
metabolites

H

OH

OH

Review

Resolving Metabolic Heterogeneity in Experimental
Models of the Tumor Microenvironment from a
Stable Isotope Resolved Metabolomics Perspective

Teresa W. -M. Fan 1,2,*, Richard M. Higashi 1,2, Yelena Chernayavskaya 1 and
Andrew N. Lane 1,2,*

1 Center for Environmental and Systems Biochemistry, Lexington, KY 40536, USA;
rick.higashi@uky.edu (R.M.H.); ych354@uky.edu (Y.C.)

2 Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
* Correspondence: Teresa.fan@uky.edu (T.W.-M.F.); Andrew.lane@uky.edu (A.N.L.)

Received: 17 April 2020; Accepted: 4 June 2020; Published: 15 June 2020
����������
�������

Abstract: The tumor microenvironment (TME) comprises complex interactions of multiple cell types
that determines cell behavior and metabolism such as nutrient competition and immune suppression.
We discuss the various types of heterogeneity that exist in solid tumors, and the complications this
invokes for studies of TME. As human subjects and in vivo model systems are complex and difficult
to manipulate, simpler 3D model systems that are compatible with flexible experimental control are
necessary for studying metabolic regulation in TME. Stable Isotope Resolved Metabolomics (SIRM) is
a valuable tool for tracing metabolic networks in complex systems, but at present does not directly
address heterogeneous metabolism at the individual cell level. We compare the advantages and
disadvantages of different model systems for SIRM experiments, with a focus on lung cancer cells,
their interactions with macrophages and T cells, and their response to modulators in the immune
microenvironment. We describe the experimental set up, illustrate results from 3D cultures and
co-cultures of lung cancer cells with human macrophages, and outline strategies to address the
heterogeneous TME.

Keywords: tumor microenvironment; 3D cultures; tissue slices; stable isotope resolved metabolomics

1. Introduction

1.1. Heterogeneity in the Tumor Microenvironment (TME)

Most tissues and solid tumors are highly heterogeneous at the molecular, cellular, and regional
levels, as well as across entire organ. Thus, heterogeneity is the rule rather than the exception. Table 1
summarizes some of the known types of heterogeneity in solid tumors [1–13].
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Table 1. Tumor tissue heterogeneity. Scale refers to the size of the unit, from individual cells (local) to
groups of cells or tissue (regional) to global (organism).

Scale Heterogeneity Examples Refs.

Global Cell types
Normal and transformed epithelia, fibroblasts,

endothelia, and resident and infiltrating
immune cells.

Figure 1; [14,15]

Regional Cancer cellularity < 10 - > 90% of total cells [16,17]

Regional vascularity
Restricted flow -> local hypoxia, nutrient

deprivation, waste buildup; gradients in IF
impacts on cell gene expression.

[18–21]

Regional/local Disrupted ECM and
tissue organization

Altered cell interactions: impacts on cell gene
expression. [21,22]

Regional/local Cell–cell interactions

Direct cell contacts versus interaction via
diffusible molecules: altered behavior of T cells,

macrophage polarization (TAMs), and
fibroblast activity (CAFs).

[23,24]

Global Cell–cell interactions

Tissue polarity impacts cell function by
position - cells or groups of cells have different
metabolic activities according to position, and

different cell types have different metabolic
activities. The “intrinsic” metabolic phenotypes
of cells are greatly influenced by interactions

within heterogeneous tissues.

[25,26]

Regional/local Cell distribution
Cell distribution is highly heterogeneous

(clumps and voids—regional versus cellular
heterogeneity).

Figure 1; [27,28]

Local Cells

Cells within tumors may have different
expression patterns as well as different genome

alterations. Expression patterns may vary in
part from environmental influences on

epigenetics (chromatin structure).

[24,29,30]

Regional Necrosis Heterogeneous because of variable necrosis in
different regions of the tumor [31]

Organ Tissue-dependent
tumors; subtypes

Tumors of the same tissue origin are
heterogeneous—subtypes (adeno versus

squamous versus NET etc.) that are
characterized by different functional properties.

Some subtypes can interconvert (cf. lung
adenosquamous phenotype). Cancer cells can
also undergo EMT. Cells may de-differentiate

or even trans differentiate.

[32–38]

Local Cell structure Cells are compartmented and heterogeneous. [39]

Heterogeneity imposes many problems for detailed analysis of the molecular and cellular behavior
of solid tumors, partly because of technical limitations. This is critical to the fundamental understanding
of tumor biology and the design of therapeutic strategies. Nevertheless, considerable progress is
being made via single cell analyses of genome, transcriptome [13,21,22,40–49], proteome [50–52],
and metabolome [8,52–57]. Although spatially resolved single cell metabolism has long been studied
by live cell microscopy, the number of metabolites that can be detected and quantified is very
limited [58–61]. The more recent single cell metabolomics development can capture more metabolites,
but it is limited to those at high abundance while there are important issues on quantitation and
reproducibility yet to be resolved [55]. Moreover, a major issue in single-cell analysis is how to
preserve biochemical integrity, cell–cell interactions, and spatial configuration during measurement.
These aspects of cell and tissue architecture are essential to our understanding of cell behavior in
the heterogeneous environment. For example, cells behavior differs according to direct homo and
heterotopic contacts versus interactions via diffusing molecules or vesicles [62,63].

