family receptors) that 
is required for signal transduction to play an antitumour 
role (130,137).

Application of monoclonal antibodies in molecular‑targeted 
therapy. Targeted antitumour drugs provide a new concept 
concerning tumour therapy, referring to several tumour‑asso‑
ciated signaling pathways and targets. For instance, the most 
common target antigens in solid tumours refer to epithelial 
cell adhesion molecule (Ep‑CAM; also known as epithelial 
glycoprotein‑2, EGP‑2/GA 733‑2), carcinoembryonic antigen 
(CEA), EGFR family including EGFR (also known as 
c‑erbB‑1), HER2/neu (c‑erbB‑2), HER3 (c‑erbB‑3) and HER4 
(c‑erbB‑4) (135,138,139). Compared with them, the mAbs 
applied in lymphoma usually target CD52, CD20, CD30, 
CD22, CD37 and CD79 (135,136), with the easier achievement 
of a better effect because it is simpler to manage tumour pene‑
tration. In contrast to the above, tumour stroma and tumour 
vasculature offer some unique targets for antibody‑based inter‑
action because the new generation of tissue and vasculature 
show some components that differ from those in the normal 
situation, leading to the situation whereby fibroblast activation 
protein (FAP) (140) and tenascin‑C (TNC) (141) are regarded 
as targets in the tumour stroma, Fibronectin ED‑B (142) 
and prostate‑specific membrane antigen (PSMA) (143) are 
regarded as targets in the tumour vasculature. In addition, 
ligands including vascular endothelial growth factor (VEGF) 

are thought to target cell‑surface receptors expressed on 
tumour cells or their supporting tissue (140,144).

Application of monoclonal antibodies in immune checkpoint 
therapy (ICI). The fight between the immune system and 
tumour cells is a long‑term dynamic process, which has both 
positive and mutual influences (145). In the process whereby a 
healthy individual's immune cells detect and kill tumour cells 
via the antitumour immune response, activated T cells cause 
upregulated expression of several surface receptors, which can 
bind with relevant ligands expressed highly on the surface of 
tumour cells, resulting in inhibition of the immune response 
and downregulation of potent immune response (146). These 
surface receptors, namely the suppressive regulatory mole‑
cules, are essential for maintaining self‑tolerance, preventing 
autoimmune response and minimizing tissue damage by 
regulating the time and intensity of the immune response; 
this is called the immune checkpoint (146,147). The immune 
checkpoint results in the inhibition of cellular function, 
meaning that the body cannot produce an effective antitumour 
immune response, ultimately leading to immune escape of the 
tumour (148).

On the theoretical basis of the immune checkpoint, some 
mAbs have been developed as immune checkpoint inhibitors to 
block the interaction between tumour cells expressing immune 
checkpoints and immune cells, in order to block the inhibitory 
effect of tumour cells on immune cells (148,149). During the 
occurrence and development of tumours, immune checkpoint 
inhibitors can enhance the immune function of the body and 
restore the recognition ability of T cells, in order to eliminate 
tumours or slow down the development of tumours (150,151) 
(Fig. 3). Recently, tumour‑related immune checkpoint mole‑
cules mainly include programmed death‑1 (PD‑1), cytotoxic 
T lymphocyte‑associated antigen‑4 (CTLA‑4), T‑cell immu‑
noglobulin mucin 3 (TIM3) and lymphocyte activation gene‑3 
(LAG3) (145,146,150).

Anti‑CTLA‑4. CTLA‑4 (also known as CD152) is a trans‑
membrane protein expressed on the surface of activated CD4+ 
T cells, activated CD8+ T cells, and regulatory T cells (Treg 
cells), which can bind to the CD86(B7‑2) and CD80(B7‑1) 
ligand to negatively regulate T‑cell activation (152). In addi‑
tion, there is an intracellular pool of CTLA‑4 in recycling 
endosomes of Treg and memory T cells which can be rapidly 
cycled to the cell surface upon activation (153). Therefore, 
the anti‑CTLA‑4 mAb can decrease Treg cells and acti‑
vate T cell immune response by terminating the activity of 
CTLA‑4 (145). Ipilimumab is an mAb that blocks CTLA‑4, 
which was approved by the FDA to treat melanoma in 
2011 (150,154). The blocking effect of ipilimumab on CTLA‑4 
is, that Ipilimumab binds to CTLA‑4 to further impede the 
interaction between CTLA‑4 receptor and the B7 ligand, thus 
increasing the activation and proliferation of T cells (145). 
This means that the antitumour effect of ipilimumab on 
melanoma is indirect and the action mechanism may be to 
help the body's immune system recognize, target and attack 
melanoma cells (155). Hence, it is possible for ipilimumab 
to be used as a carrier of imaging agent with good targeting 
properties (156). In addition, it is reported that patients with 
human CTLA‑4 insufficiency develop immune dysregulation, 
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lymphadenopathy and hepatosplenomegaly (153,157,158). 
Therefore, anti‑CTLA‑4 mAbs should be able to inhibit the 
inhibitory signalling pathway and maintain the killing func‑
tion of T cells, thereby killing tumour cells (146).

