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Abstract

Background

Identifying conserved regions in protein sequences is a fundamental operation, occurring in

numerous sequence-driven analysis pipelines. It is used as a way to decode domain-rich

regions within proteins, to compute protein clusters, to annotate sequence function, and to

compute evolutionary relationships among protein sequences. A number of approaches

exist for identifying and characterizing protein families based on their domains, and

because domains represent conserved portions of a protein sequence, the primary compu-

tation involved in protein family characterization is identification of such conserved regions.

However, identifying conserved regions from large collections (millions) of protein

sequences presents significant challenges.

Methods

In this paper we present a new, alignment-free method for detecting conserved regions in

protein sequences called NADDA (No-Alignment Domain Detection Algorithm). Our method

exploits the abundance of exact matching short subsequences (k-mers) to quickly detect

conserved regions, and the power of machine learning is used to improve the prediction

accuracy of detection. We present a parallel implementation of NADDA using the MapRe-

duce framework and show that our method is highly scalable.

Results

We have compared NADDA with Pfam and InterPro databases. For known domains anno-

tated by Pfam, accuracy is 83%, sensitivity 96%, and specificity 44%. For sequences with

new domains not present in the training set an average accuracy of 63% is achieved when

compared to Pfam. A boost in results in comparison with InterPro demonstrates the ability

of NADDA to capture conserved regions beyond those present in Pfam. We have also com-

pared NADDA with ADDA and MKDOM2, assuming Pfam as ground-truth. On average

NADDA shows comparable accuracy, more balanced sensitivity and specificity, and being

alignment-free, is significantly faster. Excluding the one-time cost of training, runtimes on a
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single processor were 49s, 10,566s, and 456s for NADDA, ADDA, and MKDOM2, respec-

tively, for a data set comprised of approximately 2500 sequences.

Introduction
Proteins play a vital role in living organisms. They are the main players in metabolic pathways,
and to understand how cells work requires insight into the structure and knowledge of the
function of a protein. A plethora of research to determine the structure and function of pro-
teins has been conducted, but the rate of knowledge generated has grown much more slowly
than the universe of identified proteins has. For example, between two releases of the UniProt
Knowledgebase [1] (from release 2015_11 to 2015_12) only 287 sequences were added to the
Swissprot section, which contains curated protein sequences with high levels of annotation.
Over the same time period, the TrEMBL section (for automatically annotated sequences) has
been augmented with more than 590,000 protein sequences. The need for more accurate and
scalable automatic methods is compelling.

Variation in proteins comes from recombination and mutations in evolutionary modules
[2]. These modules are generally known as domains. A single protein is made up of one or
more domains. Thus, the detection of domains of protein sequences can be regarded as the ini-
tial step in domain family identification and protein clustering, which in turn can help in func-
tion and structure assignments. Accurate annotation of conserved regions, as building blocks
of protein sequences, can also contribute to construction of evolutionary trees.

Many current approaches perform the detection of sequence domains by detecting only puta-
tive regions and as a part of domain family identification, i.e., protein clustering based on
domains rather than as a separate question [3–5]. To the best of our knowledge there is no pub-
lished research concentrating only on detecting conserved regions in proteins. Although correla-
tion between the detection of domain regions and clustering based on domains appears to be
natural, one can argue that a cluster is a global property of the universe of proteins, but a domain
is a local property of each sequence which, as the definition suggests, needs to be common to
many sequences. Global approaches to domain family identification also often involve the expen-
sive operation of sequence alignment. Hence, fast and accurate detection of domain regions will
contribute to the global operation of clustering proteins, both by improving the accuracy of
detection and reducing runtime by removing expensive sequence alignment operations.

While the unprecedented growth in numbers of sequenced proteins has been a challenge for
integration of automated methods in proteomics, the abundance of sequences also presents us
with an opportunity: as the number of protein sequences containing domains increases, the fre-
quency of occurrence of a particular domain also increases, making it easier to detect. Our task,
then, is to extract high frequency regions from within the protein sequences. As we explain
fully below, for each sequence, our alignment-free method translates its level of similarity to
other sequences into a vector and then looks through each vector to detect the pattern within
its indices. While we introduced the idea of this translation into a vector in [6], our experi-
ments showed that our simple mathematical approach resulted in a heavy inter-dependence
between the parameters selected for the method and the protein sequences. Here, we improve
upon this previous work [6] by integrating a machine learning approach that reduces the
dependence on parameters while improving the accuracy. We have also augmented our work
with an extensive experimental results section in which we not only validate our proposed
method but also provide comparison of our results with the results of other existing methods.
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Related Work
While detection of structural domains as opposed to functional domains has been an area of
active research featured as a part of CASP experiments [7–9], the detection of sequence level
conserved regions has been mostly overshadowed by efforts to cluster proteins based on their
domain families [3–5]. In MKDOM2 [5], the shortest sequence (without repetitions) is marked
as a domain and then PSI-BLAST [10] is used to detect regions of high similarity with that
domain. Sequences containing regions similar to that domain are put in one cluster. The
detected sections are removed from the sequences and the same operation is repeated to find
other domains. The objective of MKDOM2 is expressed as identification of domain families
rather than detection of domain regions themselves. MKDOM2 is an improvement over
MKDOM [11] which in turn succeeded DOMAINER [12]. All three have been used to generate
the ProDom protein family database [13]. Parallelization of MKDOM2 has been implemented
using a master-worker structure [14].

