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Moths develop sophisticated olfactory systems to sense the airborne chemical cues
from the environment. Understanding the structural basis in the neuronal center is a
fundamental neuroethological step. Little is known about the emerging crop pest Athetis
dissimilis with regard to its morphology or its neuronal organizations. Through antibody
staining and digital 3D modeling, we re-constructed the primary olfactory center—the
antennal lobe of A. dissimilis. In the antennal lobes 68.8 ± 3.1 male glomeruli and
70.8 ± 1.0 female glomeruli were identified with obvious sexual dimorphism. In particular,
male adults of A. dissimilis contain a macroglomerular complex (MGC) that consists of
three subunits, while the female lobe has four relatively enlarged glomeruli at the entrance
of the antennal nerve. Glomeruli were later clustered with deviation and variance, and
referring to reported olfactory related receptor family genes in seven different moth
species, we found that glomerular counts of these insects are better related to the sum
of odorant receptor and ionotropic receptor numbers, suggesting olfactory receptors
and ionotropic receptors may both involved in olfaction of Noctuidae moths.
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INTRODUCTION

The olfactory system is one of the most important sensory features in insect species, which broadly
involves behavioral decisions (Dweck et al., 2015; Ebrahim et al., 2015; Joseph and Carlson,
2015; Wan et al., 2019). Detection of the airborne cues in insects starts in olfactory receptor
neurons (ORNs) housed in sensilla that are mostly located on the antennae (Keil and Steinbrecht,
1984). The axons of ORNs directly project to the antennal lobe (AL), where synaptic attachments
are made with second-order neurons in sophisticated structures called the glomeruli (Stocker
et al., 1990; Christensen and Hildebrand, 2002). Postsynaptic projections in glomeruli contain
projection neurons and local neurons, where olfactory signals are concentrated or diluted into the
protocerebrum (Homberg et al., 1989). Usually, innate behaviors are decided finally in the lateral
horn, and learning and memory driving behaviors are processed in the mushroom body (Yang
et al., 1995; Gupta and Stopfer, 2012). Thus, anatomic characterization of ALs is important for
neuroethological studies to understand insect behavioral decision (Sato and Touhara, 2008; Bisch-
Knaden et al., 2018).
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Athetis dissimilis (Hampson; Lepidoptera: Noctuidae) is
found in Asian countries including Japan, Korea, India,
Philippines, and Indonesia (Dong et al., 2016). It has become
an emerging corn pest since its discovery in 2012 in
Shandong province, China (Li et al., 2014). Larvae of this
species live under plant residues, making it difficult to
control. Novel management strategies such as olfaction-based
ecological trapping are in urgent demand. Recent works have
reported fundamental information on sensillar morphology
and chemosensory genes within this species (Dong et al.,
2016; Song et al., 2018a,b; Liu et al., 2019). In addition,
some other works also involved trials in terms of trapping
method development (Guo et al., 2016; Kim et al., 2016).
However, the initial information of the ALs in this species
remains unknown.

In the current study, we first investigated the morphology of
A. dissimilis in all life stages. Utilization of synaptic antibody
staining provided the first digital atlas of ALs in this species.
Gender-based special structures including the macroglomerular
complex (MGC) in males and the large female glomeruli (LFGs)
are identified and described. Later comparison and clustering
analysis revealed differences between the genders in terms of
variations of glomeruli. Finally, a correlation between glomeruli
numbers and olfaction-related receptors was carried out to
show involvement of receptor classes in olfactory reception of
Noctuidae species.

MATERIALS AND METHODS

Insects
This work used a laboratory colony of both genders of A.
dissimilis adults that has been described in previous works
(Dong et al., 2016). A wild-type strain was collected at the
campus of Academy of Agriculture and Forestry (N34◦38′5.35′′,
E112◦27′58.15′′) during June to July 2015. Rejuvenation was
ensured once every 10 generations by backcrossing with freshly
collected field strains. Insects were reared under conditions of
27± 1◦Cwith 70± 5% relative humidity andmaintaining a 16 h:
8 h light/dark cycle.