Although some anti‑CTLA‑4 mAbs do not cause an 
adverse reaction similar to cytotoxic drugs, including 
myelosuppression and alopecia, due to the different actions 
of cytotoxic drugs, they cause pathological damage to the 
body while producing an antitumour reaction, namely 
immune‑related adverse events (IRAEs) (146,149). Different 
from others, the toxicity profile of ipilimumab mainly mani‑
fests as symptoms associated with infusion, including rigor, 
pruritus, fatigue, nausea, dizziness, colitis, less frequently 
hypophysitis, hepatitis pneumonitis, and even hypotension, 
angioneurotic oedema, and dyspnoea (159‑161). When facing 
the problems that occur in anti‑CTLA‑4 immunotherapy, 
combination therapy is put forward which may thereby 
provide greater antitumour activity than either agent alone 
by enhancing antitumour immune responses, and presenting 
a miraculous, unprecedented therapeutic effect (159). For 
example, in the treatment of progressive melanoma, the 
combined blocking of PD‑1/PD‑L1 and CTLA‑4 can further 
improve efficacy in patients compared with the single 
blocking of PD‑1/PD‑L1 or CTLA‑4 (162). Based on this, a 
trial involving patients with advanced melanoma was carried 
out and revealed that nivolumab plus ipilimumab provides 
the longer progression‑free and overall survival, and better 
health‑related quality of life than ipilimumab alone (159,163). 
From another perspective, CTLA‑4 inhibition can synergize 
with local chemotherapy, improving applicability and sensi‑
tivity to immune‑checkpoint inhibition (164).

At present, not only ipilimumab, but also some other 
anti‑CTLA‑4 mAbs, have been optimised and developed, 
and have now attracted more and more attention from the 
public (148). Another anti‑CTLA‑4 mAb, tremelimumab, 
which was exploited by Pfizer, is being investigated in clinical 

trials (165). However, the research into tremelimumab has 
made little progress, meaning that ipilimumab is still regarded 
as the most promising anti‑CTLA‑4 mAb applied in tumour 
treatment (148).

Anti‑PD‑1 and anti‑PD‑L1. PD‑1 (also known as CD279), as a 
member of the immunoglobulin superfamily which is mainly 
expressed on the surface of activated T cells, can be used as 
an immunosuppressive molecule to regulate the immune 
system and promote self‑tolerance by downregulating the 
response of the immune system to human cells and suppressing 
the inflammatory activity of T cells, which may prevent the 
immune system from killing tumour cells (166,167). PD‑1 has 
at least two ligands, PD‑L1 (also known as CD274 or B7‑H1) 
and PD‑L2 (CD273 or B7‑DC) (146). In general, as one of the 
means by which human tissue protects them, PD‑1 can bind 
with specific ligands on the immunocyte surface to prevent 
immune cells from activating and killing normal cells (166,168). 
Additionally, the binding of PD‑1 with ligands promotes the 
programmed death of T cells and reduces the apoptosis of regu‑
latory T cells by suppressing the T cell activation signal primed 
by the interaction between MHC and TCR, in order to make 
the tumour cells acquire immune escape (146). Certain types of 
malignant tumours express a mass of PD‑1 on the cell surface; 
therefore, they evade the attack of immune cells by powerfully 
suppressing the activation of immune cells (129). PD‑1 is also 
expressed on the surface of activated B cells and macrophages, 
indicating that PD‑1 negatively regulates the immune response 
more widely than CTLA‑4 (145). Therefore, immune regula‑
tion targeting of PD‑1 plays an important role in antitumour, 
anti‑infection, anti‑autoimmune diseases and organ transplan‑
tation survival (169). Facing the situation, anti‑PD‑1 mAbs are 
manufactured as PD‑1 inhibitors to activate the immune system 
to attack tumours and treat some types (145).

