
RESEARCH ARTICLE

Multi-epitope Models Explain How Pre-
existing Antibodies Affect the Generation of
Broadly Protective Responses to Influenza
Veronika I. Zarnitsyna1*, Jennie Lavine2, Ali Ellebedy1,3, Rafi Ahmed1,3, Rustom Antia2*

1Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia,
United States of America, 2Department of Biology, Emory University, Atlanta, Georgia, United States of
America, 3 Emory Vaccine Center, Atlanta, Georgia, United States of America

* vizarni@emory.edu (VIZ); rantia@emory.edu (RAn)

Abstract
The development of next-generation influenza vaccines that elicit strain-transcendent

immunity against both seasonal and pandemic viruses is a key public health goal. Target-

ing the evolutionarily conserved epitopes on the stem of influenza’s major surface mole-

cule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show

promising results in animal model systems. However, studies in humans indicate that natu-

ral infection and vaccination result in limited boosting of antibodies to the stem of HA, and

the level of stem-specific antibody elicited is insufficient to provide broad strain-transcen-

dent immunity. Here, we use mathematical models of the humoral immune response to

explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the

head and stem of HA in humans, and, in particular, how it leads to the apparent lack of

boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypothe-

ses where binding of antibody to an epitope: (i) results in more rapid clearance of the anti-

gen; (ii) leads to the formation of antigen-antibody complexes which inhibit B cell activation

through Fcγ receptor-mediated mechanism; and (iii) masks the epitope and prevents the

stimulation and proliferation of specific B cells. We find that only epitope masking but not

the former two mechanisms to be key in recapitulating patterns in data. We discuss the

ramifications of our findings for the development of vaccines against both seasonal and

pandemic influenza.

Author Summary

The current influenza vaccine requires frequent updating in order to protect against small
changes in the virus from one year to the next as well as larger changes associated with the
emergence of new influenza strains from zoonotic reservoirs that cause pandemics. There
is a considerable interest in developing “universal” vaccines that will boost immune
responses to the conserved regions of the virus, in particular, to the stem region of the
major virus surface molecule hemagglutinin (HA). However, recent data reveals that
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vaccination results in very limited boosting of antibodies to the stem of HA. We use math-
ematical models to explore different hypotheses that may explain why vaccination does
not boost antibodies to the conserved parts of the virus. By confronting our models with
the data from the human vaccination trials we found that the key mechanism preventing
effective boosting of the responses to the stem of HA is masking of the stem by pre-existing
antibodies developed during previous infections and vaccinations. We discuss how this
masking effect could be overcome in a “universal” influenza vaccine.

Introduction
Both seasonal and pandemic influenza pose significant public health concerns. Seasonal influ-
enza in the U.S. is estimated to lead to an economic burden of $87.1 billion [1], and pandemic
influenza poses a grave threat to public health, as witnessed during the 1918–1919 Spanish
influenza outbreak [2].

We are currently able to generate vaccines against seasonal influenza based on knowledge of
its global patterns of spread and mechanisms of evolution, such as antigenic drift, that lead to
gradual annual changes in the surface proteins of the virus. However, given current immuniza-
tion technologies, a new vaccine must be formulated each year; this endeavor is costly, and esti-
mates of vaccine effectiveness vary widely and differ depending on whether they are focused on
symptoms, infection or transmission [3–7]. Moreover, current vaccine technologies are not
protective against pandemic influenza strains, to which people have little or no pre-existing
humoral immunity. Pandemic influenza generally occurs due to larger antigenic changes
(shifts), and when these novel strains enter the human population they typically cause severe
disease [2, 8].

The humoral immune response is most strongly stimulated by hemagglutinin (HA), the
major surface molecule, which has a distinct head and stem structure [9–12]. Current influenza
vaccines target the head of hemagglutinin, which has multiple epitopes that vary from year to
year. In contrast, the stem is highly conserved and remains largely the same over time. In fact,
there are only a couple of different stem types, even across influenza subtypes. The stem is
therefore a desirable target for immunization because a vaccine that could elicit antibodies that
bind to the stem epitopes would be useful across years and even, likely, for novel pandemic
strains that may arise in the future.

Recent experimental studies in mice and ferrets show that it is possible to generate high lev-
els of antibody to the stem of HA using novel vaccines, and these antibodies can provide
strain-transcendent immunity in animal model systems [13–19]. One of the important differ-
ences between these animal model systems and humans is that in contrast to naive mice and
ferrets, humans typically have prior immunity generated by exposure to multiple strains that
have circulated in the past. Consequently, to move these vaccines to humans, it would be help-
ful to develop a quantitative understanding of how pre-existing immunity affects the ability
of vaccines to boost antibody responses in general and the response to the stem of HA in
particular.