Wholemount Labeling of Brain
Brains of A. dissimilis were prepared according to previous
works (Zhao et al., 2016). Insects were decapitated and ALs
were dissected in Ringer’s solution (Jiang et al., 2019) before
transfer to 4% paraformaldehyde in 0.1 M phosphate-buffered
saline (PBS, pH 7.4) to be fixed at 4◦C overnight. Brains
were then rinsed in PBS (4 × 15 min) and preincubated with
5% normal goat serum (NGS; Sigma, St. Louis, MO, USA)
in 0.1 M PBS containing 0.5% Triton X-100 (PBST; 0.1 M,
pH 7.4) at 4◦C overnight. SYNORF1 (Developmental Studies
Hybridoma Bank, University of Iowa; Klagges et al., 1996; Berg
et al., 2002) primary antibody was used at a concentration of
1:100 (with 5% NGS in PBST) to stain the brains at 4◦C for
5 days. The brains were later rinsed in PBS (6 × 20 min)
and subsequently incubated with Cy2-conjugated anti-mouse
(Invitrogen, Eugene, OR, USA; dilution 1:300 with 1% NGS
in PBST) for 3 days at 4◦C. Finally, the brains were washed

in PBS (6 × 20 min) and then dehydrated 20 min for each
concentration with ascending ethanol series (including 50%,
70%, 90%, 95%, and 100%) before being cleaned and mounted
in methyl salicylate in a perforated aluminum slide with two
glass coverslips.

Confocal Image Acquisition, Glomeruli
Identification, and Three-Dimensional
Reconstructions
All image stacks were acquired with a confocal laser scanning
microscope (LSM 780, META Zeiss, Jena, Germany) with a
10× objective (Plan-Neofluar 10×/0.3) on the anti-synapsin
immunolabeled whole-mount preparations. An argon laser at
488 nm was used to excite the Cy2 dye. The resolution of the
confocal images was set to 1,024 × 1,024 voxels and the section
interval was set to 3 or 4µm.Amira software (AMIRA 5.3, Visage
Imaging, Fürth, Germany) was used as previously described to
conduct segmentation and reconstruction of the digital atlas of
the ALs. Parameters for later analysis were acquired with the
TissueStatistics tool embedded in Amira.

Statistical Analysis
A parametric test for comparing volumes and counts between
genders was performed using two-way t-tests in SPSS (IBM
SPSS Statistics 22.0.0, Chicago, IL, USA). Circos 0.69-9 plots
were constructed using Circos (Krzywinski et al., 2009). A
dendrogram was developed with the Median Method in
Statgraphics Centurion XVII (Statpoint Technologies Inc.,
Warrenton, VA, USA).