Compared with anti‑CTLA‑4 mAb therapy, immunotherapy 
with anti‑PD‑1 mAbs has a broader antitumour effect and fewer 

Figure 3. CTLA‑4 and PD‑1 pathway blockade in immune checkpoint therapy. CTLA‑4 pathway blockade allows for activation and proliferation of more 
T cells, which can reduce Treg‑mediated immunosuppression. PD‑1 pathway blockade restores the activity of antitumor T cells that have become quiescent. 
A dual pathway blockade can take a synergistic effect, resulting in a more powerful and more lasting antitumor immune response. CTLA‑4, cytotoxic 
T‑lymphocyte‑associated antigen 4; MHC, major histocompatibility complex; PD‑1, programmed death 1; PD‑L1, programmed death ligand 1; TCR, T‑cell 
receptor; Treg, regulatory T cell.
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overall side effects (170,171). The biggest difference between 
immune drugs and others is that it shows more persistent effi‑
cacy which could lead to long‑term survival or even a clinical 
cure for patients with advanced disease (146). Currently, there 
are various drugs approved by the FDA, including nivolumab 
(also known as Opdivo) and pembrolizumab (also known 
as Keytruda) (172). The indications of nivolumab include 
melanoma, non‑small cell lung cancer (NSCLC), renal cell 
carcinoma (RCC), classical Hodgkin's lymphoma (CHL), 
squamous cell carcinoma of the head and neck (SCCHN), 
and urothelial carcinoma (148). In contrast, pembrolizumab is 
mainly applied in melanoma, NSCLC, and SCCHN (167,172).

At present, the anti‑PD‑1 mAbs are mostly used in combi‑
nation therapies, because traditional therapy using anti‑PD‑1 
mAbs alone can lead to various IRAEs, including fatigue, skin 
rash, colitis, hypophysitis, pneumonitis, myasthenia gravis and 
interstitial nephritis (171). For tumours that are highly depen‑
dent on the immunosuppressive mechanism of PD‑1/PD‑L1, 
such as malignant melanoma, Hodgkin's lymphoma, certain 
types of lung tumour, and colon tumours, it has shown remark‑
able efficacy (147), but for the vast majority of unselected solid 
tumours, the efficacy of PD‑1 inhibitor alone is not high. In 
comparison, combination therapy improves the treatment 
effect and transforms patients who are not suitable for PD‑1 
inhibitor treatment into those who can benefit from it (173). 
First, the anti‑PD‑1 mAb can combine with another immuno‑
therapy drug (174). A combination of the PD‑1 and CTLA‑4 
mAbs has been shown to be more effective in treating several 
tumours, including malignant melanoma, than either antibody 
alone (162). In addition, PD‑1 can combine with anti‑CTLA‑4 
or VEGF tyrosine kinase inhibitors (TKIs) to adjust first‑line 
therapy for metastatic kidney carcinoma (175). Secondly, PD‑1 
in combination with chemotherapy is considered a promising 
treatment strategy (176). Chemotherapy has a profound impact 
on the antitumour immune by directly regulating immune 
cellular subsets or indirectly stimulating the immune system 
through the induction of immunogenic cell death, revealing 
the existence of synergy between cytotoxic chemotherapy 
and immune checkpoint inhibition (176). This combina‑
tion therapy is also approved for the first‑line treatment of 
advanced NSCLC (176). Nevertheless, there are some patients 
with chemotherapy‑refractory metastatic solid tumours; for 
those patients, PD‑1 inhibitor combined with radiotherapy 
is regarded as a salvage treatment (177,178). This means that 
the anti‑PD‑1 may combine with radiotherapy to improve the 
overall survival (179). In addition, anti‑PD‑1 can combine 
with targeted drugs including acitinib, and levatinib (180,181). 
Recent studies have shown that the association of acitinib 
with pembrolizumab provides improved clinical benefit in 
patients with previously untreated advanced renal cell carci‑
noma, which is well tolerated (182). In addition, the strategy 
of using anti‑PD‑1 mAbs in combination with oncolytic virus 
(OV) to enhance antitumour immunity and therapy has been 
developed (183). To validate this, research into the effect of 
IL‑15‑armed OV in combination with PD‑1 inhibitors in mice 
with colon or ovarian carcinoma processes, has shown some 
results including tumour regression and the prolongation of 
overall survival (184). Moreover, a personalised mutanome 
vaccine can be used in combination therapy with anti‑PD‑1 
mAb as it enhances the persistence of anti‑PD‑1‑mediated 