Figure 1A shows an example of heterogeneous cellular distribution in non-small cell lung cancer
(NSCLC) tissues visualized with hematoxylin and eosin (H&E) stain. Different cell types including
cancer cell and immune cells and their distributions are assessed morphologically. With the recent
development of Digital Spatial Profiling (DSP), multiplexing bar-coded antibodies or oligonucleotide
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probes each for a different protein or mRNA target is employed to obtain the spatial distribution of
multiple targets in tissues at single cell type resolution [64–66] (e.g., Figure 1B). What is clear from
Figure 1 is the highly heterogeneous distribution of different cell types. As cancer cells are found in
different microenvironments, their biochemical properties are likely to vary across the tissue field.
Indeed, scRNAseq profiles reveal heterogeneity in mRNA expression not only among different cell
types but also within each cell type [46,67–69]. However, mRNA levels do not always translate to
protein levels and metabolic functions [45,70–73], which therefore needs verification. Furthermore,
the TME is strongly influenced by the vasculature, which can limit the blood flow and thus O2/nutrient
supply as well as waste product removal [18,74,75], and by the extracellular matrix (ECM) deposited by
cancer-associated fibroblasts (CAF) [67,76–78]. Together, these factors not only dictate the availability of
nutrients and competition among cell types for these nutrients but can also alter the microenvironment
to favor cancer cell growth [79].
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Figure 1. Heterogenous cellularity in organotypic tissue cultures (OTC) of non-small cell lung cancer
(NSCLC) patient tumor tissues. The freshly resected NSCLC patient tumor tissues were thinly sliced
and incubated in Dulbecco’s Modified Eagle’s Medium (DMEM) medium as OTC for 24 h at 37 ◦C/5%
CO2 before fixing in 4% buffered formalin, embedded in paraffin block, and sectioned into 4 µm slices
for H&E staining in (A) and IF staining for cancer cells (panCytokeratin or panCK), CD8 (cytotoxic T
cells), and CD68 (Mφ) in (B). Highly heterogeneous distribution of cancer cells and various immune
cell types is evident. White circles (200 µm diameter) in (B) defined the regions of interest (ROI) for the
ROI-specific analysis (DSP) of 58 different protein markers that reflect immune functions. Each ROI
was enriched in CD8 T cells (3), Mφ (2), and cancer cells (4, 6), or contained a mixture the three cell
types (1, 5).



Metabolites 2020, 10, 249 4 of 25

1.2. Stable Isotope Resolved Metabolomics (SIRM)

Metabolic profiling of tissues and biofluids including blood plasma [80–83], urine [84–86], and
cerebrospinal fluid (CSF) [86–89] using NMR and MS in the past decade has been shown to be very
valuable for reporting disease states and drug responses. This is due to metabolic reprogramming
in response to disease development, particularly for cancer. In fact, metabolic reprogramming
is a hallmark of human cancer that drives cancer development and progression [28]. However,
profiles of steady-state metabolite levels determined by NMR and/or MS cannot resolve intersecting
and compartmentalized metabolic networks, as given metabolite levels are influenced by multiple
factors such as rates of synthesis and/or degradation, multiple inputs/outputs, and exchanges across
compartments. However, the complexity of metabolic networks can be resolved with the use of
stable isotope tracers coupled with metabolomic analysis, which we termed Stable Isotope-Resolved
Metabolomics or SIRM [90]. SIRM enables individual atoms in tracers such as 13C6-glucose to be
tracked through metabolic transformations so that intersecting and compartmentalized metabolic
networks can be rigorously reconstructed without the ambiguities known to metabolite profiling-based
pathway analysis described above. Stable isotopes especially 13C, 15N, and 2H (D) are fully biologically
compatible and isotopically enriched substrates can be administered with no or minimal biological
effects. Stable isotope tracing of metabolic pathways has been demonstrated in a wide variety of
biological systems [32,91–97] for the reconstruction of metabolic networks [98–100] and also, in some
cases, mapping of metabolic flux [77,90,91,101–106].

Currently, single tracers predominate in SIRM studies. Despite the technical challenges, there
are substantial advantages in developing multiplexed SIRM (mSIRM) approaches where multiple
precursors containing different tracer atoms such as 13C, 15N, and D are used together. These
include large expansion of metabolic network coverage without interferences from sample batch
variations while greatly reducing sample requirement; the latter is crucial to studies with very limited
patient-derived (PD) materials such as PD organotypic tissue culture (OTC) or organoid (PDO) studies.
We have begun such development, as described in Fan et al. [107].

2. Advantages and Disadvantages of Different Model Systems

There are many model systems available for studying basic biological mechanisms and preclinical
assessment of drug efficacy; each has its own advantages and disadvantages and thus should be
tailored to the specific problem [108].

2.1. 2D Cell Models

Two-dimensional cell cultures are widely used because of their relative simplicity, manipulability,
and interpretability, and they allow for maximal flexibility in experimental control. While these models
are fully compatible with manipulations of nutrient supply, genetic status, and tracer applications,
they lack cell–cell interactions and 3D architectures. They have been valuable for both mechanistic and
translational studies such as drug screening, with the caveat that these models do not always translate
well to what occurs in vivo or clinically [109–112].