In this paper we develop mathematical models to help us explore different hypotheses for
how pre-existing antibody affects boosting following immunization. We define the magnitude
of the boost as the fold increase in antibody following immunization. The models are con-
fronted with reanalysis of recent data shown in Fig 1 measuring how immunization with a
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vaccine containing HA from novel strains of influenza boosts antibodies specific to the stem
and head of HA [20]. Fig 1 shows that: prior to immunization there were on average higher lev-
els of antibodies to the stem than the head of HA (and no individuals with very low titers to the
stem); and immunization caused antibodies against stem epitopes to be boosted less than those
against head epitopes (Fig 1A and 1B, t − test p − value< 0.0001 and Fig A Panels A,B in S1
Text). In fact, if we look across both epitopes, increasing pre-exposure titers led to lower boost-
ing of responses to both epitopes (Fig 1C). Similar data was obtained following immunization
with inactivated H1N1 and is shown in Fig A in S1 Text. In the H1N1 study there was more
overlap between the prevaccination antibody titers to the head and stem of HA. The heteroge-
neity in immune responses of individuals in the population makes it hard to discern the rules
which govern how pre-existing immunity affects the boosting of antibody responses following
immunization from these data.

We use the models together with statistical analysis to explore three hypotheses that may
explain why pre-existing antibodies reduce the boosting of the humoral immune response fol-
lowing immunization; in doing so, we parsimoniously account for the differences in the
immune responses to head and stem epitopes. The antigen clearance model (ACM) proposes
that pre-existing antibodies, which bind to epitopes on antigens, cause rapid clearance of the
antigen. The reduced antigen load results in less expansion of B cells and less boosting of anti-
body. The Fc receptor-mediated inhibition model (FIM) proposes that pre-existing antibodies
bind antigen and these antigen-antibody complexes inhibit the activation of specific B cells.
The proposed mechanism involves antibody forming a complex with antigen and antigen-spe-
cific B cells recognizing these immune complexes presented via complement and Fc-receptors
on follicular dendritic cells in the germinal center. The co-crosslinking of the B cell receptor
(bound to the antigenic epitope) and the FcγRIIB (bound to the Fc portion of the antibody in
the immune complex) leads to inhibition of B cell activation [21]. The epitope masking model

Fig 1. Boosting of antibodies to the head and stem epitopes of HA following vaccination with inactivated H5N1. Panel A shows IgG
titers against HA head (red) and stem (blue) epitopes measured prevaccination and 30 days post-vaccination. Panel B shows the fold-
increase in IgG antibody titers against HA head (red) and stem (blue) epitopes calculated from the data in panel A. Panel C shows the
relationship between the pre- and post-vaccination antibody titers. In the absence of boosting, we expect the data to fall on the dashed line
(slope = 1). If the degree of boosting is independent of the initial titer, boosting would result in the data falling on a line parallel to (and above)
the dashed line. The solid line, representing the best fit line, has slope less than one (least squares; slope = 0.28; 95% CI = [0.090;0.476]),
indicating that there is less boosting when initial antibody titers are high. Data are from [20].

doi:10.1371/journal.ppat.1005692.g001
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(EMM) proposes, instead, that pre-existing antibodies that bind to epitopes on the current
strain of HA mask these epitopes, thus inhibiting the binding and proliferation of B cells spe-
cific for the same and nearby epitopes but not B cells specific for distant epitopes. This inhibi-
tion is because the stimulation of epitope-specific B cells requires their binding to the epitope
and physical constraints associated with the size of antibodies prevent B cell from binding to
epitopes with attached antibody. Further expansion of specific B cells and production of anti-
body to epitopes that are masked by pre-existing antibody is thereby downregulated despite
the continued presence of antigen.

We compare the models’ predictions regarding antibody titers against hemagglutinin’s
stem and head with the aforementioned data. We find that all three models can account for
features of the data shown in Fig 1. We then show that reanalysis of the data in a manner that
takes into account linkage between the responses to head and stem epitopes within individuals
allows us to discriminate between the models. We find that only the EMM is able to recapitu-
late key patterns regarding the relative boosting of responses to the head and stem epitopes
within individuals. We show that this conclusion is robust to a variety of alternative model
assumptions, including model expansion to multiple epitopes on the head of HA. Finally, we
discuss the implications of our findings for the development of a strain-transcendent influ-
enza vaccine.

Results

Formulation of the immunodynamics models
The modeled interactions between antigen and the immune system are depicted together
with corresponding equations in Fig 2A and explained in detail in the Methods section. The
objective is to use models to explore how prevaccination antibodies affect the boosting of
antibody responses following immunization. The key features of the data are the measure-
ments of antibodies to the head and stem of HA [20]. Accordingly, we use a minimal model
that focuses on epitopes on the head and stem of HA and their interactions with B cells and
antibodies specific for these epitopes. At this stage we have a simple B cell clonal expansion
model for the generation of immune responses. Complex interactions such as differentiation
of B cells and interactions with other cells such as follicular dendritic cells and T cells in
germinal centers that underlie the process of clonal expansion are not explicitly included.
This is because the experimental data does not include measurements of these quantities.
Consequently, we use simpler models and focus on generating robust qualitative predictions.
We test these predictions by confronting them with existing experimental data. In these cir-
cumstances the results of simpler models are typically more robust than those of complex
models [22].

In the basic model, antigen stimulates clonal expansion of specific B cells, which produce
antibody. Antibody production continues until all the antigen has decayed. The basic model
predicts that the fold increase in antibody titers is independent of initial titers; therefore, under
this model, the boost in antibody levels resulting from a second immunization is the same as
that from the initial immunization. This is shown by simulations in Fig 2B.