effect and extends anti‑PD‑1 therapies to patients with no 
preexisting T cell response (185). Finally, the anti‑PD‑1 mAb 
can combine with novel tumour‑specific immune cells, such as 
the chimeric antigen receptor T‑cell (CAR‑T), to produce better 
therapeutic effects (186). Some research has found that PD‑1 
blocks CAR‑T cell therapy within solid tumours, therefore the 
anti‑PD‑1 mAb which prevents the PD‑1‑related inhibition of 
CAR‑T cell response can increase the levels of cytolysis and 
cytokine secretion and enhance the in vivo antitumour func‑
tion of CAR‑T cells (187,188).

PD‑L1, expressed on the surface of tumour cells, can 
bind with PD‑1 on the surface of activated T cells and 
B cells to conduct inhibitory signals and reduce T cell prolif‑
eration (146,189). As promising new agents, there are some 
anti‑PD‑L1 mAbs approved by the FDA in clinic, including 
atezolizumab (also known as Tecentriq) which is used to 
treat locally advanced or metastatic urothelial carcinoma, 
durvalumab (also known as Imfinzi) which is used to treat 
locally advanced or metastatic urothelial carcinoma and 
NSCLC, and avelumab (also known as Bavencio) which is 
used to treat meningioma, metastatic Merkel cell carcinoma 
and carcinoma of the urinary bladder (128,167,190). In 
theory, compared with anti‑PD‑1 mAbs which bind to PD‑L2, 
anti‑PD‑L1 mAbs have specific effects and demonstrate a 
certain superiority (146). The anti‑PD‑L1 mAbs can block the 
co‑suppression of B7‑1 and PD‑1, which is conducive to fully 
activate the function of T cells and produce cytokines (191,192). 
Therefore, anti‑PD‑L1 mAbs may more fully activate the 
immune system to kill tumours (191). Furthermore, it has been 
shown that durvalumab as a third‑line or later treatment can 
significantly benefit advanced NSCLC patients with EGFR 
mutations or ALK rearrangements (EGFR+/ALK+) with ≥25% 
of tumour cells expressing PD‑L1, although it is unsuitable 
for patients with EGFR+/ALK+ to use the immune checkpoint 
inhibitor because of the low curative effect and subsequent 
severe adverse reactions (193). In summary, anti‑PD‑1 mAbs 
and anti‑PD‑L1 mAbs each have their own indications and 
application scope, and the combined utilisation can achieve 
mutual complementarity in the interest of our common devel‑
opment (146).

Others. In addition, there are various other useful checkpoints, 
such as the lymphocyte activation gene‑3 (LAG‑3), B7‑H3, 
B7‑H4, T cell immunoglobulin‑3 (TIM‑3), T cell immuno‑
globulin and ITIM domain protein (TIGIT), and V‑domain 
immunoglobulin‑containing suppressor of T cell activation 
(VISTA) (194‑197), which are either entering the clinic or 
under active development.

Potential combined therapeutic strategies
Radioimmunotherapy, chemo‑immunoconjugate and immu‑
notoxin. In tumour‑guided therapy, mAbs against tumour 
antigens are used in the guidance of chemotherapy drugs or 
radiotherapy drugs to the target organ, thereby directly killing 
the tumour cells or producing antibody‑directed enzyme 
prodrug therapy (ADEPT) by specifically activating prodrugs 
within the tumour (198).

Radioimmunoconjugates. Radiation can act directly on 
DNA molecules and cause their damage, by ionising water 
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molecules in living organisms to produce free radicals which 
break macromolecules and lead to cell damage (199). Based 
on this theory, mAbs with specific affinity for tumours can 
be utilised as a carrier of highly active radiopharmaceutical 
agents, thus forming radioimmunoconjugates that target 
tumour tissue to kill tumour cells or inhibit their growth while 
reducing radiation damage to normal tissue, using the ionising 
radiation effects of radioisotopes (11).