2.2. Xenograft and PDX Mouse Models

Mouse models with xenograft of established cancer cells or PD tissues (PDX) provide a more
realistic TME with regard to 3D architectures and cell–cell interactions. However, these models cannot
be used for studying immune-tumor cell interactions due to the use of immune compromised mice.
Neither can they recapitulate proper patient tumor-stromal cell interactions, as xenograft models
lack patient stromal cells to begin with and PDX models lose them after 2–3 generations [107,108].
Moreover, these models have no appropriate control tissue, limitations on experimental control, and
complications in interpretability due to inter-organ interactions. Nevertheless, some PDX models have
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been shown to provide valuable preclinical information, such as mechanism of drug resistance [113] or
responses [114,115].

2.3. 3D Spheroids and Organoids

An increasingly popular model is 3D cell culture that retains 3D architecture, cell–cell interactions
and experimental control without the complexity of inter-organ interactions present in a whole
organism. Three-dimensional cultures were first described by Bissel, who noted that breast cancer
cells spontaneously formed acinar structures when grown on a supporting matrix [116–118]. Since
then, 3D cultures and organoids have been developed for a wide range of cell types [49,108,111,112,
119–125]. There are many types of support matrices now available, from the widely used Matrigel
(a mouse sarcoma cell extracellular matrix) to other organic polymer supports such as alginates
and hydrogels [126–134]. Three-dimensional cultures can also be induced without matrix support
by concentrating “magnetized” cells via introduction of nano magnetic beads under a magnetic
field [121,135]. Such close cellular contact allows the formation of cell–cell junctions and extracellular
matrix (ECM) [109]. Indeed, concentration of cells by centrifugation can be sufficient to induce 3D
structure formation on low adherence plates [136,137] or in scaffold-free hanging droplets [138,139].
It is practical to build complex 3D structures comprising multiple cell types as co-cultures either with
established cell lines (spheroids) or PD cells (PDO) that correspond more closely to the organ or tumor
tissues of interest. The PDO models [49] can show macroscopic functional responses [119,120,140]
markedly different from those of the 2D counterparts and closer to the patient responses [121,133,134]
due to their ability to emulate the 3D architectures and cell–cell interactions in patient’s TME.

Although genomics [141–148] and proteomics [149,150] approaches have been widely applied
to studying spheroids and organoids, there have been comparatively few studies of metabolism in
these models [35,108,124,151–164] and very few stable isotope tracers-based studies [35,121,124,162].
From the perspective of SIRM, not all 3D matrices are equal. First, Matrigel, a commonly used
matrix, is an ECM derived from mouse sarcoma and is essentially an undefined medium that can
vary in composition from batch to batch, leading to variable metabolic responses. Second, exchanging
the growth medium in the matrix to the treatment medium is not trivial. Third, the matrix is
difficult to remove fully from the embedded spheroids or organoids for harvesting, and the process
is slow compared to the metabolic time scale. This can lead to undesirable changes in metabolite
levels and difficulty in normalizing metabolite levels. For SIRM studies, fractional enrichments
in the labeled metabolites are not influenced by the contamination of residual matrix, as they are
internally normalized, but the slow speed of metabolic quenching remains a confounding factor for
the biological interpretation.

An alternative to Matrigel is one of the many synthetic polymer supports, which are defined
in composition and are batchwise reproducible, thereby eliminating batch artifacts and influence
over protein-based normalization of metabolite content. However, the problem of medium exchange
remains. It is also practical to use matrix-free magnetic-bead-based 3D culture method for metabolic
studies [121]. In some systems, spheroids or organoids form without added matrix support, as the cells
generate their own ECM [106,165,166]. In the latter two cases, control of the medium compositions
and metabolic quenching will be straightforward, as the case for 2D cell culture studies.

Although spheroid or organoid assembly can emulate cell–cell interactions analogous to those
found in tissues, cells in the assembly can assume different phenotypes depending on the assembly size
and the nature of the matrix, with cells on the periphery showing different properties from those in the
core [121,149]. To emulate the cellular heterogeneity of tissues, 3D co-cultures can be implemented, e.g.,
using mixtures of cancer cells plus immune cells, fibroblasts or endothelial cells [49,132]. The added
complexity however makes it difficult to delineate the metabolic activity of each cell type, unless
single cell analysis is carried out in situ. For metabolomic analysis, this remains challenging because
of the low abundance of most metabolites in each cell and the difficulty of maintaining biochemical
integrity and minimizing metabolite diffusion during cell isolation or in situ analysis [55]. For example,
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a metabolite present at 1 µM in a cell of 1 pL volume is only one attomole of material, which while
achievable [167] is challenging to quantify even by the best mass spectrometers under ideal conditions,
and is well beyond the capabilities of NMR [168] even with hyperpolarization [169]. To the best of our
knowledge, single cell tracer studies have not been reported, presumably due to detectability issue.
As isotopic enrichment increases the number of labeled species per metabolite to analyze, the detection
sensitivity for each metabolite decreases. For example, with [U-13C]-glucose as the tracer, glutamate
signal can be split into up to six different MS peaks each representing a 13C isotopologue species.