In ADDA [3], an all vs. all BLAST [15] is performed on the entire data set. Based on the
results of BLAST, a tree of putative domain regions is generated for each sequence. An optimi-
zation target is then used to find the final partitioning for each sequence. Unification is per-
formed to construct a new graph based on final partitions and to cluster similar proteins
together. In ADDA, domain boundary assessments are performed using the trees of putative
domains. However, the final goal being domain family enumeration, unification is a crucial
step and can possibly improve the partitions. An implementation of construction of ADDA
putative domain trees of protein sequences from their all vs. all BLAST results has also been
presented with support for parallel/multi-threaded executions.

In EVEREST [4] an all vs. all BLAST on the data set is followed by runs of the Smith-
Waterman algorithm [16] on the selected sequences to generate a set of putative domain
regions. After applying a series of different methods, including clustering the sequences based
on detected putative domain regions, filtering low-scoring clusters using a boosting machine
learning technique, and profile construction using ClustalW for each cluster, EVEREST finds
a set of HMM profiles. The segments detected by these profiles replace the initial putative
domain list and correspond to suggested domain families. This operation is repeated
iteratively.

As can be seen, all three of these approaches focus on domain family identification rather
than domain region detection, but they also use some methods for detection of putative
domain regions as a preliminary operation for their final objective.

In this paper we present NADDA (No-Alignment Domain Detection Algorithm), an align-
ment-free, scalable method for detection of conserved regions in proteins. In the next section
we present our approach to the problem. In the Results section we evaluate our method and
compare its results with other methods. We conclude the paper by a brief discussion on what
we achieved and prospective future work.

Methods
Given a set S of n sequences, the problem of conserved region detection of protein sequences
can be expressed as the demarcation of subsequences in each of the n sequences such that these
subsequences are preserved over the evolutionary process. The preservation of these subse-
quences can be identified by a high local similarity score when the protein is aligned with other
proteins of the same family. These conserved subsequences appear as motifs and sequence
domains. Our method uses the frequency of short exact matching subsequences (k-mers) of a
protein sequence in the data set as an indicator of the existence of a conserved region in the
vicinity of that k-mer.

NADDA: Alignment-Free Detection of Protein Conserved Regions
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Problem Definition:
Notation: Given a sequence s, we denote the ith character of s by s[i] and the substring of

length l that starts at index i of s by s(i, l). We denote the length of a sequence s by |s|. A k-mer
is a string of length k.

Additionally, let S = {s1, s2, . . ., sn} denote an input set of n protein sequences. We define:
Definition 1 k-mer frequency: The frequency of a k-mer in S is defined as the number of

sequences in S that contain that k-mer at least once.
A conserved window is then a substring of length r, centered at index i, where the average

frequencies of k-mers in that substring is above a certain threshold τ. However, this definition
is heavily dependent on the values of the threshold (τ) and the window size (r). To compensate
for these limitations, we consider a smaller resolution of regions—indices. For each index i we
consider a window of size 2 × w + 1 centered at i, and based on the frequency of k-mers inside
this window we decide whether or not index i is part of a conserved region. The decision based
on k-mer frequencies is not dependent on a single threshold τ; rather we find a set of thresholds
{τ1, τ2, . . ., τ2×w+1} where τj is used as a threshold for the jth k-mer in the window, i.e., the k-
mer originating at index i − w + j − 1 of the sequence. This set of thresholds is found using our
machine learning algorithm, and the prediction is also made by a combination of comparisons
based on the thresholds.

Definition 2 Conserved Region: Given a sequence s 2 S, a substring s(i, l) is said to be a con-
served region if:

1. (conservation) every s[j] for j 2 [i, i + l] is a conserved index, and

2. (maximality) neither the index s[i − 1] nor the index s[i + l + 1] (if either exists) is a conserved
index.

From the problem definition above, a simple approach is to compare each pair of sequences

(
n

2

 !
pairs) and use the results to annotate the sequences with their conserved areas. To per-

form the alignment, one can use methods such as the Smith-Waterman local alignment [16] or
related heuristics such as PSI-BLAST [10, 15]. However, these approaches are not scalable
when |S| is large. Instead we generate a new representative vector for each sequence—k-mer
profile as defined below—and perform a binary classification using feature vectors obtained
from this representation. Rather than dissecting the sequence itself we dissect the profile vector
into putative conserved regions and map these conserved regions onto the same indices of the
sequence. As we will see in the Results section, the detected putative conserved regions widely
correspond to the sequence domain regions of the sequences as they are annotated in well-
known protein domain databases.