Chemo‑immunoconjugate. The cytotoxic agent can conjugate 
with antitumour mAbs to form chemo‑immunoconjugate, 
which can bind to the surface of antigen‑positive tumour cells 
through the guidance of mAbs, inducing the internalisation 
of the conjugates (200). After that, these chemical drugs 
play their cytotoxic effects by binding to DNA molecules, 
thus killing tumour cells by inhibiting cell DNA and protein 
synthesis, interfering with cell nucleic acid or protein func‑
tion, and inhibiting mitosis (201,202). Common conjugates 
include cisplatin, cyclophosphamide, etoposide, adriamycin, 
paclitaxel, methotrexate, and vinblastine (203,204).

Immunotoxin. Immunotoxin has a specific affinity for tumour 
cell surface antigens and can release bacterial or plant protein 
toxins to tumour cells without harming normal cells (205). Once 
the toxin enters the cell, it kills the tumour cell by inhibiting 
protein synthesis and altering signalling transmission (206). 
The main toxins currently used in reagents are diphtheria toxin, 
abrin, ricin, gelonin, and Pseudomonas aeruginosa endo‑
toxin (198,207,208).

Antibody‑drug conjugates (ADCs). Antibody‑based immu‑
notherapy has been a major and rational therapeutic strategy 
in the clinical management of oncology (209,210). In clinical 
practice, therapeutic mAbs have a limited effectiveness in the 
treatment of solid tumours due to their large molecular weight, 
but a high degree of targeting (198). With a few exceptions 
such as mAbs to HER2, EGFR and CD20, most mAbs can 
bind with effector molecules by using specific linkers to 
produce antibody‑drug conjugates (ADCs), which expand the 
scope of medical treatment while possessing highly targeted 
selection, achieving the complementary advantages of the two 
therapeutic drugs, which have little antitumour effects after 
binding the target antigen (15,198). In contrast, small molecule 
chemicals are highly effective against tumour cells, in spite 
of the fact that they are less selective and may cause serious 
side effects, accidentally injuring normal cells due to off‑target 
toxicity (211). Therefore, mAbs can bind with effector 
molecules by using specific linkers to produce ADCs, which 
expand the scope of medical treatment while owning highly 
targeted selection, achieving the complementary advantages 
of the two therapeutic drugs (17,135). The mAbs can bind 
with effector molecules by using specific linkers to produce 
ADCs, which expand the scope of medical treatment while 
possessing highly targeted selection, achieving the comple‑
mentary advantages of the two therapeutic drugs that can 
usually target tumour‑associated antigens or specific receptors 
on the surface of tumour cells and show a selective directing 
effect on tumour cells (135). The effector molecules that act 
as payloads which produce a killing effect on tumours include 
radiopharmaceutical agents, cytotoxic agents and bacterial 

or plant protein toxins, conjugating respectively with mAbs 
to form radioimmunoconjugates, chemo‑immunoconjugates 
and immunotoxins used in tumour‑guided therapy (198). 
Currently, ADCs that have been approved by the FDA include 
brentuximab vedotin, trastuzumab emtansine, gemtuzumab 
ozogamicin, Inotuzumab ozogamicin, and polatuzumab 
vedotin (211,212).

Action mechanism. Generally, ADCs are injected intrave‑
nously into the blood system to prevent the hydrolysis of mAbs 
by gastric acid and protease and are distributed into the tumour 
tissue by exosmosis of the endothelial pores and the endocytosis 
of endothelial cells (198). After the mAbs specifically direct 
drugs to the surface of tumour cells expressing tumour‑specific 
antigens, ADCs come into tumour cells by internalisa‑
tion (211,213). As a general rule, there are three distinguished 
pathways to internalise, including clathrin‑mediated endocy‑
tosis, caveolae‑mediated endocytosis and pinocytosis (211). 
Later, with the influence of the acidic environment of the 
cytoplasm, some ADCs with cleavable linkers release effector 
molecules which can damage tumour cells, while other ADCs 
undergo the enzymatic fracture of linkers or mAb degradation 
with the influence of lysosomal protease (214). Finally, payload 
and degradation products are released into the cytoplasm of 
tumour cells, disturbing their cellular action mechanism, 
affecting the tumour microenvironment and inducing the death 
of cells (213). As ADCs are formed from maytansinoid drugs 
which are derivatives of maytansine and huC242, human‑
ised mAbs which bind to the CanAg antigen expressed on 
colorectal tumours, pancreatic tumours and certain NSCLCs, 
huC242‑maytansinoid conjugates can be disintegrated with 
the influence of lysosomal acidic conditions in order to release 
the maytansinoid, which contributes greatly to the antitumour 
effect of conjugates and the bystander effect (214). If the 
released payload is permeable, a bystander effect is produced, 
which means that the internalised payload enters and kills 
adjacent tumour cells, showing the effect of apoptotic tumour 
cells on bystander tumour cells (215). Although ADCs cannot 
directly kill the adjacent antigen‑negative tumour cells, they 
can kill the antigen‑positive tumour cells in order to indirectly 
kill the adjacent tumour cells by the bystander effect (216). 
Not only do ADCs damage the growing tumour, they can 
also disrupt the structure supporting tumour growth, such as 
tumour stromal cells and tumour vessels, in order to enhance 
the antitumour effect (217). More importantly, it was proposed 
that the activation of bystander effects by apoptotic tumour 
cells may be crucial to achieving the permanent eradication of 
tumours (215).