The ACM, FIM and the EMM all predict that pre-existing antibody reduces the fold
increase in antibody production following immunization, a pattern that is consistent with
data ([20] and Fig 1). Thus secondary immunization with the same antigen leads to lower
boosting of antibody in comparison to the primary immunization (Fig 2C and 2D). However,
the underlying mechanisms of the ACM, FIM and EMM are different. In the ACM, antigen
bound to antibody (Hb) is removed from the system faster than free antigen (i.e., db > df,
green text in Fig 2A). Because bound antigen is removed more quickly, it has less time to
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stimulate B cells, resulting in less boosting (Fig 2C). In the FIM, antigen-antibody complexes
(Hb) reduce the activation of B cells as described by the parameter α (see additional term in
blue color in equation for B cells in Fig 2A). 1/α is the concentration of antigen-antibody
complexes that reduces the growth rate of B cells by a factor of 2. If α = 0 there is no Fc-medi-
ated inhibition. In the EMM, antigen is cleared at the same rate whether bound or free (i.e.,
db = df); however, bound antigen is unable to stimulate B cell proliferation because the sites to
which the B cells would bind are sterically blocked (i.e., orange text and δ = 0 removes the two
terms in corresponding equation for B cells in Fig 2A). This also results in less boosting upon
re-exposure (Fig 2E).

Application to influenza
Two-epitope models. We extend the one-epitope immune dynamics models to account

for key aspects of influenza virus structure and evolution. The main antigenic component of
the virus, HA, consists of two distinct parts, the head and the stem. Therefore, to model influ-
enza, we develop a state-space model (Fig 3A) in which antigen can be in one of several states:
XS corresponds to HA with no antibodies bound to either the head X or the stem S epitopes;
OS corresponds to HA with antibody AX bound to and masking the head epitope X; XO cor-
responds to HA with antibody AS bound to and masking the stem epitope S; and finally OO

Fig 2. Dynamics of the immune response during primary and booster immunizations in the one-epitope model. Panel A shows a
schematic and the equations for the basic one-epitope model with addition of enhanced antibody-bound antigen clearance (in green),
FcγR-mediated inhibition (in blue), or epitope masking (in orange). Panels B-E show the dynamics of antigen and immune responses
following primary and secondary immunization in these models. Panel B shows that in the basic model primary and secondary
immunizations result in identical boosts (fold increases in antibody). Panels C, D and E show that in the ACM, FIM and EMM, respectively,
the antibody generated during the primary response reduces the boosting of antibody following the second immunization. Parameters are
shown in Table 1, db = 3 for the ACM, α = 0 for basic, ACM, EMM and α = 0.01 for FIM.

doi:10.1371/journal.ppat.1005692.g002
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corresponds to HA with antibodies AX and AS bound to and masking both head and stem
epitopes. The symbol O indicates the masking of the epitope by antibody binding to that epi-
tope. The transitions among these states occur at rates that are independent of the current
state (e.g., the rate constants for XS + AS ! XO is the same as that for XO + AX ! OO etc;
Fig 3A).

We combine the two-epitope state-space model with the models of immune dynamics (i.e.,
basic, ACM, FIM and EMM) to explore how pre-existing immunity affects the boosting of
responses to both the head and stem epitopes. We consider the case of immunization of an
individual with HA and a simple scenario where HA has a new head, and therefore only little
(i.e. naive level) pre-existing immunity to it; however, there is some level of immunity to the
conserved stem of HA (similar to the data in Fig 1). We therefore consider the host’s response
by modeling the fold increase in antibody titers to head and stem epitopes in the presence of
varying levels of stem antibodies and assume a naive status for B cells and antibodies to the
head (Fig 3B–3E).

In the basic model, pre-existing antibodies do not affect the subsequent response, and the
fold boost is unaffected by varying pre-existing antibody levels to the stem (Fig 3B, parallel
with Fig 2B). In the ACM, pre-existing antibodies to the stem of HA affect both epitopes
equally; head and stem antibody titers decline in tandem. This is because when antibody titers
to the stem increase, binding of this antibody to the stem epitope on HA clears the entire anti-
gen, reducing both head and stem epitopes equally (Fig 3C). In the FIM, in the absence of
epitope masking we see a result similar to the ACM. Antigen bound to antibody inhibits activa-
tion of the B cells specific to both epitopes (Fig 3D). In contrast, in the EMM, high pre-existing
antibody titers to the stem of HA bind to the stem and mask this epitope. This reduces the
stimulation of stem-specific B cells and results in lower boosting of antibodies to the stem.

Table 1. Model parameters and initial values for variables.