Definition 3 k-mer profile: The k-mer profile of a sequence s is a vector of the length of the
sequence, where the value of each index is the frequency of the k-mer originating at that index
in s.

The problem of parsing a profile vector into putative conserved regions can be translated
into a classification problem in which the task is to decide whether or not each index of the vec-
tor should be included in a conserved region. We generate an instance for each index of the
profile vector and use a trained model to predict whether it belongs to a conserved region; this
is a binary classification problem. Because the trained model depends only on the frequency
values of each index in its profile vector rather than on the amino acid elements themselves,
once we have a well-trained model it can be used for de novo detection of conserved regions.
The details for each of these steps is explained below.

NADDA: Alignment-Free Detection of Protein Conserved Regions
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Sequence k-mer Profile Generation
A k-mer profile is an alternative representation of a protein sequence. To construct a k-mer
profile we need to count the number of times every k-mer appears in different sequences in our
data set and record the counts at the same index at which the k-mer originates in the profile
vector. We approach the problem using a two-pass hashing procedure. First, the algorithm
reads every protein sequence and for each position index of the sequence computes the k-mer
starting at that index. The computed k-mer is then used as a hash key to store the position
index number and sequence ID for that k-mer in the hash table. If a k-mer appears multiple
times in a sequence, we store all appearances as one entry in the hash table. Thus, the frequency
of each k-mer in the data set will equal the number of entries stored for that k-mer in the hash
table. When reading of the sequences has been completed, we enter the second pass of the algo-
rithm. The algorithm uses the sequence IDs stored as hash values in the first hash table as the
keys to construct a second hash table. The value of each sequence ID (hash key) in the second
hash table is the originating index of each k-mer in that sequence along with the frequency of
that k-mer. By ordering these frequencies in the hash table based on the index numbers, we
essentially generate the k-mer profile for each sequence. The serial computation time for this
step is O(N), where N is the total length of the n sequences in the data set. Because the opera-
tion on one sequence is independent of another, the algorithm is easily parallelizable. Later in
this section we present a MapReduce [17] implementation.

Classification Instance Generation
At the conclusion of the first step we have a set of k-mer profiles that are vectors with index val-
ues equal to the number of sequences in the data set that contain the k-mer initiating on the
same index in the sequences. The next step is to generate classificaton instances for each index
in each sequence of the k-mer profiles. Conversion of k-mer profiles to classification instances
allows us to first train a binary classificaton model using known domain data and then to use
the model to predict new domains. Given the k-mer profile p for sequence s, we generate one
classification instance per index i in s. For such a profile and index, our classification instance
is a vector v consisting of 2w + 1 elements (features) where the 2w + 1 elements are derived
directly from the profile vector by copying the values from the window centered on index i of p
and extending from both sides for w indices. These features represent the frequency of k-mers
initiating at indices [i − w, i + w] of the corresponding protein sequence.

Classification Model Construction
We train the classification model using classification instances that include a class label indicat-
ing whether or not the index associated with the instance is conserved. This is determined by
querying domain databases. We also use these instances to test our model. Given the integer-
valued features of our problem, the need to handle large data sets, and the non-linearity of the
problem (due to the variable level of conservation among different domains), decision trees
[18, 19] seem to be a natural choice to use for training the model. They support automatic fea-
ture selection and can learn different thresholds for different features. However, for small w the
decision tree will not be able to see the overall picture of the k-mer profile and the model will
lose robustness. The tree will be inclined to classify any short-lived increase in frequency as a
domain index or a small local fall in frequency as a demonstration of absence of a conserved
region. On the other hand, a larger w can result in overfitting the training data. To overcome
the disadvantages of a simple decision tree classifier, we use a Random Subspace ensemble
method [20] for which the base estimators are decision trees. This ensemble method constructs
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multiple decision trees on random subsets of features and classifies an instance based on the
majority vote of the decision trees.

Because we are using k-mer profiles in our training set rather than actual protein amino
acid sequences, our model depends only on frequencies (the values in the k-mer profiles) rather
than on the amino acids. As a consequence, it can detect new conserved regions that were not
present in our training set, given that there are enough sequences in the data set containing the
conserved region to ensure the high frequency of k-mers in that region. In other words our
algorithm is able to detect conserved regions that are present in multiple sequences in our data
set, even if they were not annotated previously.

On the other hand, because the model is trained only once and we require accurate perfor-
mance from that model when presented with new data, the selection of a good training set is
crucial to the algorithm. First, the presence of conserved regions in too few sequences in the
training set will result in small values in the k-mer profile and can be misleading to the training
algorithm. Second, as we increase the size of the training set, we will be adding robustness to
the trained classifier because conserved regions with varying frequency profiles will be repre-
sented in the training set. Using a large data set acquired from any of the big databases of pro-
tein conserved regions as our training set will satisfy both our conditions for the training set
and will enable our algorithm to detect new conserved regions.