Before single cell SIRM is practically attainable, several complementary approaches can be
employed to help resolve heterologous metabolic contribution from each cell type and metabolic
interactions between cell types in 3D co-cultures or tissues. Such approaches are generally applicable
without the severe limitation on the coverage of metabolic pathways afforded by single cell
metabolomics. For example, if the influence of cancer cells on macrophages (Mφ), fibroblasts
or T cells (and vice versa) were to be studied, one can first obtain under identical culture conditions
metabolomic and RNAseq data from the pure spheroids of each cell type for comparison with the data
acquired from the spheroid of mixed cell types at different cancer to stromal cell ratios. The mixed
spheroids can also be subjected to microscopy including DSP for cell type-specific distribution of key
molecular markers (proteins and mRNA) for phenotypes (e.g., apoptosis, proliferation) and metabolic
pathways that are shown to be impacted from the bulk SIRM and RNAseq data. The cell-type-specific
metabolic markers will help delineate each cell type’s contribution to the altered metabolic activity
mapped by the bulk SIRM analysis. For example, elevated expression of glycolytic enzymes in Mφ

but not in cancer cells in the co-culture point to macrophages’ contribution to enhanced glycolysis
informed by the bulk SIRM data. Consequently, the impact of cancer cells on Mφ metabolism can be
deduced by comparing Mφ metabolism in pure versus mixed 3D cultures.

To investigate the influence of diffusible substrates on target cell metabolism, one can treat, for
example Mφ spheroids with cancer cell conditioned media (CM) and perform SIRM analysis for
altered metabolic pathways. Alternatively, one can perform SIRM study on spheroids of each cell
type separated by a membrane, which permits diffusion of small molecules but prevents heterologous
cell–cell contact. Each spheroid culture can then be analyzed free of the other cell types. By comparing
SIRM data thus obtained with those acquired from mixed co-cultures described above, one can resolve
the influence of diffusible substrates from that of cell–cell contract on metabolic interactions between
cell types.

We have begun to develop the above described approaches to investigate metabolic interactions
between human lung cancer cells and Mφ in spheroid co-cultures. We have also introduced mSIRM [97,
107,121,170] in our studies to maximize information retrieval from limited samples and to minimize
batch artifacts. The following describes some preliminary findings that illustrate the value of
these approaches.

3. Cancer Cell Conditioned Medium Has a Profound Effect on Human Mφ Metabolism and
Effector Release

To determine whether diffusible compounds excreted from cancer cells impact human Mφ

metabolism in response to polarization and an immune modulator β-glucan formulated as whole
glucan particulates (WGP) we incubated Mφ in CM from A549 cells. WGP is a yeast-derived D-glucose
polymer in linearβ-1,3 linkages, which we have shown previously to repolarize mouse Mφ in 2D culture
from the anti-inflammatory (M2) to the pro-inflammatory (M1) phenotypes while inducing M1-like
metabolic responses [171]. The effect of polarization and WGP’s effect on human Mφ metabolism has
not been studied, to the best of our knowledge.

Using 13C6-glucose (13C6-Glc) as a tracer, we performed a SIRM experiment on human Mφ

differentiated for 6 days in DMEM medium containing 10% FBS, 0.2% glucose (Glc), and 50 ng/mL
CSF1 (M0 medium) from a volunteer’s (UK96) peripheral blood monocytes (PBMC). On the 5th day
of differentiation, magnetic nanoparticles (Nanoshuttle, N3D) were loaded into the cells overnight,
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followed by reseeding of cells and spheroid formation under a strong magnetic field [121]. The spheroids
were then incubated in M0 medium or polarized in M0 medium plus 100 ng/mL LPS + 20 ng/mL
IFNγ to M1- or 20 ng/mL each IL4 + IL13 to M2-type Mφ for three days, followed by one day of
culturing in M0 medium for the M0-, M1-, and M2-Mφ and in M0 medium plus 0.1 mg/mL WGP
for the M2+WGP-Mφ in the presence of 13C6-Glc. The same polarization/13C6-Glc experiment was
performed in parallel with the addition of A549 CM at 1:1 ratio to the polarization media. The CM
medium was prepared by culturing A549 cells in M0 medium (with 0.1% Glc) for 24 h (1.16 million cells
per 10 cm plate) and passing the medium through a 0.22 µM filter before use. The polar metabolites
were extracted from cells and culture media respectively with 70% cold ethanol and 80% cold acetone.
Due to the limited number of PBMC available from the volunteer, 200,000 cells were seeded each into
two wells of a 96-well plate per treatment (n = 2), but the two replicate cell extracts were combined for
the analysis by IC-UHR-FTMS, while the medium extracts for each well were analyzed separately by
1H NMR as described previously [121].