Model parameter Symbol Units Value

Rate constant for antibody binding k s−1day−1 0.01

Decay rate of free antigen df day−1 0.5

Decay rate of bound antigen db day−1 0.5

Max. prolif rate of B cells s day−1 1

Antigen for 1/2 max. prolif of B cells ϕ s 100

Antibody production rate a day−1 0.1

Decay rate of antibody dA day−1 0.1

Fc-mediated inhibition α s−1 0 or 0.01

Extent of steric interference β 0.95

Model variable Symbol Units Initial value

Free antigen Hf s 104

Bound antigen Hb s 0

B cells B s 1

Antibody A s 1

The parameter values for the simulations are the ones below unless otherwise specified in the figure

legend (see Table B in S1 Text for more details). The units of antibody and B cells are re-scaled as

described so at equilibrium the [B] = [A] (s = scaled units).

doi:10.1371/journal.ppat.1005692.t001
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Fig 3. Two-epitope EMM. Panel A: A schematic for the two-epitope EMM. The HA antigen has two epitopes:
X on the head and S on the stem. Binding of antibodies specific for these epitopes masks them and masked
epitope is indicated byO. Panel B-D: We plot for the two-epitope model how pre-existing antibody to the stem
of HA, AS, affects boosting (fold increase) in the antibody to both the head (AX) and the stem (AS) of HA
following immunization. In the basic model (Panel B) boosting is independent of the level of pre-existing
antibody. In the ACM (Panel C) prevaccination antibody to the stem clears the antigen and causes an equal
reduction in boosting of antibodies to both the head and stem of HA. In the FIM (in the absence of epitope
masking) (Panel D), prevaccination antibody rapidly binds antigen and these antigen-antibody complexes
downregulate B cell proliferation to both epitopes. In the EMM (Panel E) pre-existing antibody to the stem
masks only the stem epitope, thus reducing only the boosting of antibody to the stem of HA (and boosting of
antibody to the head remains unaffected). Corresponding models equations are shown in Methods section.
Parameters are in the Table 1. For ACM parameter db is equal 3, for FIM parameter α = 0.01 and α = 0 for
other models.

doi:10.1371/journal.ppat.1005692.g003
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However, stem antibodies have no effect on the antibody response to the head (Fig 3E). The
key result which emerges is that only the EMM produces differential boosting of responses to
head and stem epitopes with weaker boosting of antibodies to the stem (Fig 3B–3E).

Multi-epitope models and steric interference. HA has multiple epitopes on the head and
fewer epitopes on the stem. As a first step to explore the consequences of adding this complex-
ity, we develop a multi-epitope model of HA with two epitopes on the head (i.e., X and Y) and
one epitope on the stem (S) (Fig 4). The incorporation of multiple epitopes on the head of HA
requires consideration of steric interference. Steric interference arises as a consequence of phys-
ical constraints associated with the size of antibodies and the proximity of head epitopes. Steric
interference has been suggested in the context of neutralization efficiency of epitopes [23] and
is supported by stoichiometric studies of binding of antibodies to the head of HA on intact
virus [10, 24]. Antibody bound to a head epitope (X in Fig 4) not only blocks the binding of fur-
ther antibody or B cells to the same epitope, it also inhibits binding to nearby epitopes on the
head of HA (e.g., Y in Fig 4) but not to the more distant epitopes on the stem (epitope S in
Fig 4, also see Fig B in S1 Text for details of the multi-epitope model with three epitopes and
corresponding equations in Methods section).

In the multi-epitope model, antigenic drift would correspond to a change in one of the head
epitopes. We assume that epitope X does not change between the old and new strains, whereas
epitope Y on the new strain is novel (i.e. substantially changed in comparison with the old
strain). Therefore, pre-existing antibody to X is fully functional, whereas little pre-existing anti-
body binds to the new epitope Y. However, steric hinderance would result in pre-existing anti-
body binding to X reducing the boosting of antibody to Y. When the parameter β, which
describes the extent of steric interference approaches 1, the fold increase in the antibody to epi-
tope X and Y becomes almost identical, significantly limiting generation of antibody to Y when
pre-existing levels of antibody to X are high.

The multi-epitope models with steric interference generate dynamics and predictions simi-
lar to the two-epitope models (see Fig B in S1 Text). In particular, in the context of the multi-
epitope model, the basic, ACM and FIM formulations do not allow for differences in the fold
increase (boost) of antibodies specific to head and stem epitopes, whereas the EMM does.
These results demonstrate that the results of our model are robust to adding more epitopes to
the head of HA.

Model discrimination
The data in Fig 1C showing that increasing the amount of pre-existing antibody reduces the
extent of boosting is consistent, thus far, with all three hypotheses (i.e. the ACM, FIM and
EMM). We now tackle the problem of discriminating between the ACM, FIM and EMM by
identifying scenarios where the models give rise to different predictions. In what follows we
simulate the responses to immunization with HA using a multi-epitope framework with three
epitopes, but we note that we get the same results using a two-epitope framework.