MapReduce Algorithm for Profile Generation
We implement our algorithm in the MapReduce framework [17]. A MapReduce program con-
sists of two main functions ofmap and reduce. In the map phase a set of mapper tasks generate
KeyValues based on the input. These KeyValue objects are hashed based on their key and redis-
tributed based on the result of the hash. The intermediate hash-based grouping phase is called
the shuffle phase. Each reducer task then processes the set of values that are hashed to the same
key. A reducer, in turn, can also generate KeyValue objects. The MapReduce paradigm suits
data-parallel applications naturally. For our purpose, we exploit the shuffle phase to implement
many of our hash-based functionalities in parallel.

In our MapReduce algorithm, initially each mapper reads the input set of sequences. It then
generates KeyValue pairs using the k-mers of the sequences as keys and sequence ids and k-
mer positions as values. The shuffle step subsequently sorts and redistributes these KeyValues
such that each reducer receives one KeyMultiValue object, where all the values corresponding
to the same key are sent to a single reducer. Based on the number of different sequence ids
present in its MultiValue, each reducer determines the frequency of the k-mer mapped to it
and emits a KeyValue, where the key is the sequence id and the value is the frequency of the k-
mer and the position of the k-mer in that sequence. After this first complete stage of MapRe-
duce, each reducer will contain frequencies of k-mers for each position in one protein sequence
and can construct the k-mer profile for that sequence. The algorithm for this step is shown in
Algorithm 1.

Algorithm 1 Construction of k-mer profile (S:{s1, s2, . . ., sn}, k)

for each sequence si 2 S with id si
id do

for each index j in si do
s0 = si(j, k)
emit KeyValue KV ¼< s0; ðj;si

idÞ >
end for

end for
shuffle all KV’s
for each KeyMultiValue KMV ¼< s0; ðj;si

idÞ; ðm;sk
idÞ; . . . ; ðk;sl

idÞ > do
count = number of different sid in the KMV

NADDA: Alignment-Free Detection of Protein Conserved Regions
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for each value V ¼ ðj;sp
idÞ in KMV do

emit KeyValue< sp
id; ðj;countÞ >

end for
end for
shuffle all KV’s
for each KMV ¼< si

id ; ðj1;countj1Þ; ðj2;countj2Þ; . . . > do
sort values based on j’s
return the counts based on sorted j’s

end for

Implementation and Software Availability
We have implemented our method, NADDA, in C++ and Python. The C++ code uses the
MRMPI library [21] for MapReduce and the BOOST library. The Python code uses the scikit-
learn (v. 0.17) machine learning library [22]. Software is available as open source at https://
bitbucket.org/armenabnousi/nadda.

Results

Experimental Setup
Eleven different data sets were used for our experiments, one consisting of approximately
50,000 bacterial protein sequences and the remainder consisting of smaller sets of a few thou-
sand protein sequences each. Some of the latter sets consist entirely of bacterial protein
sequences; others are mixtures of sequences from bacteria, eukaryota, and archaea. The num-
ber of sequences and percentage of bacterial sequences in each of the smaller sets are listed in
Table 1. More information regarding the domains in each of these is shown in Tables 2 to 11.
The smaller sets (#1-#10) were used to evaluate de novo detection of conserved regions with
our model and to compare it with MKDOM2 [5], ADDA [3], and InterPro [23]. The large data

Table 1. Structure of small data sets (#1-#10) used for evaluation of de novo detection of conserved
regions and for runtime studies.

Data Set #sequences % bacteria % archaea % eukaryota

#1 1,424 100% 0% 0%

#2 1,542 100% 0% 0%

#3 1,479 100% 0% 0%

#4 1,494 100% 0% 0%

#5 2,037 95.4% 2.6% 2.0%

#6 808 93.1% 3.4% 3.5%

#7 2,565 63.4% 1.2% 35.4%

#8 2,031 48.9% 0 51.1%

#9 2,138 29.5% 1.7% 68.8%

#10 1,938 11.4% 1.8% 86.8%

doi:10.1371/journal.pone.0161338.t001

Table 2. Data Set #1.

Domain Name #sequences

FAD_binding_9 750

FixS 350

Gas_vesicle 368

total 1,424

doi:10.1371/journal.pone.0161338.t002
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Table 3. Data Set #2.

Domain Name #sequences

Caa3_CtaG 499

Dak1_2 699

dCache_3 351

total 1,542

doi:10.1371/journal.pone.0161338.t003

Table 4. Data Set #3.

Domain Name #sequences

XisI 213

NapB 179

EutN_CcmL 330

LptC 823

total 1,479

doi:10.1371/journal.pone.0161338.t004

Table 5. Data Set #4.

Domain Name #sequences

EpsG 313

RcnB 207

FlgN 542

Lipoprotein_17 353

LolA_like 344

total 1,494

doi:10.1371/journal.pone.0161338.t005

Table 6. Data Set #5.

Domain Name #sequences

NA37 384

DbpA 1,232

AAA_PrkA 426

total 2,037

doi:10.1371/journal.pone.0161338.t006

Table 7. Data Set #6.