Figure 2A shows the effect of the four treatments ± A549 CM on the uptake of nutrients and the
release of metabolites into the medium along with the changes of related intracellular metabolites.
In the absence of CM (Ctl), the uptake of 13C6-Glc (a) was somewhat enhanced in M1- (�) and
M2+WGP-Mφ (�) compared with M2-Mφ (�), which led to increased buildup of intracellular
13C6-fructose-1,6-bisphosphate (F1,6BP, e) but not the release of 13C-lactate (Lac, a) into the medium.
The latter reflected little changes in the glycolytic capacity under different polarization treatments.
We also saw enhanced buildup of 13C3-F1,6BP in M1-Mφ and M2+WGP-Mφ versus M2-Mφ, which
could reflect increased gluconeogenic (GNG) capacity. Glutamine (Gln) uptake as well as the release
of glutamate (Glu) (b) and 13C6-Glc-derived Glu (c) into the medium were lower in M1-Mφ than
M2-Mφ and M2+WGP-Mφ. Glu and 13C-Glu are presumably exported for cystine uptake via the Xc-
transporter system. We also saw newly synthesized Gln (13C-Gln, c) to be released into the medium
but polarization treatments had little effect on this event. Tryptophan (Trp) uptake was enhanced
with depletion of intracellular Trp in M1-Mφ versus M2- and M2+WGP-Mφ (d). This, together
with the enhanced buildup of the downstream catabolite quinolinate (QA) in M1-Mφ, points to the
activation of Trp catabolism but blockade of NAD+ synthesis from QA, which are consistent with
the overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) [172] and the blockade of quinolinate
phosphoribosyltransferase (QPRT) [173] in inflammatory human Mφ. QA buildup also occurred in
M2+WGP-Mφ but without the enhanced Trp uptake and depletion of intracellular Trp. When CM was
present, we saw enhanced 13C6-Glc uptake and 13C-Lac release (a’), which was independent of the
polarization/WGP treatments. In contrast, CM reduced Gln uptake while reversing Glu release into
the medium, particularly for M1-Mφ (b’). However, CM enhanced the release of newly synthesized
Gln and Glu into the medium (c’), relatively more so for M1-Mφthan for M2-Mφand M2+WGP-Mφ.
Moreover, CM enhanced Trp uptake (d’) and QA buildup (g’) with reduced Trp accumulation (f’) in
M2-Mφ and M2+WGP-Mφ but had little effect on the corresponding events in M1-Mφ.
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Figure 2. A549 cancer cell conditioned medium alters metabolic response of human macrophage (Mφ)
spheroids to polarization and WGP as tracked by SIRM. The 3D Mφ cultures (n = 2) were prepared,
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polarized, and treated with 13C6-glucose (Glc) as described in the main text. The cell extracts were
combined while the medium extracts remained separate for IC-UHR-FTMS analysis. 12C (•) and 13C
(•,•) atom tracing through glycolysis, the Krebs cycle, gluconeogenesis (GNG), and Trp catabolism
is shown to account for some of the labeled isotopologues of metabolites seen by IC-UHR-FT MS
analysis. Red and green boxes in (A) denote labeled species produced respectively by glycolysis and
the GNG pathway while black, red, and green boxes in (B) mark 12C, 12C2, and 12C3 isotopologues of
metabolites. Numbers in X-axis refer to the number of 13C atoms. �: M0-Mφ; �: M1-Mφ; �: M2-Mφ;
�: M2-Mφ+WGP. (C). Cytokines released into the culture media were measured using the Human
Cytokine Magnetic 35-Plex Panel per vendor’s protocol (Invitrogen) and the level was ratioed to that of
the M0 state. �: M0-Mφ; �: M1-Mφ; �: M2-Mφ; �: M2-Mφ+WGP. M0, M1 and M2 are three states of
polarization of macrophages as described in the Methods.

To see the treatment effect on the Krebs cycle, we examine the 13C labeling patterns of Krebs
cycle metabolites in human Mφ in response to polarization ± CM treatments by IC-UHR-FTMS
analysis. Figure 2B shows reduced levels of the 13C2- and 13C3-isotologues of citrate (a), succinate
(c), fumarate (d), and Asp (e) in M1- versus M2- and M2+WGP-Mφ, which suggests decreased
capacity of the pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PCB)-initiated Krebs cycle,
respectively [91]. This is consistent with the compromised Krebs cycle observed in mouse M1-Mφ

due to the two breaks at the isocitrate dehydrogenase (IDH) and succinate dehydrogenase (SDH)
steps [174–176]. We observed succinate buildup and fumarate depletion expected from the SDH
break but did not see citrate buildup and αketoglutarate (αKG, b) depletion expected from the IDH
block in the Krebs cycle. These changes applied only to the 12C (unlabeled) isotopologues, which
indicate that they are not derived from 13C6-Glc metabolism. Instead, 13C6-Glc-related buildup of
13C2-αKG (b) and depletion of 13C2-succinate (c) in M1-Mφ versus M2- and M2+WGP-Mφ were
evident, which is likely due to a block at the oxoglutarate dehydrogenase (OGDH) and/or succinyl
CoA synthetase (SCS) step. Despite the attenuated Krebs cycle capacity, 13C labeling and/or the levels
of the byproducts, itaconate (g) and glutathione (GSH, f), were elevated in M1-Mφ. Itaconate is known
to be elicited by LPS in inflammatory Mφ to inhibit microbial growth [177], but its excess buildup was
also shown to be anti-inflammatory [178,179]. GSH has been shown to stimulate pro-inflammatory
activity while relieving oxidative stress in RAW 264.7 macrophages [180]. Moreover, we saw multiple
CM-dependent changes in the Krebs cycle, notably the enhanced buildup of both unlabeled and
13C-itaconate (g’) as well as the less blocked Krebs cycle in M1-Mφ as evidenced by the less depletion
of 13C labeled Krebs cycle products (a’, c’, and d’) relative to M2-Mφ. These changes could signify a
shift towards the M2-like phenotype, which is consistent with the CM-induced decrease in the release
of pro-inflammatory cytokines IL-1β and IL-6 by M1-Mφ as shown in Figure 2C. Also shown was the
stimulation of IL-1β and IL-6 release into the M2-Mφ media by WGP, which points to a shift from M2
to an M1-like phenotype. Further consistent with the M2 to M1 switch was the enhanced release of
IL-10 into the M2-Mφ media by WGP. IL-1β, IL-10, and IL-12 were previously shown to be markers of
human M1-Mφ in 2D cultures [172]. Here we showed this to be the case for IL-1β and IL-10 but not for
IL-12 in M1-Mφ as spheroid cultures. IL-12 release by M2-Mφ was stimulated by WGP or CM and
further enhanced by CM+WGP. Although known as a pro-inflammatory cytokine, IL-12 can also have
an anti-inflammatory role during secondary immune responses [181]. Further studies are needed to
see if how IL-12 alters immune functions in response to WGP and/or CM treatments.