The experimental data show boosting of antibodies to the head and stem of HA following
immunization with H5N1 (Fig 1) and H1N1 (see Fig A in S1 Text) vaccines. In the previous
sections we have considered the consequences of changing prevaccination immunity to one
epitope (the stem epitope). Fig 5 shows that the models give different predictions when we
vary the prevaccination immunity to both head and stem epitopes simultaneously. In Fig 5,
we consider a number of individuals with different levels of pre-existing antibody to the head
and stem of HA and plot the boosting of the responses to both head and stem; points con-
nected by a line are from the same individual. In the basic model, boosting is independent of
the level of pre-existing antibody; thus, the lines are all horizontal and at the same height. In
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the ACM, pre-existing antibody to either the head or stem of HA clears the entire antigen
(i.e., both head and stem) and reduces the boosting to both head and stem equally. In the
FIM, antigen-antibody complexes inhibit the activation and proliferation of B cells specific
for both epitopes. Thus, in both the ACM and FIM the lines joining each individual are hori-
zontal; however, in comparison with the basic model, the boost is reduced by pre-existing
antibody to both head and stem. In contrast, in the EMM, antibodies to the head and stem of

Fig 4. Illustration of steric interference between antibodies to the epitopes on the head of HA in the
multi-epitopemodel.We describe antigenic drift by changing only epitope Y on the head of HA between the
two virus strains. Antibody to X generated in response to a previously experienced strain sterically hinders
efficient stimulation of B cells specific for the new epitope Y.

doi:10.1371/journal.ppat.1005692.g004
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HA can be boosted by different amounts (Fig 5C). This is because pre-existing antibody to
the stem of HA masks only the stem epitope, thus reducing the boosting of responses to the
stem and not to the head (and vice versa for antibodies to the head). Consequently, the lines
for all individuals fall along a diagonal with a negative slope.

Fig 5. Predictions of the different models when different individuals vary in the level of pre-existing
antibody to both head (red circles) and stem (blue triangles) epitopes. The basic, antigen clearance
(ACM), Fc-mediated inhibition (FIM) and epitope-masking (EMM) models generate different predictions.
Using a three-epitope framework we calculate how different amounts of pre-existing immunity to the head
and stem of HA affect boosting of the antibody responses to these epitopes. We consider individuals with
different amounts of antibody to the head and stem of HA prior to immunization. The ten different initial
conditions are shown. Antibody boosting to a pair of epitopes (head epitope X in red and stem epitope S in
blue) in a given individual is connected by a line. In the basic model (Panel A) boosting is independent of the
level of pre-existing antibody. In the ACM (Panel B), pre-existing antibody to either epitope clears the entire
antigen and thus causes an equal reduction in the boosting of responses to both head and stem epitopes (the
lines for each individual are horizontal). In the FIM (Panel C), antibodies bound to antigens (antigen-antibody
complexes) equally inhibit the activation of B cells specific for both head and stem epitopes. In the EMM
(Panel D), pre-existing antibody binding to either the head or stem epitopes only reduces the boosting of the
response to that epitope and not the other one. Other parameters as in Table 1. For ACM parameter db is
equal 3, for FIM parameter α = 0.01 and α = 0 for other models.

doi:10.1371/journal.ppat.1005692.g005
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To discriminate between the models we compare the predictions with data from vaccine
trials in humans with HAs from H5N1 or H1N1 strains (Fig 1 and Fig A in S1 Text). The
assays used in the study allowed for independent measurement of stem and head antibody
titers in each individual [20, 25]. The data for boosting of antibodies to the head and stem of
HA such as that shown in Fig 1 were reanalyzed to generate a plot similar to that in Fig 5. The
reanalyzed data is plotted in Fig 6. Clearly, the pattern observed in the data is consistent with
only the EMM. The EMM predicts that low pre-existing antibody titers to epitope on the stem
allow for a strong boost to that epitope regardless of whether titers to the epitopes on the head
are high or low (and vice versa). In line with this prediction, the degree of boosting for a given
epitope shows a significant negative correlation with the initial titers for that epitope but no
significant correlation with the initial values for the other epitope (see Figs C,D and Table A
in S1 Text).

We finally consider an ensemble of models that includes all possible combinations of anti-
gen clearance, Fc-mediated inhibition and epitope masking (Fig E in S1 Text). The results are
complex and indicate potentially interesting interactions between the different mechanisms
of antigen clearance, Fc-mediated inhibition and epitope masking. For example, combina-
tions that include both the FIM and EMMmodels (i.e. FIM+EMM and ACM+FIM+EMM)
can generate slopes for individuals that are positive in comparison with the zero or negative
slopes seen when we have the ACM, FIM or EMM alone. All combinations (of two or
all three models) predict that the slope for each head-stem pair (slopes of individuals)
will be less steep than the slope of the best fit line to the data set as a whole. This is not consis-
tent with the observations as can be seen in Table 2 where we see that the average for the
slopes of individuals is not significantly different from the slope fitted to all data points
(p − values = 0.40 and 0.31 for H5N1 and H1N1, respectively). In conclusion, the data
suggest that epitope masking is the key factor in reducing the boosting of antibody and that

Fig 6. Analysis for how the fold increase in antibodies to the head and stem of HA depend on their
pre-immune levels in individuals.We plot lines obtained by joining the data for head and stem for
individuals vaccinated with H5N1 (Panel A) and H1N1 (Panel B) (see Tables C and D in S1 Text). We find the
slope of these lines is not significantly different from an average line using all the data (thick line). This result
consistent with the EMMmodel, but inconsistent with the ACM and FIM models which predict the slopes of
the individual lines should be zero. Also see corresponding Table 2.

doi:10.1371/journal.ppat.1005692.g006
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antibody-mediated antigen clearance and Fc-mediated inhibition of B cell activation play no
more than a minor role.