Domain Name #sequences

NA37 384

AAA_PrkA 426

total 808

doi:10.1371/journal.pone.0161338.t007

Table 8. Data Set #7.

Domain Name #sequences

Rad4 693

YccF 1,034

DbpA 1,232

total 2,565

doi:10.1371/journal.pone.0161338.t008
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set #11 (Table 12) was used to train and test our classification model. Because both MKDOM2
and ADDA require sequence alignment, an expensive operation, it was infeasible for us to con-
duct a comparison using our largest data set. For example, MKDOM2 had not completed its
run on data set #11 after 20 days. It should also be noted that both methods focus on clustering
proteins based on domain families rather than on detection of conserved regions. MKDOM2

Table 11. Data Set #10.

Domain Name #sequences

Has-barrel 135

EccE 122

EFhand_Ca_insen 724

KA1 959

total 1,938

doi:10.1371/journal.pone.0161338.t011

Table 12. Common bacterial protein domains used for construction of data set #11.

Protein Domain Name Number of Sequences

TOP1Bc 11,545

CBM_2 726

ZnMc 2,967

ZipA_C 1,508

HLH 16

NADH-G_4Fe-4S_3 5,476

POLAc 7,110

PP2Ac 907

Resolvase 16,007

S_TKc 1,519

Endonuclease_NS 2,435

total 50,214

doi:10.1371/journal.pone.0161338.t012

Table 10. Data Set #9.

Domain Name #sequences

AAA_PrkA 426

Dnal_N 140

FTCD 262

FACT-Spt16_Nlob 433

SAD_SRA 890

total 2,138

doi:10.1371/journal.pone.0161338.t010

Table 9. Data Set #8.

Domain Name #sequences

RbsD_FucU 567

Vasohibin 180

NA37 384

Ndc1_Nup 431

total 2,031

doi:10.1371/journal.pone.0161338.t009
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clusters are generated based on regions in sequences with high sequence similarity. These
regions represent conserved regions as defined earlier. Similarly, as an initial step ADDA
selects some putative domain regions. An optimization objective is then used to generate final
domain boundaries on each sequence. These boundaries are later used to construct a graph
and perform clustering. While each identified region (indices enclosed between two consecu-
tive boundaries) is expected to contain exactly one domain, because they are used as an inter-
mediate result ADDA does not guarantee that a complete domain will be captured in each
domain region predicted by the optimization procedure (i.e., it does not guarantee that there
will not be any non-domain indices inside the predicted region). However, a comparison can
still be made.

To obtain our large data set (#11), we queried the SMART [24] protein domain database
(http://smart.embl-heidelberg.de) using eleven common bacterial protein domains listed in
Table 12. This resulted in a list of 50,214 bacterial protein sequences that included one or more
of the eleven domains. We then queried Pfam-A [25] release 29.0 with each of these sequences
and labeled the domain indices to use as ground-truth for our training instances. For the
smaller mixed protein data sets, we randomly selected some protein families through the Pfam
webpage (http://pfam.xfam.org; v.29) and then ran Pfam 29.0 on those sequences to mark their
Pfam domain regions. Similarly, for the predominantly bacterial protein data sets, we either
randomly identified bacterial protein families through the Pfam webpage or else used domains
from the other data sets that had a high bacterial percentage. Again, we marked their domain
regions using Pfam 29.0. Tables 2 to 11 show the protein families selected from the Pfam online
database and the number of sequences present in each data set. Totals in these tables are com-
puted after removing common redundant sequences. We then queried InterPro (v5.18-57)
using each of our 10 smaller data sets.

Comparisons were performed based on the coverage of the domain indices reported by
Pfam-A in our findings and in the MKDOM2 and ADDA results as well as on the coverage of
conserved region indices reported by InterPro in the NADDA results. We measured coverage
using the three values of accuracy (AC), specificity (SP), and sensitivity (SN) of the detected
conserved indices as defined respectively by:

AC ¼ jTPj þ jTNj
N

SN ¼ jTPj
jTPj þ jFNj

SP ¼ jTNj
jTNj þ jFPj

where TP, true positives, indicate the indices in the data set that are marked as part of a domain
region in Pfam-A, and the detection method also has classified them as conserved indices; TN,
true negatives, are the indices that both Pfam-A and the conserved region detection method
have not included in any domain/conserved region; FP, false positives, are the indices that are
not marked by Pfam-A as contained in a domain, but the detection method has classified them
as conserved indices; and FN, false negatives, are the indices that are included in a Pfam-A
domain, but the detection method has fallen short of identifying them as conserved. Finally, N
is the total length of the sequences in the set (N = |TP| + |TN| + |FP| + |FN|).

For our experiments, unless otherwise stated, values for w (where 2w + 1 is the size of the
feature vector), k (size of each k-mer),MSS (which indicates the level of pruning of the decision
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tree—minimum number of instances in each internal node), andmax_features (number of fea-
tures used in each decision tree for the ensemble method) are set respectively to 10, 6, 100, and
7. We discuss parameter selection in greater detail in the Supporting Information (S1 File).