It should be noted that M1 and M2 designations do not fully represent the complexity of human
macrophage phenotypes [182], nor can they fully describe the WGP effect on Mφ polarization in
spheroid cultures. Based on the above data, WGP induced a mixed phenotype in human M2-Mφ

spheroids, with some M1-like features (e.g., QA buildup; enhanced IL-1β/IL-6 release) while retaining
a large part of the M2 properties (e.g., enhanced Gln uptake/Krebs cycle activity).
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4. Co-Culturing of Cancer Cell with Mφ Alters Metabolic Response of Human M2-Mφ
Spheroids to WGP

As described above and in Table 1, direct cell–cell interactions and altered architecture of tumors
can impact cancer and stromal cell metabolism. We mixed A549 cells with differentiated Mφ from
patient UK96 in a 1:1 ratio as spheroids and subjected the co-cultures in parallel with spheroids
generated from isolated A549 or Mφ cells to the same polarization and WGP treatment as described
above except for employing a triple tracer cocktail 0.2% 2H7-Glc + 2 mM 13C5-Gln + 78 µM 15N2-Trp for
24 h. The incorporation of 2H, 13C, and/ or 15N into various metabolites was resolved and quantified
by IC-UHR-FTMS [107,170,183,184]. Figure 3A illustrates the tracing of 2H7-Glc via glycolysis and
the Krebs cycle, of 13C5-Gln via glutaminolysis, the Krebs cycle, and GNG, and of 15N2-Trp via the
kynurenine (KYN) pathway [173,185] in the pure cultures and co-culture under M2 polarization ±
WGP treatment. We found that M2-Mφ spheroids (�) had a higher capacity for incorporating 2H (D),
13C, and/or 15N into glycolytic (e.g., F1,6BP, a), Krebs cycle (e.g., citrate, b; αKG, c; and Glu, e), and
Trp metabolites (e.g., QA, f) than A549 spheroids (�). The production of 13C-F1,6BP 13C5-Gln from
signified GNG activity (→). All of these capacities were further enhanced by the WGP treatment (�,
a’-c’ and e’). WGP also increased the buildup of 13C-itaconate in M2-Mφ but it had an opposite effect in
A549 spheroids (d’). The WGP effect on the Krebs cycle and GNG in M2-Mφ spheroids recapitulated
those traced by 13C6-Glc in Figure 2 while the enhanced buildup of 15N-QA in WGP treated M2-Mφ

spheroids verified altered Trp catabolism reasoned in the 13C6-Glc study.
Co-culturing of A549 and M2-Mφ (�) did not have a notable effect on glycolysis (a) but enhanced

the buildup of 13C and/or D-labeled (C*Dx, b) citrate and 15N-QA (f) while depleting C*Dx-αKG (c),
13C, 15N, and/or D-labeled (C*NDx) Glu (e), and C*Dx-itaconate (d) relative to the A549 monoculture.
These metabolic interactions were significantly modified by the WGP treatment (�). WGP greatly
suppressed 13C and/or D incorporation into F1,6BP (a’), citrate (b’), while having an opposite effect
on that into αKG (c’)/ itaconate (d’), and 15N incorporation into QA (f’) in the co-culture (Figure 3A).
These effects were either opposite (for F1,6BP, Figure 2A) or absent in the CM+WGP-treated M2-Mφ

(for QA, Figure 2A; citrate, αKG, and itaconate, Figure 2B), which points to the importance of cell–cell
contact in mediating these effects. Such co-culturing+WGP effect on citrate and αKG was akin to
the CM-induced responses in M1-Mφ (a’ versus b’, Figure 2B), which could reflect a break at the
OGDC or SCS step. This, together with the enhanced buildup of itaconate and QA suggests that WGP
retained its ability to repolarize the M2 to M1 phenotypes in the co-culture but also enhanced further
the M2 phenotype based on the F1,6BP response. The mixed M1- and M2-type metabolic responses
induced by WGP in both mono- and co-cultures of M2-Mφ were consistent with the expression of both
M1 (HLA-DR) and M2 (CD-206) markers (Figure 3B). WGP treatment also induced the expression of
another M1 marker (IDO1) and apoptotic marker caspase 3 (Figure 3C), which implicates killing action
via M1 repolarization.