Consequences for vaccination
Epitope masking was found to be the dominant factor for explaining patterns in the data; we
therefore use the EMM to predict the optimal vaccination strategy for boosting stem antibody
titers. We find that increasing the dose of stem antigen used in the vaccine can help counteract
the effects of epitope masking and allow for the generation of stronger antibody responses to
the stem. There is a threshold level of antigen above which the response is quite strong; this
level is equal to the amount of antibody present before the vaccine. Once the antigen dose in
the vaccine exceeds the amount of antibody present, the free antigen successfully stimulates a
boost to stem antibody titers. This is illustrated in Fig F in S1 Text where we plot how both the
level of pre-existing immunity and antigen-dose affect the boosting of antibodies to a given
epitope.

Discussion
This paper uses simple mathematical models to explore how pre-existing antibody affects
the generation of recall responses following immunization. We apply these models to the
context of antibody responses to HA which is the main target of humoral immunity to influ-
enza. The first step in this paper was to show that multiple models of immunodynamics, the
ACM, FIM and EMM are consistent with previous observations describing how prior anti-
body limits the boosting of antibodies to HA upon re-exposure. In particular, we extend our
previous study that described the epitope masking hypothesis [26] by showing that the clear-
ance of antigen by antibodies (i.e., the ACM) and Fc-mediated inhibition of B cell activation
(i.e., the FIM) could also explain these observations. This is because, in all three models, the
presence of pre-existing antibody leads to lowering the expansion of specific B cells and less
boosting.

In order to discriminate between the ACM, FIM and EMM we determine situations in
which they give rise to different predictions. We find that reanalysis of the data in a manner
that takes into account information previously ignored (i.e., the relative boosts to head and
stem antibodies within an individual) allows us to discriminate between the two models. This
discrimination is possible because the three models provide different predictions in the pres-
ence of multiple epitopes on the same antigen to which the host has differing levels of pre-

Table 2. Statistical analysis of data shown in Fig 6.

Immunization Slopes (mean with 95%CI) p-values

Individual average of all data ACM or FIM EMM

H5N1 -0.27 [-0.30;-0.14] -0.22 [-.027;-0.16] 0.0003 0.40

H1N1 -0.38 [-0.72;-0.03] -0.21 [-0.28;-0.14] 0.0338 0.310

We see that the slope of the lines obtained by joining the data for head and stem for individuals is not significantly different from an average line obtained

using all the data (a result consistent with the EMM model) but significantly different from zero (the prediction of the ACM model). Note, that during H1N1

analysis we disregarded the data for one head-stem outlier with vertical slope.

doi:10.1371/journal.ppat.1005692.t002
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existing immunity. Under the ACM, the whole antigen is affected simultaneously. Under the
FIM, the antigen-antibody complexes reduce the stimulation of all antigen-specific B cells.
This results in the boosting of antibodies to all the epitopes being similar in both the ACM and
FIM. In the EMM, epitopes can be affected independently, and the boosting of antibodies to
one epitope is not affected by antibodies to the other epitope. Comparison of these predictions
with the data allows us to reject the ACM and FIM models—only the EMM is consistent with
the data, and suggests that the masking of antigen epitopes by antibodies plays a key role in
modulating recall responses to influenza.

We have considered how steric-interference and epitope-masking affect the generation and
boosting of antibody responses. Steric interference in the binding of antibodies to epitopes on
the head of HA may also have important consequences for the neutralization of live virus and
this has been described in [23, 27]. The antibodies binding to non-neutralizing epitopes on the
head of HA may sterically prevent neutralizing antibodies binding to nearby epitopes, and it
has been suggested that HA in vaccines should be engineered to remove the non-neutralizing
epitopes [27]. Our study differs from these studies in focusing on the boosting of responses
rather than the neutralization of virus. Interestingly, our analysis suggests that there is little if
any steric interference between the binding of antibodies to the epitopes on the head and stem
of HA (see Table A in S1 Text) and that the key factor limiting the boosting of antibodies to
conserved epitopes on the stem of influenza is pre-existing antibodies to these epitopes rather
than antibodies to the head of HA.

The data in Fig 1A shows the response to HA from H5N1 which is not circulating in the
human population, and we see that the prevaccination level of antibody to the head is much
lower than that to the stem. The question is whether there are inherent differences in the head
and stem that could account for the observations for the different levels of boosting to head
and stem that we see in Fig 1B. We point out a few reasons against this being a major factor.
First, our current models parsimoniously explain the observations. Second, if we look at the
data in Fig A in S1 Text, which describes the boosting followed by vaccination with H1N1, we
see that there is more overlap between the prevaccination titers to head and stem of HA and
the responses to the head and stem are comparable. For example, three data points with low
prevaccination titers to the stem reach post-vaccination titers similar to points having low pre-
vaccination titer to the head of HA.

Both H5N1 and H1N1 studies show that prevaccination antibodies to the stem of HA
have a minimal impact on the expansion of responses to the head of HA, and similarly pre-
vaccination antibodies to the head do not significantly affect the boosting of antibodies to the
stem of HA. This can be seen in Figs C,D and Table A in S1 Text. We note that there is some
indication that increased levels of pre-existing antibodies to the head of HA might reduce the
boosting of antibodies to the stem, though the p − value does not reach statistical significance
(p − value = 0.137 in Fig D in S1 Text). Our modeling approach can be easily extended to
consider interference between binding of antibodies to the head and stem of HA. As the rele-
vant experimental data becomes available this should allow assessment of its role in limiting
boosting of antibody to stem during scenarios of immunization with an antigenically drifted
vs. shifted HA [15, 16, 28].