Evaluation of Results
We evaluate our results in three phases. First, we evaluate our training method by partitioning
data set #11 into training and test sets. This is the common practice in the machine learning
community for evaluation of a training method. The second phase includes comprehensive
experiments evaluating overall performance of NADDA by testing it using data sets with
domains that are new to NADDA (data sets #1—#10). Here we also compare NADDA with
ADDA and MKDOM2. Finally, in the third phase, we compare NADDA against InterPro, re-
evaluating its ability to capture regions that are missed in Pfam. In addition, we provide some
example sequences from data sets #1-#10, comparing our detected conserved regions with the
segments annotated by InterPro.

Evaluating the training method: In the first phase of our experiments we perform two dif-
ferent types of training-set/test-set partitioning of data set #11, training the model on a training
set and measuring the results on a test set. First, we divide data set #11 by randomly selecting
20% of the sequences to be included in the test set and the rest in the training set. The second
partitioning is performed by selecting 20% of the domains from data set #11 that are present in
more than 50 sequences and including every sequence that contains one (or more) of these
selected domains in the test set. The reason for setting a threshold for presence of a domain in
a sequence in order to be considered a candidate for the test set is explained in the Supporting
Information section(S2 File). We refer to the first train/test partition as repetitive and the sec-
ond one as non-repetitive. The reason for the two different partitions is that while our repeti-
tive partitioning method is widely accepted in the machine learning community, here it can
result in overfitting. Because our method depends on the frequency of repeating k-mers, we
require that multiple sequences possibly very similar to each other be present in our data set.
Dividing the data based on random selection of sequences might result in having similar
sequences in the training and test sets. The results achieved might then represent the case when
the domain in the query sequence has already been discovered in similar sequences and we are
only trying to retrieve this knowledge. In contrast, for our non-repetitive partitioning, because
we withhold a set of domains from the training set, the results are better representative of dis-
covering new domains that were not previously known as well as domains that were previously
known. This partition is better representative of the results we would obtain using the current
knowledge-base of protein conserved regions for new sequences.

The results for the two sets are shown in Table 13. For the repetitive case the accuracy is
83% with 96% recall (sensitivity). For the non-repetitive case, as expected, the numbers
decrease. However, we can still predict with 80% accuracy whether or not a location in a pro-
tein sequence is included in a conserved region.

Comparison with other methods against Pfam: In the second phase of the evaluation we
compare our results with final sequence segments produced by MKDOM2 in clustering based

Table 13. Performance of NADDA based on Pfam;When similar domains are present in the training
set (repetitive) and when some domains are withheld from the training set (non-repetitive).

AC SN SP

Repetitive 83.4% 96.9% 44.1%

Non-repetitive 80.5% 95.7% 25.3%

doi:10.1371/journal.pone.0161338.t013
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on domain families and with final partitions found by the optimization method used in ADDA
assuming that Pfam domains represent the ground-truth. As mentioned earlier, MKDOM2
performs clustering by selecting the shortest possible subsequence to be considered as a con-
served region and aligning that subsequence with the remaining sequences. The final reported
subsequences that have been aligned with each other represent conserved regions on the
sequences and can be compared to our detected conserved regions. Similarly, ADDA performs
clustering by first selecting a set of putative domain regions and optimizing the boundaries
between these provisional domains to construct a protein similarity graph based on detected
domains. Although clustering is performed after graph construction and additional filters in
these later steps can affect the quality of ADDA clustering, we can use the optimized domain
boundaries to compare their pre-computed domains with our method.

We trained our model using data set #11 and tested using data sets #1-#10. Because other
methods depend on pairwise sequence similarity and BLAST results, we were forced to pick
smaller sets for testing purposes. As mentioned earlier, MKDOM2 ran for 20 days on data set
#11 without completion, and ADDA took long even for the small data sets as we will show later
in Runtime Study section. We used MKDOM2 from the Xdom2.0 [5] package and the ADDA
implementation obtained from its webpage (using the default settings: K = 73.70676,
C = 8.33957, E = 0.05273,M = 1.417, N = 0.008 and r = 1, except for 100 maximum iterations
(i = 100); in many of the cases the program stopped after only a few iterations. We also used
BLAST+ v2.2.31 to generate the input files for ADDA). Fig 1 represents our findings. The circle
displays our three metrics of accuracy (AC), sensitivity (SN), and specificity (SP) for the three
different methods: ADDA (blue), MKDOM2 (green), and NADDA (red). The outermost circle
represents 100% of the related measure and the center of the circle represents 0%. For each sec-
tion (AC, SN, and SP) the bacterial percentage of the protein sequences in the data set for each
point decreases in the clockwise direction; the first four points in each section correspond to
100% bacterial data sets. Table 14 shows the detailed results for the same measurements.
NADDA shows higher accuracy for all but two of the test sets when compared to MKDOM2
and higher or comparable accuracy for many of the sets when compared to ADDA. MKDOM2