RESULTS

Morphology of A. dissimilis in Different
Stages
The egg of A. dissimilis is oval to nearly circular with a
diameter of ∼450 µm. Sides are truncated by a macropylar
area at the anterior end and marked by a reticulate pattern
of prominent longitudinal ridges joined by lesser cross ridges
(Figure 1A). The male spermatophore body is ovoid and
attached to a ∼12 mm spermatophore neck (Figure 1B). Larva
of A. dissimilis can develop to 6th instar before pupation
(Figure 1C). A white dotted line exists along the longitude
of the middle dorsal side of the larvae, paralleled with four
symmetrical dotted stripes (Figure 1C). The pupa is light
brown ventrally and dark reddish brown dorsally. Forewings
extend to the fifth section of the abdomen (A5). An anterior
row of short, stout, dorsal spines is present on segments
A6–8. Sexual dimorphism presents ventrally on A9–10. The
cremaster consists of a large pair of stout hooks arising
dorsally from A10 (Figures 1D,E). Adults of both genders are
moderately large, generally dark grayish moths with a small,
white subapical spot on the forewing near the apex of the
discal cell and a smaller black one at the anterior of the initial
spot (Figures 1F,G). A female adult presents a spade-shaped
ovipositor at the tip of the abdomen (Figure 1F), while the male
has a phallic organ that is surrounded by a remarkable panicle of
hairpencils (Figure 1G).
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FIGURE 1 | External morphology and brain structure of Athetis dissimilis. (A) Overview of anterior of eggs showing the micropylar area. (B) The spermatophore
organ of males. (C) Morphology of different stages of larvae, which included 1st to 6th instars (a–f), matured larva (g), and overview (h). (D) Pupal morphology of
females. (E) Pupal morphology of males. (F) Morphology of adults and copulation organs in female. Scale bar indicates 1 mm. (G) Morphology of adults and
copulation organs in male. Scale bar indicates 1 mm. (H) Brain reconstruction of A. dissimilis from anterior (left) and posterior (right) views. Arrangement of neuropils:
AL (antennal lobe), MBP (mushroom body peduncle), AOT (anterior optic tubercle), CA (calyx), CB (central complex), MBL (mushroom body lobe), LAL (lateral
accessory lobe), NO (nodulus), L (lobula), LP (lobula plate), and M (medulla). (I) Comparison of single antennal lobe between male and female A. dissimilis. Asterisk
indicates significant larger in volumes of male ALs than females (t-test, t(10) = 2.39, P = 0.0381). No difference was observed in terms of glomerular counts between
genders (t-test, t(10) = 1.49, P = 0.166).

Digital Atlas Showed Sexual Dimorphism
Between Genders
A total of 12 brains of A. dissimilis were prepared
(Supplementary Table S1). ALs within six brains from
each gender were analyzed (Supplementary Tables S2, S3).
The synaptic specific antibody staining resulted in an intense
labeling of the ALs and the key neuropils including mushroom
body peduncle, anterior optic tubercle, calyx, central complex,
mushroom body lobe, lateral accessory lobe, nodulus, lobula,
lobula plate, and medulla (Figure 1H). The total volumes
of glomeruli were 822,516.77 ± 180,998.80 µm3 in males
and 607,876.42 ± 125,467.75 µm3 in females, respectively
(mean ± SD; Supplementary Table S1). Significantly larger ALs
were observed in males than in females (Figure 1I). By manual
segmentation and cross checking among specimens, we allocated
a total of 68.8 ± 3.1 glomeruli in male AL and 70.8 ± 1.0 in
female AL, respectively (mean ± SD; Supplementary Table
S1). No difference in glomerular counts was observed between
genders (Figure 1I).

On the entry of male antenna, there are three enlarged
glomeruli forming the MGC: the cumulus (CU), dorsal-anterior
(DA), dorsal-posterior (DP; Figure 2A). The CU glomerulus in

males has an outstanding volume that was significantly larger
than that of any other glomeruli in the ALs. In females, four
LFG subunits were located near the antennal nerve (Figure 2B)
but did not exhibit remarkable enlargement in volumes. The
border of each glomerulus was well captured and individual
glomeruli could be identified with ease. Weak staining of
the antennal and interglomerular nerve was observed, but no
nerve tracts within the glomeruli were visible (Figure 2). All
glomeruli were arrayed in a demarcated layer surrounding the
hub (Figure 3). As the most anterior and prominent part
of the deutocerebrum, ALs were surrounded by the medial
cell cluster (MCCl) and the lateral cell cluster (LCCl), which
were also strongly labeled yet with no glomerular organization
(Figures 3A,B). Both MGCs and LFGs were identical in spatial
allocations and relatively larger in size compared to other
ordinary glomeruli (Figures 3C,D).