One could argue that if an antigen is cleaved into two separate parts then all three models
(ACM, FIM and EMM) could be consistent with the independent boosting of responses to epi-
topes on different parts. This is unlikely to be the case for HA because the stem of HA does not
maintain its native conformation in the absence of being linked to the head of HA [29, 30], so
it would lead to more head than stem antigen and we would expect much higher responses to
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the head of HA under the same experimental settings. We have a limited dataset, but in Fig 6B
we see three individuals with low preexisting antibody to the stem. The lines joining the boost-
ing of head and stem in these individuals do not have lower slopes than the average line, indi-
cating that there are comparable levels of stem and head epitopes.

We have used simple phenomenological models to generate qualitative predictions. This is
because, in the absence of detailed information on the parameter values or sufficient data to
estimate them, simpler models frequently generate more robust qualitative results than com-
plex ones [22]. The conclusions presented here are robust to a number of variations in the
model specification. First, they hold up in the context of different models of antigenic drift
(i.e., two-epitope model and a three-epitope model with steric interference) and are robust
to considering interactions between antibodies and B cells against multiple epitopes on the
head of HA. Second, our results are not highly sensitive to parameter values within biologi-
cally reasonable ranges (see Table B in S1 Text for the choice of model parameters and Fig G
in S1 Text).

The immune response to influenza vaccination is complex and not fully understood. The
extensions of the models we have proposed can play an important role in furthering our under-
standing. An important next step is to include the differentiation of B cells during responses
and reactions occurring in different locations such as the site of infection and the germinal cen-
ters of lymph nodes as well as CD4 T cell help and affinity maturation [31–33]. Doing so
would require a much more complex model, and ideally would be done in conjunction with an
animal model system which allows measurement of the relevant parameters and testing of vari-
ous components of the model. Another extension involves going from vaccination to natural
infection. This will involve incorporating resource (target cells) limitation and innate immunity
[34–38] as well as T cells [39–41]. These models could be used to consider the effect of pre-
existing antibodies on infection with drifted and shifted virus strains. Early studies suggested
that the response of an individual would be dominated by the antibodies expanded by the first
strain encountered; this was termed “original antigenic sin” [42, 43]. More recent studies have
shown the evolution of the response is more complex and used the terms “antigenic seniority”
and “backboosting” to describe how exposure to the current strain can lead to boosting of
responses to strains that were encountered previously [44–46]. Multi-epitope models which
explicitly consider the different head epitopes together with antigenic maps of changes in these
epitopes may help elucidate this complex dynamics.

Another area that requires attention is the measurement of vaccine efficacy. There are
many facets of vaccine efficacy; vaccines may protect against pathology (VEP), susceptibility
to infection (VES) and/or infectivity and transmission (VEI) [3, 4, 47], and estimates of influ-
enza vaccine efficacy vary widely (e.g., the median monovalent pandemic H1N1 vaccine
effectiveness in five observational studies was 69% and the range was 60% to 93% [5]). A
more detailed understanding of the immune dynamics in response to influenza will be key
to disentangling these complexities. Extending the EMM from vaccination to natural infec-
tion will be necessary both to further test the model and to predict its impacts on influenza
epidemiology.

This study sheds light on puzzles of influenza immunity and vaccination. It elucidates rules
(e.g., epitope masking) and key parameters (e.g., antigen dose) associated with the humoral
immune response to influenza vaccination in non-naive hosts and may help guide the transfer
of next-generation, stem-specific influenza vaccines from animal models to humans. The
results suggest that explanations for differences in the antibody response to head and stem epi-
topes need not invoke highly different mechanisms; rather, they may result from differing pre-
exposure antibody titers. Our model which is based on the results of vaccination studies in
humans suggests that generating high levels of antibodies to the stem of HA (required for
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broad strain-transcending immunity) will involve delivery of a sufficiently high dose of antigen
which overcomes the effect of epitope-masking. It would be interesting to extend models such
as the ones we describe in this paper to better understand the success of immunization strate-
gies in mice and ferrets [13–19], such as those involving nanoparticle based vaccines, that gen-
erate high levels of antibodies to the stem of HA [14, 19]. In particular, to determine whether
the success of nano-particle based immunization is due to the maintenance of high levels of
antigen for an extended period of time or due to other reasons such as steric accessibility of the
stem in the nano-particles.

In conclusion, the confrontation of the predictions of qualitative models with a reanalysis
of experimental data leads us to conclude that epitope masking is an important factor in the
immune response following re-exposure to influenza’s HA. There is a clear need for a new gen-
eration of more effective and cross-protective vaccines, and understanding the key mechanisms
and parameters that drive the generation of humoral immunity, such as epitope masking, pre-
vaccination antibody titers and antigen dose, is critical.

Methods
In the following sections we describe the models we consider in the paper.