The WGP’s action on the metabolic and immune responses in the 3D cancer cell-Mφ co-culture
can be related to those of the PD OTC of tumor tissues [186] to help resolve the contribution of cancer
cells or tumor-associated Mφ (TAM) to the overall responses. For example, the WGP-induced buildup
of glucose-derived F1,6BP in the responsive tumor tissue (Figure 2B in Fan et al. [186]) could have
originated from Mφ not in direct contact with cancer cells (Figure 2A), as this response was not evident
in the mono-cultures of cancer cells and M2-Mφ or in their co-culture with cell contact (Figure 3A).
By a similar reasoning, the WGP-induced accumulation of unlabeled itaconate in the responsive tumor
tissue (Figure 2L in [186]) was likely a result of enhanced Gln, instead of Glc, metabolism in cancer
cells/Mφ alone and/or cancer cells-TAM that are in direct interactions (Figure 3A). This interpretation
was afforded with very limited samples using the mSIRM approach, where the fate of Glc and Gln
were tracked simultaneously and more robustly than the single tracer-based SIRM approach.
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Figure 3. A549 cancer cell co-culturing alters metabolic and immune marker responses of human
M2-Mφ spheroids to WGP as tracked by mSIRM. The 3D single or co-cultures (1:1 A549:Mφ) (n = 2) in
(A) were treated with IL-4+IL-13 for 3 d±WGP as in Figure 2 except with 2H7-Glc+13C5-Gln+15N2-Trp
as tracers in the last 24 h. The cell extracts were combined for IC-UHR-FTMS analysis. 2H/13C/15N
atom tracing through glycolysis, the Krebs cycle, GNG, and Trp catabolism is shown to account for
some of the labeled isotopologues of metabolites seen by IC-UHR-FTICRMS analysis. Red boxes denote
13C labeled fructose-1,6-bisphosphate (F1,6BP) produced by the GNG pathway. �: A549; �: M2-Mφ; �:
A549:M2-Mφ 1:1; �: M2+WGP;�: A549:M2-Mφ 1:1+WGP; D*: total 2H; C*: total 13C; N: 15N; Cx: 13Cx;
Dx: 2H0-x; GAP: glyceraldehyde-3-phosphate; DHAP: dihydroxyacetone-3-phpsphate; Pyr: pyruvate;
αKG: αketoglutarate; Fum: fumarate; OAA: oxaloacetate; Kyn: kynurenine; QA: quinolinate; TPI:
triosephosphate isomerase; PDH: pyruvate dehydrogenase; PCB: pyruvate carboxylase; ALT: alanine
transaminase; SDH: succinate dehydrogenase; ME: malic enzyme; PEPCK: phosphoenolpyruvate
carboxykinase; IDO: indoleamine 2,3-dioxygenase; GLS: glutaminase. In (B), treated mono- and
co-cultures were stained as live cells for M2 (CD-206), M1 (HLA-DR), and nuclear (DAPI) markers
while in (C), cells were fixed in 4% paraformaldehyde before staining for cancer cell (KRT7), M1 (IDO1),
and apoptotic caspase 3 (Cas3) markers.
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5. Concluding Remarks and Future Directions

To achieve systems biochemical understanding of tissue heterogeneity at the cellular level, it would
be ideal to perform SIRM, proteomic, and genomic analyses at the individual cell level in live tissues in
situ [108,159,187,188]. However, this is not yet technically feasible. Alternative strategies that combine
techniques at different scales should therefore be considered.

Subcellular imaging of cells and tissues has long been feasible with epi and confocal fluorescence
microscopy. Recent advancement in super resolution imaging can achieve image resolution of 50 nm
or less [189–193]. In addition, free versus bound concentrations of metabolites can be discriminated in
cells by fluorescence lifetime imaging microscopy (FLIM) [158,194,195]. However, microscopy-based
metabolic imaging requires the use of fluorescent probes such as NBD-glucose for measuring glucose
uptake [58–60], with the exception of a few metabolites that have intrinsic fluorescence (e.g., FADH2,
NAD(P)H) [196]. In addition, this approach cannot resolve stable isotopes and is currently low in
metabolic coverage. More recently, high resolution confocal Raman imaging has become practical with
single cell resolution. As the Raman effect depends on bond vibrations, signals are sensitive to isotopic
substitutions, especially for D replacement of H [197–199]. Although not directly useful for metabolic
imaging, the emerging DSP technique can be used to measure the expression of metabolic genes and
proteins in situ at single cell type resolution. Such information can help resolve the contribution of
single cell types to the metabolic activity measured by SIRM and protein expression analyzed by
RPPA [107,200] in tissues with no spatial discrimination.