The volume of a single glomerulus ranged from 5,139± 1,590
µm3 (G51) to 97,709 ± 19,605 µm3 (CU) in males and
5,156 ± 1,603 µm3 (G26) to 13,338 ± 2,995 µm3 (LFG3)
in females, respectively (Supplementary Tables S2, S3).
The volume, deviation (meaning the shape of glomeruli),
and variation (meaning the consistency of glomeruli among
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FIGURE 2 | Confocal images showing arrangements of the antennal lobes in both sexes of A. dissimilis. (A) Organization of 66 glomeruli in male A. dissimilis
(specimen 3) from the anterior view. Representative depths of 12 µm, 27 µm, 42 µm, 57 µm, 72 µm, 87 µm, and 102 µm are shown, respectively. Macroglomerular
complex (MGC) area cluster is indicated by cumulus (CU), dorsal-anterior (DA), and dorsal-posterior (DP). Other ordinary glomeruli (G) are numbered and labeled
among replicates. (B) Organization of 70 glomeruli in female A. dissimilis (specimen 1) from the anterior view. Representative depths of 15 µm, 30 µm, 42 µm, 57
µm, 75 µm, 93 µm, and 105 µm are shown, respectively. Large female glomerulus (LFG) area cluster is indicated by LFG 1–4. Other ordinary glomeruli (G) are
numbered and labeled among replicates.

individuals) of each glomerulus were determined using heatmaps
of the Circos plot (Figures 4A,B; Krzywinski et al., 2009). Female
glomeruli had higher variations in volume, while male glomeruli
were relatively more consistent (Figures 4A,B). There were
similar proportions of high-deviation glomeruli in ALs of
both genders, indicating these glomeruli had various shapes
(Figures 4A,B). When all parameters were assembled, several
groups of glomeruli were highly correlated, lying in different
clusters (Figure 4C). Cumulus formed a cluster distinguishable
from other glomeruli, as it was higher in size (Figure 4D).
Furthermore, glomerular clusters in A. dissimilis ALs showed
different variations in terms of either size or shape; e.g., LFGs

were relatively more identical in sizes and shapes while a
separated cluster glomerulus G17 showed remarkable variations
in sizes and shapes among individuals (Figures 4C,D).

DISCUSSION

Antennal Lobe Morphological
Conservation in Noctuidae
The moth antennal lobe is well known to be sexually dimorphic.
We found that the arrangements of A. dissimilis antennal
lobe is conserved within Noctuidae species. Male A. dissimilis
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FIGURE 3 | 3-D modeling of antennal lobes in Figure 2. (A) Spatial organizations of glomeruli in male A. dissimilis by the anterior sectional view. Colors indicate
scanning depth. Labeling of the glomeruli was the same as that in Figure 2. AN, antennal nerve; LCCl, the lateral cell cluster; MCCl, the medial cell cluster. (B)
Spatial organizations of glomeruli in female A. dissimilis by anterior sectional view. Colors indicate scanning depth. Labeling of the glomeruli was the same as that in
Figure 2. AN, antennal nerve; LCCl, the lateral cell cluster; MCCl, the medial cell cluster. (C) Anterior, posterior, and anteroposterior views of modeling of the MGC
area in males, showing representative spatial organization of CU, DA, and DP, respectively. (D) Anterior, posterior, and anteroposterior views of modeling of the LFG
area in females, showing representative spatial organization of LFG 1–4, respectively.

moth shows three enlarged subunits in MGC of ALs and this
three-part MGC arrangement is also similar to that of other
reported species including Helicoverpa armigera, H. assulta, and
Mythimna separata (Wu et al., 2015; Jiang et al., 2019). Specific
glomeruli of MGC serving as projections are those of pheromone
tuning ORNs and the major pheromone component generally
projects to the largest subunit, CU (Hansson et al., 1992).
To recognize pheromone more sensitively, male MGC show
increasing size among olfactory glomeruli under high selection
pressure (Hansson and Stensmyr, 2011). In contrast to the MGC,
female LFGs were thought to be involved in encoding olfactory
information of female-specific ovipositional behavior but more
research is needed to confirm this. For A. dissimilis, our research
offered a new perspective to understand how this pest senses
olfactory cues. The three-part MGC arrangement of the male
antennal lobe indicates that the sex pheromone of females may
consist of two components. However, sex pheromones of female
moths still need to be identified precisely. The ordinary glomeruli
(OGs) have been reported to process plant odor information
(Christensen and Hildebrand, 2002). In attempts to characterize