Basic strategies for selecting monoclonal antibodies. As an 
important part of ADCs, mAbs used in tumour‑guided therapy 
must have some special characteristics. First, the ideal mAb must 
effectively bind to antigens on target cells so that the cytotoxic 
drugs are concentrated at the site of the tumour (212). Secondly, 
the mAbs should bind selectively to tumour cells and have little 
cross‑reactivity with normal cells (212). If the antibody selec‑
tivity is poor or the selected antigen is present in normal tissues, 
cytotoxic drugs will be delivered to normal cells, resulting 
in targeted toxicity including allergic reactions, rashes and 
alopecia (218,219). In addition, the Fc fractions of some mAbs 
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should have the affinity to bind with the Fc receptor of immune 
cells, thereby activating the killer effect of immunocytes (211). 
Thirdly, mAbs must own the ability to induce the internalisa‑
tion of tumour cells, resulting in the release of the payload in 
the cytoplasm (220). In this way, the cytotoxic molecule can be 
released to extend the extent of damage to tumour cells, while 
mAbs play a certain antitumour role (212). Fourth, mAbs should 
be optimised to significantly reduce the non‑specific binding of 
ADC drugs and prolong the half‑life of ADCs in the blood (221). 
The immune interaction of the constant Fc fragment of an ADC 
is one of the major determinants of its cyclic half‑life (222). As a 
consequence, humanised mAbs and fully human mAbs should 
be selected and the Fc fraction should be modified to decrease 
a part of immunogenicity and immunotoxicity and increase 
the cyclic half‑life (223). Fifth, the molecular weight of mAbs 
should be appropriate. If the molecular weight is too large, 
ADCs will have difficulty penetrating the capillary endodermis 
and extracellular spaces (217). If the molecular weight is too 
small, the half‑life will be influenced (224). Finally, the mAbs 
of ADCs should have some of the function of mAbs, including 
ADCC and CDC (217), which means that the mAb alone can be 
seen as an effective drug.

Nowadays, all ADCs in clinical trials use IgG because the 
biomolecule not only contains multiple natural sites for conju‑
gation, but can also be modified to produce other conjugate 
sites (225). Due to their high affinity to target antigens and 
long circulating half‑life in the blood, IgG can accumulate in 
the tumour region (226). Also, compared with others, IgG1 is 
most often chosen as the antibody part of ADCs (211). Generally, 
different IgG subtypes have different immune functions including 
ADCC and CDC (217). Compared with IgG4 and IgG2 subtypes, 
human IgG1 and IgG3 have stronger ADCC and CDC (217,227). 
Furthermore, IgG3 antibodies have a short half‑life and rapid 
clearance compared to IgG1, IgG2 and IgG4, making them 
impossible to use in ADC synthesis (223). As a result, IgG1 is 
being used more selectively for ADC development.

In the research of tumour treatments, the development of fully 
human mAbs is very important, as murine mAbs and chimeric 
mAbs induce the immunogenicity of allogenic antibodies which 
can cause allergic reactions in humans (212). In early studies, the 
use of murine mAbs often triggered a severe immune response 
in humans, and patients produced human anti‑murine antibodies 
which greatly reduced the therapeutic effect (228). Therefore, it 
is necessary to develop an mAb preparation technique, in order 
to make it possible to use better humanised or fully human mAbs 
as an essential component in an ADC in the future.