Fig 1. Comparison of results from NADDA, ADDA, and MKDOM2with Pfam on small data sets.
(AC = accuracy, SN = sensitivity, SP = specificity).

doi:10.1371/journal.pone.0161338.g001
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generally has better specificity scores (average 60.7%) than both ADDA and NADDA while its
sensitivity scores are worse (average 51.5%). The advantage of specificity over sensitivity in
MKDOM2 may be a result of two factors. First, MKDOM2 uses a high-cut off value in PSI--
BLAST for the sake of runtime during its heuristic sequence alignment, thereby trading off sen-
sitivity. Second, the greedy nature of the MKDOM2 algorithm inhibits precise detection of
domain regions. ADDA shows higher than 99% sensitivity in all cases but very low specificity
(4.6% on average). This is because the optimization method in ADDA tries to detect putative
domain boundaries rather than domains themselves and the results are later used for graph
construction together with some filters in order to achieve final clustering. As a result, ADDA
does not care about mislabeling extra positions as long as the boundary between two domains
is preserved. These extra indices could possibly be filtered in the graph construction and clus-
tering process.

In comparison to the other two methods, we can see that for 4 out of 10 test sets, NADDA
exhibits higher than 80% sensitivity. The sensitivity is significantly low for data sets #3 and #4.
It is noticeable that for these sets the mean and variance for the k-mer frequency are also
smaller than for the other sets. In general there is a correlation between the accuracy of our
method and the variance of the k-mer frequency. In fact, the frequency variance depends on
our choice of k, and it will increase as k is decreased. However, if k is too small, the variance
will be high due to random exact matches that do not signify real conservation. This is dis-
cussed further in the Supporting Information section (S3 File).

Comparison against InterPro: In the last phase of our evaluation, we compare conserved
indices detected by NADDA with regions annotated by InterPro [23]. InterPro uses predictive
models (signatures) generated from multiple databases, including Pfam, SMART, ProDom
[13], prosite [26], TIGRFAMs [27], etc. InterPro annotates domains as well as motifs (short
conserved regions). As such, there should be more similarity between NADDA and InterPro.
We compared our results with InterPro regions. The results are shown in Fig 2. Because Inter-
Pro includes Pfam, replacing our Pfam annotations with InterPro annotations will only add to
the indices marked as conserved in our data sets. This can be manifested by a decrease in our
|FP| and |TN|. Indices that we had marked as conserved but Pfam had not might be detected as
conserved in InterPro as well, resulting in a smaller |FP|. Similarly indices that neither
NADDA nor Pfam detected as conserved might be marked as conserved in InterPro, resulting
in a decrease in |TN|. A decrease in |FP| will result in improved SP.

Table 14. Performance of the algorithm compared to other methods based on Pfam.

Data Set Percentage Bacterial Mean Freq. Freq. Variance NADDA ADDA MKDOM2

AC SN SP AC SN SP AC SN SP

#1 100% 5.9 169.1 64.9% 61.9% 73.0% 82.7% 99.5% 3.7% 45.4% 35.5% 72.0%

#2 100% 13.4 3,386.4 65.1% 61.1% 73.5% 78.1% 99.6% 4.9% 36.9% 25.0% 61.8%

#3 100% 2.5 30.2 47.8% 37.2% 94.5% 82.7% 99.4% 9.3% 72.7% 77.5% 51.4%

#4 100% 1.4 3.3 42.6% 12.5% 86.2% 69.1% 99.0% 3.1% 50.9% 54.7% 42.7%

#5 95.4% 36.3 13,466.3 76.3% 85.7% 48.9% 74.6% 99.9% 2.2% 55.8% 56.0% 54.9%

#6 93.1% 23.7 1,833.9 78.9% 79.7% 67.6% 93.3% 99.8% 6.5% 25.4% 23.7% 47.5%

#7 63.4% 25.2 9,628.8 64.5% 86.6% 42.6% 51.0% 99.5% 3.3% 62.8% 60.4% 65.1%

#8 48.9% 10.8 522.6 58.6% 66.1% 45.1% 65.9% 99.4% 5.5% 56.6% 48.9% 70.7%

#9 29.5% 18.2 1,108.6 69.1% 86.3% 37.4% 66.1% 99.5% 4.2% 46.5% 33.7% 70.3%

#10 11.4% 54.8 7,183.5 65.0% 90.4% 29.9% 59.7% 99.5% 3.5% 62.5% 56.5% 70.9%

Average 74.17% 19.22 3,733.26 63.3% 66.7% 59.9% 72.3% 99.5% 4.6% 51.5% 47.1% 60.7%

doi:10.1371/journal.pone.0161338.t014
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It should also be noted that for this comparison we are still using the model trained using
Pfam annotations for data set #11. Although this can add to the false examples in the training
set, the results show an increase in SP as expected, indicating the robustness of our training
method.