the OGs in A. dissimilis functionally, further in vivo optical
imaging or intracellular recording will be worthwhile to utilize
in this pest.

Olfactory Receptor Neurons and
Ionotropic Receptor Neurons May Both
Project to Antennal Lobes
In insects, ORNs expressing certain odorant receptor (ORs) that
project from the antenna to the corresponding glomerulus
(Vosshall and Stocker, 2007). We asked what kind of
chemosensory receptors are involved by comparison between
numbers of receptors and glomeruli as based on the one
OR/one ORN rule (Vosshall et al., 2000). When comparing
glomeruli with ORs in several reported moth species including
A. dissimilis (Supplementary Table S4; Bengtsson et al.,
2012; Jacquin-Joly et al., 2012; Liu et al., 2012, 2014; Poivet
et al., 2013; Gu et al., 2014; Koenig et al., 2015; Xu et al.,
2015; Zhang et al., 2015; Dong et al., 2016; Yang et al., 2017),
the slope is 0.795, indicating that more glomeruli were not
projected by ORs. The reason may be that other chemosensory
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FIGURE 4 | Statistics and analysis of the atlas results in A. dissimilis. (A) Overview of results in males including six replicates by Circos plot using data from
Supplementary Table S2. Volume, deviation, and variation of glomeruli in all specimens are respectively shown with heat map circles. Width of the block indicates
means of volumes in glomeruli. Blue ribbons indicate strong correlations of data pooled between glomeruli, and green and gray indicate medium and weak
correlations. (B) Overview of results in females including six replicates by Circos plot using data from Supplementary Table S3. (C) Dendrograms showing
clustering of glomeruli in both sexes pooled from all specimens. The median method using the squared Euclidean distance metric was utilized to analyze volumes,
deviations, and variations among glomeruli. (D) Select glomeruli in both sexes and among specimens showing representative characters. DA and LFG1: glomeruli
with constant volumes and shapes among replicates. CU and G17: glomeruli that formed distinct clusters with the previous ones, indicating that they were either
larger in sizes or more distorted in shape/volume. (E) Exploration of relationships between olfaction-related receptors (odorant receptors, OR; ionotropic receptors,
IR) and numbers of glomeruli in ALs in seven moth species. Orange indicates correlation of ORs against glomerular numbers, and blue indicates ORs + IRs against
glomerular numbers in each species, respectively. A slope of 1.053 indicates that the sum of both ORs and IRs was better correlated with numbers of glomeruli in
each species (linear regression, t(7) = 18.5, P < 0.0001). Dotted lines indicate 95% CI.

receptor neurons may also be involved in projection to the
ALs. Recent work has revealed that ionotropic receptors
(IRs) are involved in olfaction in moths (Tang et al., 2020).
When additional IRs were added to the correlation, we found
a better slope of 1.053, meaning each receptor can project
to its corresponding glomerulus (Figure 4E). This provided
evidence that olfactory processes in moths involve both ORs
and IRs at the periphery. The slope of 1.053 from ORs + IRs
to glomeruli in A. dissimilis moths actually is not perfectly
correlated, indicating that there are more receptor types than
the number of glomeruli within one species. In Drosophila,
it is reported that more than one IR may project to the
same glomerulus in the ALs (Grabe et al., 2016). We thus
speculated that a similar mechanism may also occur in moth

species, indicating that several different IRs may project to the
same glomerulus.
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