Near‑infrared photoimmunotherapy (NIR‑PIT). Traditional 
tumour treatments, such as surgery, chemotherapy, radiation 
therapy and photodynamic therapy (PDT), often damage the 
function of normal cells while killing diseased tissue; this can 
break the delicate balance between the pathogen tissue and the 
surrounding healthy cells (229). For example, after the photo‑
sensitiser is administered and enriched in the tumour, the PDT 
uses certain wavelengths of visible light to activate the photo‑
sensitiser, generating singlet oxygen to kill the tumour cells, 
in order to achieve a therapeutic effect (230). In the process, 
it is inevitable to damage normal tissues or organs because of 
the accumulation of photosensitisers in normal cells (231). In 
contrast, NIR‑PIT, as a molecularly targeted phototherapy with 
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the selective killing of diseased tissue developed on the basis of 
photodynamic therapy and immunotherapy, uses mAbs to direct 
the near‑infrared, water‑soluble, silicon‑phthalocyanine deriva‑
tive, IRdye700DX(IR700), to tumour sites, solving the problem 
of the low selectivity of photodynamic therapy (229,232).

As early as the beginning of the 1980s, Mew et al started 
studying PIT in vitro and in vivo, indicating that photo‑immu‑
noconjugates show higher selectivity to tumour tissues than 
photosensitisers or mAbs alone (233,234). In subsequent years, 
although various photosensitisers, cross‑linking methods 
and mAbs were developed and applied to photoimmuno‑
therapy (PIT), the application of photo‑immunoconjugate 
was still limited in vivo due to the hydrophobic nature of the 

photosensitisers (235). Later, a new type of PIT was devel‑
oped in 2011 by Mitsunaga et al, NIR‑PIT, which uses a 
target‑specific photosensitiser based on NIR phthalocyanine 
dye, IR700, in combination with mAb targeting EGFR (236). 
In this treatment, mAb‑IR700 conjugate binds to tumour 
cells that overexpress antibody targets (235). When irradiated 
with near‑infrared light, IR700 in the conjugate is activated 
and rapidly destroys the hydrophobic tumour cell membrane, 
resulting in the death of the cancer cells (229,237). In addition, 
the conjugate in vivo can indirectly activate cytotoxic T cells 
to kill tumours and inhibit tumour metastasis and recur‑
rence by targeting CD44, CD133 and other tumour stem cell 
biomarkers (229,232).

Table II. Monoclonal antibody drug of global drug sales TOP100 in 2020.

Ranking Drug Sale (billion dollars) Manufacturer Adaptation disease

  1 Humria® (adalimumab) 19.832 Abbvie Autoimmune disease
  2 Keytruda® (pablizumab) 14.38 MRK Melanoma and non‑small lung cancer 
    (NSCLC)
  7 Opdivo® (nivolumab) 7.81 Bristol‑Myers Melanoma and NSCLC
   Squibb
  8 Stelara® (ustekinumab) 7.707 Johnson &  Psoriasis
   Johnson (J&J)
14 Avastin® (bevacizumab) 5.321 Roche Cancers including colon cancer
16 Ocrevus® (ocrelizumab) 4.611 Roche Multiple sclerosis (MS)
18 Darzalex® (daratumumab) 4.19 J&J Multiple myeloma
19 Perjeta® (pertuzumab) 4.139 Roche Breast carcinoma
20 Remicade® (infliximab) 4.077 J&J/MSD Autoimmune disease
21 Soliris® (eculizumab) 4.064 Alexion Paroxysmal nocturnal haemoglobinuria (PNH)
22 Dupixent® (dupilumab) 4.045 Sanofi Atopic dermatitis
23 Cosentyx® (secukinumab) 3.995 Novartis Psoriasis
25 Herceptin® (trastuzumab) 3.978 Roche Cancers including breast carcinoma
31 Lucentis® (ranibizumab) 3.473 Roche/Novartis Age‑related macular degeneration (ARMD)
32 Rituxan® (rituximab) 3.418 Roche Leukaemia
35 Xolain® (omalizumab) 3.281 Roche/Novartis Asthma
37 Entyvio® (vedolizumab) 3.252 Takeda Ulcerative enteritis and Crohn's disease
42 Actemra® (tocilizumab) 3.05 Roche Autoimmune disease
46 Tecentriq® (atezolizumab) 2.919 Roche Metastatic urothelial carcinoma
50 Prolia®/Xgeva® (denosumab) 2.763 Amgen/Daiichi Osteoporosis
   Sankyo
61 Hemlibra® (emicizumab) 2.335 Roche Haemophilia
65 Simponi® (golimumab) 2.243 J&J Autoimmune disease
69 Cimzia® (certolizumab) 1.887 UCB Autoimmune disease
72 Imfinzi® (durvalumab) 2.042 AstraZeneca Lung cancer
78 Tysabri® (natalizumab) 1.946 Biogen MS
79 Xgeva® (denosumab) 1.935 Amgen Giant cell tumour
82 Kadcyla® (ado‑trastuzumab 1.445 Roche Her2‑positive metastatic breast cancer
 emtansine)
84 Taltz® (ixekizumab) 1.788 Eli Lilly and Plaque psoriasis
   Co. (LLY)
90 Yervoy® (ipilimumab) 1.682 Bristol‑Myers Melanoma and NSCLC
   Squibb
98 Erbitux® (cetuximab) 1.552 LLY/Merck Colorectal tumour
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In short, mAbs, as a specialised tool for identifying specific 
proteins on the surface of cancer cells, can act as a carrier to selec‑
tively deliver the photosensitisers which have a poor targeting 
ability to the tumour site, helping photosensitisers to locate and 
attach to cancer cells (238). More importantly, photoimmuno‑
therapy could be applied to a range of cancers simply by altering 
mAbs in photo‑immunoconjugates which have different targets, 
such as EGFR, HER2, PSMA, CD25, CEA, mesothelin, GPC3, 
CD47, CD20 and PD‑L1 (139,229,238). Therefore, it is necessary 
to design and manufacture mAbs with better properties so that 
the PIT has a greater prospect.