NMR-based imaging (NMRI) does not require optical probes, has greater depth than optical
imaging, is capable of wider metabolite coverage with stable isotope resolution [201–206], and is fully
compatible with in vivo real-time measurements including metabolic rates (e.g., unidirectional rate
of ATP synthesis [207,208]). However, its utility is limited by much poorer resolution (regional level)
and lower sensitivity. The sensitivity of stable isotope-resolved MRI can be substantially improved
by the use of hyperpolarized substrates [209–211], post-acquisition processing [11], and proton
detection [201,212–214] but still at relatively low spatial resolution and metabolic coverage (typically <

10 metabolites).
MALDI-based mass spectrometric imaging can achieve high resolution in tissue, at either regional

resolution comparable to DSP or at the single cell (1–10µm) resolution with new developments [215–218].
These technologies are particularly valuable for resolving spatial heterogeneities of immobile
lipids, proteins, and glycoproteins, such as glycosylated surface protein and extracellular matrix
peptides [219,220].

DSP coupled with SIRM approach can be applied to spheroid and organoids for resolving their
metabolic heterogeneities. As we have shown, it is also feasible to use SIRM to profile metabolic
activities in mono- and co-spheroid cultures of different cell types to learn about their metabolic
distinction and interactions, which can in turn help determine individual cell types’ contribution to
bulk tissue metabolism. We have demonstrated that the SIRM profile of human macrophages is altered
by human lung A549 cancer cell conditioned media (which contains excreted diffusible compounds),
and by coculturing with A549 cell. However, the profiles of CM versus co-culture are not identical,
indicating that the cell–cell contacts induce altered metabolism differently from the diffusible substrates.
This strategy is greatly facilitated by the new mSIRM technology, which we have demonstrated as a
preliminary investigation. Future organoid and matched tissue studies that integrate mSIRM with
metabolic imaging, DSP, as well as single-cell ‘omics, should achieve global mapping of metabolic
activity at the single cell levels before single-cell SIRM becomes a reality. New informatics and statistical
analyses that enable robust and efficient information retrieval as well as integrated data interpretation
from such studies will also need to be developed.

6. Materials and Methods

Lung tissues were collected from consented patients at the operating room within five minutes
of surgical resection and placed in DMEM media in accordance with HIPAA regulations. All tissue
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experiments were carried out via a protocol approved by the University of Kentucky Institutional
Review Board (IRB) (IRB 14-0288-F6A). The pair of tissues were thinly sliced to <1 mm thickness as
previously described [221,222]. Tissues for the tumor and adjacent healthy lung were preserved in
formalin and embedded in paraffin for pathological analyses

6.1. H&E Staining

Thin paraffin-embedded sections of tissues were H&E stained as per standard protocol. A variety
of cell types can be identified from size and shape in the cancer tissue, including transformed epithelia,
plasma cells, infiltrating lymphocytes and macrophages, as shown in Figure 1A.

6.2. DSP (Nanostring)

FFPE tissue slices from human NSCLC were cut to 5 µm and sent to NanoString (Seattle, WA, USA)
for staining for different cellular markers, including the nuclei (for counting cells), and fluorescent
antibodies to keratin (pan cancer markers), CD8 (T cell marker), and CD68 (macrophage marker).

Protein markers in regions of interest of the FFPE tissue sections were quantified by counting
the cleaved oligos using Nanostring’s nCounter. The oligo-conjugated antibodies were prepared and
validated by Nanostring. ROIs in fixed tissues were selected based on desired markers for cell nuclei
and markers for T-cells, macrophages, and in consultation with a pathologist (Dr. T. Bocklage) before
automated analysis on Nanostring’s GeoMx system and nCounter.

6.3. Monocytes Isolation, Differentiation, and Polarization

Monocytes were isolated from whole human peripheral blood of a male (UK96) and a female
(UK94) donors (both >60 years of age) using the RosetteSep™ human monocyte enrichment cocktail kit
(StemCell, Cambridge, MA). Monocytes were differentiated in 6-well plates (Nunclon, ThermoFisher
Scientific, USA) for six days in monocytes differentiation medium (MDM) containing DMEM, 10%
FBS, 10 mM glucose, 2 mM Gln, 1X Anti-anti, and 50 ng/mL CSF-1 at 37 ◦C/5% CO2 at a density of
3–5 × 106 cells per well before polarization. Cells were maintained in MDM (M0) or polarized to either
M1-like with 100 ng/mL LPS + 20 ng/mL IFNγ or to M2-like subtype with 20 ng/mL each IL-4 + IL-13
for 2 to 3 days.

6.4. SIRM of Macrophage Spheroids and A549-Macrophage Organoid Cultures

Human macrophages were isolated as described above were induced to form spheroids in 6-well
plates in organoid medium and were treated with 10 mM 13C6-glucose for 24 h before harvesting
and immediate extraction for polar, non-polar and protein fractions using our CH3CN/H2O/CHCl3
solvent partitioning method [223,224]. After lyophilization and reconstitution, polar metabolites
were identified and quantified by IC-FTMS and NMR according to our untargeted workflow that
can resolve multiple tracer atoms (e.g., 2H, 13C, and 15N) in the same metabolite [91,92,170,225–228].
For co-cultures, macrophages were mixed with an equal number of A549 cells and induced to form
spheroids and incubated for 24 h with medium containing 10 mM 2H7-glucose + 70µM 15N2 tryptophan
+ 2 mM 13C5 glutamine. The organoids were harvested and extracted for analysis as described for
the macrophages.
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