Fig 3 shows some example results from our experiments. Training is performed using data
set #11, while the sequences shown are from the smaller data sets (#1-#10). The domains pres-
ent in the smaller data sets are not present in the training set. These examples demonstrate that
in many of the indices, the output from NADDAmatches with the InterPro annotated regions.

Parametric Study
The parameters used in our method are k, the size of a k-mer; w, where 2w + 1 is the number of
features used in a classification instance;MSS, indicates the level of pruning of the decision
tree; andmaximum_features, number of features used in the ensemble method. The parame-
ters w,MSS, andmaximum_features were set to avoid overfitting and underfitting as explained
in the Supporting Information (S1 File). The optimal value for k was found empirically from
the set {3, 4, 5, 6, 7, 8}. We have shown the effect of varying k in the Supporting Information
(S3 File). Varying k affects the mean frequency of k-mers as well as their variance and, thus, is
important in the performance of the method.

Runtime Study
We performed a runtime study by comparing the time for a serial run of NADDA with that of
ADDA and MKDOM2 and also by a scalability evaluation of NADDA in a parallel
environment.

We ran the algorithms on our in-house Linux cluster which includes 8 nodes of 64 AMD
processors (2.29GHz), each node having 128GB shared memory. We used ADDA and
MKDOM2 implementations as described earlier.

Fig 2. Comparison of NADDAwith InterPro and Pfam using small data sets. (AC = accuracy,
SN = sensitivity, SP = specificity).

doi:10.1371/journal.pone.0161338.g002
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Table 15 lists a comparison of runtimes for NADDA, ADDA, and MKDOM2 for data set #7
on a single processor. The runtime for our method does not include the one-time training
time. The ADDA runtime presented in Table 15 includes the time required for running
BLAST.

We can see that even for a small set of about 2,500 sequences, NADDA finishes much more
quickly than the other methods. We ran the parallel implementation of our code on data set
#11 (50,000 sequences) and showed that it scales nearly linearly with an increasing number of
processors (Fig 4). NADDA took 79 seconds using 32 processors to complete this data set
given an already trained model. Training was not parallelized and on data set #1 took 61 min-
utes. Parallel constructions for decision trees are proposed [28–30]. A detailed study of our par-
allel runtime is presented in the Supporting Information section S4 File.

Fig 3. Comparison between the NADDA outputs and InterPro annotations for a few example sequences.

doi:10.1371/journal.pone.0161338.g003

Table 15. Runtimes of different methods for Data Set #7. The times represented here are for a serial run,
i.e., single core. As shown in Fig 4, NADDA scales almost linearly in the number of cores, allowing the use of
the method on even larger data sets.

Method Time (s)

NADDA 49

ADDA 10,566

MKDOM2 456

doi:10.1371/journal.pone.0161338.t015
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Conclusions and Future Work
We presented the problem of detection of conserved regions in protein sequences. In the past,
multiple methods have been proposed for detection of putative domain regions from protein
sequences. However, to the best of our knowledge there is no prior work that focuses on the
detection of conserved regions, given a large collection of protein sequences. The method pro-
posed in this paper fills this gap using an alignment-free approach.

We showed that rather than using an amino acid sequence of a protein, we can utilize its
vectorized representation for our computation. We presented k-mer profiles of proteins as a
new representation for protein sequences which can be useful for increasing the scalability of
computation. We presented a MapReduce algorithm for generation of k-mer profiles. We used
a random subspace ensemble learning method to improve the accuracy of conserved region
detection.

Our experiments show competitive accuracy, sensitivity, and specificity measures for our
method when compared to other methods. We also showed that our parallel implementation is
scalable and works on large data sets. Our experiments show near-linear speedup.

We showed that our method is able to detect conserved regions of bacterial protein
sequences as well as conserved regions of eukaryota and archaea protein sequences. The cate-
gory of the species does not affect the results of our method. Moreover, we showed that vari-
ance of the k-mers from their mean has a correlation with the ability of our method to detect
conserved regions. When the variance is low, we may be able to decrease k to obtain higher var-
iance and consequently higher accuracy. Extremely small values of k, however, can result in
higher variance due to random exact matches and should be avoided.

Fig 4. Speedup for parallel execution of NADDA on data set #11. The dotted line shows the ideal linear speedup; the
solid line is the actual speedup using NADDA.

doi:10.1371/journal.pone.0161338.g004
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Use of structured prediction techniques might increase the accuracy of our algorithm. How-
ever, a structured prediction model will likely give higher weights to the context (previous pre-
dictions) rather than to other features. Another problem with use of different machine learning
algorithms is the large scale of our data.

The iterative MapReduce algorithm fits best in the Spark parallel computing model [31]
which also provides machine learning tools. In future work, we will implement our algorithm
using the Spark paradigm.

Supporting Information
S1 File. Parameter Selection.
(PDF)

S2 File. Partitioning the Data Set.
(PDF)

S3 File. Varying the k-mer Size.
(PDF)

S4 File. Parallel Performance.
(PDF)
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