5. Monoclonal antibody drugs and the market value

To date, biotechnology medicines have been developing rapidly, 
and half of the pharmaceuticals are synthesised by biotech‑
nology companies around the world, especially those drugs with 
complex molecular structures including multi‑specific drugs; 
this is because biotechnology is simpler than chemical synthesis 
and can produce higher economic efficiency (239). Therefore, as 
important components of biotechnology medicines, mAb drugs 
produced by lymphocyte hybridoma technology or genetic engi‑
neering technology, among others, have been widely used in the 
medical and biological fields as diagnostic and treatment agents 
in the last 30 years (24,240). From the perspective of the ingredi‑
ents of mAbs, these drugs can be divided into four generations: 
a) Murine‑derived mAb drugs (‑momab); b) human‑murine 
chimeric mAb drugs (‑ximab); c) humanised mAb drugs 
(‑zumab); and d) fully human mAb drugs (‑mumab) (29).

According to the investigative report of the American 
Pharmaceutical Research and Producers Association, the 
antibody drugs currently under development and already on 
the market are summarised as follows. To date, the FDA has 
approved 108 mAb drugs, which have made a breakthrough in 
tumour immunotherapy and greatly improved the survival of 
patients with certain types of tumours and other diseases (24,39) 
(Table I). From the perspective of diseases, tumours, and auto‑
immune, infectious, endocrine, cardiovascular and neurological 
diseases are the six sectors with the largest market size, all worth 
billions of dollars (24,58) (Table II). In summary, mAbs have 
become a new force that cannot be ignored in biological drugs at 
present, and it will be the main force in the field of biomedicine 
in the future (239).

6. Prospects

In the past 30 years, from murine‑derived mAbs to fully human 
mAbs, the preparation of mAbs has made great progress. The 
research into human antibodies has made a breakthrough in the 
last 10 years, which has played an important role in medicine. 
Nowadays, mAbs are mainly used in the treatment of tumours, 
organ transplant rejection, autoimmune diseases and other diseases. 
Because of their good targeting, mAbs have a quick effect, small 
side effects and good effects. They are taking an increasing share 
in the sales of biotechnology drugs and have broad development 
prospects. However, the mature affinity of antibodies, the stability 
of antibodies secreted by human hybrid tumour cells and the mass 
production of antibodies still need to be solved.

With the development of the human genome project, the 
high specificity of mAbs has meant that they will play an 

irreplaceable role in the in‑depth study of the subtle structure 
of proteins. Additionally, the emergence of phage display tech‑
nology and ribosome display technology has greatly shortened 
the preparation cycle of mAbs and reduced their production 
costs. In addition, the safety of fully human mAbs has greatly 
promoted their wide application in the clinical treatment of 
infectious diseases, tumours, organ transplantation, haemato‑
logical diseases, toxic diseases, allergic diseases, autoimmune 
diseases and other aspects. It is believed that with the develop‑
ment of molecular biology technology, especially the murine 
antibody humanisation technology, antibody library tech‑
nology and transgenic technology, the clinical application of 
mAbs will become more extensive.
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