One-epitope model
The one-epitope model for an antibody response to an antigen includes four variables such as
free antigen (Hf), bound antigen (Hb), B cells specific for the antigen (B), and the antibodies
(A) secreted by B cells. In accord with clonal selection, B cells are stimulated and proliferate in
a manner dependent on the concentration of antigen. We consider a number of scenarios. In
the basic model, antigen stimulates clonal expansion of specific B cells, which produce anti-
body. Antibody production continues until all the antigen has decayed. In the antigen clear-
ance model (ACM) antigen bound to antibody is removed faster than free antigen. In the
FcγRIIB mediated inhibition model (FIM) antigen-antibody complexes inhibit the stimula-
tion and proliferation of B cells. In the epitope masking model (EMM) antibody binding to
an antigen masks the epitope preventing it from stimulating B cells. The equations below
describe these four models (see also Fig 2A).

free antigenð Þ dHf

dt
¼ �kAHf � dfHf

bound antigenð Þ dHb

dt
¼ kAHf � dfHb � dbHb

free antibodyð Þ dA
dt

¼ aB� dAA� kAHf

B cellsð Þ dB
dt

¼ sB
Hf þ dHb

�þ Hf þ dHb

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

antigenic stimulation

1� Hb

ð1=aÞ þ HbÞ
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

FcR inhibition

¼ sB
Hf þ dHb

�þ Hf þ dHb

 !
1

1þ aHb

� �

For the basic model db = df = 0.5, α = 0, and δ = 1. For the ACM df = 0.5, db = 3, α = 0, and
δ = 1. For the FIM db = df = 0.5, α = 0.01 (>0 in general), and δ = 1. For the EMM db = df = 0.5,
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α = 0, and δ = 0. The model parameters were chosen to obtain the key features of a typical anti-
body response. We rescaled the initial values of antibodies and B cells to unity at the naive state
(prior to the first vaccination), and set a = dA, so that at equilibrium in naive or memory states
we have B� A. For the recall responses the initial values of antibodies and B cells were set equal
to the level of preexisting immunity shown on the corresponding figures. Parameter values are
specified in Table 1.

We note that B cell stimulation (by antigen) and inhibition (through FcγRIIB) are saturating
functions of antigen and antigen-antibody complexes, respectively. The antigen density for
half-maximal stimulation of B cells is equal to ϕ and the density of antigen-antibody complexes
at which inhibition of B cells activation is half-maximal is equal to (1/α). We choose the term
1/α so that α = 0 corresponds to the absence of Fc-mediated inhibition.

Two-epitope model
We extend one-epitope model to two-epitope model by considering an antigen with one epi-
tope on the head of HA (X) and one epitope on the stem of HA (S). We let BX and AX represent
B cells and antibodies specific for epitope X (and similarly BS and AS for epitope S). The free
antigen isHXS, and there are three additional states for antigen: HOS, HXO andHOO, represent-
ing antigen with antibodies bound to X, S or both epitopes, respectively (see schematic in
Fig 3A). Parameters are the same as for the one-epitope model.

dHXS

dt
¼ �kHXSðAX þ ASÞ � dfHXS

dHOS

dt
¼ kHXSAX � kHOSAS � dbHOS

dHXO

dt
¼ kHXSAS � kHXOAX � dbHXO

dHOO

dt
¼ kðHXOAX þ HOSASÞ � dbHOO

dBX

dt
¼ sBX

HXS þ HXO þ dðHOS þ HOOÞ
�þ HXS þ HXO þ dðHOS þ HOOÞ
� �

1

1þ aðHXO þ dðHOS þ HOOÞÞ
� �

dBS

dt
¼ sBS

HXS þ HOS þ dðHXO þ HOOÞ
�þ HXS þ HOS þ dðHXO þ HOOÞ
� �

1

1þ aðHOS þ dðHXO þ HOOÞÞ
� �

dAX

dt
¼ aBX � kðHXS þ HXOÞAX � dAAX

dAS

dt
¼ aBS � kðHXS þ HOSÞAS � dAAS

Three-epitope model with steric interference
This model considers an antigen with two epitopes (X and Y) on the head of HA and one epi-
tope (S) on the stem of HA. Steric interference for the antibodies binding to the two epitopes
on the head of HA is introduced into model with parameter β. Parameter β = 0 corresponds to
the case of no steric interference and β = 1 corresponds to the case when antibody bound to
one epitope on the head completely blocks binding of antibodies to the other epitope on the
head. The scheme showing the transitions between the different states of an antigen with
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epitopes X, Y and S is shown in Fig B in S1 Text. The corresponding model equations are
shown below. Parameters are the same as for the one-epitope model.

dHXYS

dt
¼ �kHXYSðAX þ AY þ ASÞ � dfHXYS

dHOYS

dt
¼ kðHXYSAX � HOYSðð1� bÞAY þ ASÞÞ � dbHOYS

dHXOS

dt
¼ kðHXYSAY � HXOSðð1� bÞAX þ ASÞÞ � dbHXOS

dHXYO

dt
¼ kðHXYSAS � HXYOðAX þ AYÞÞ � dbHXYO

dHOOS

dt
¼ kðð1� bÞðHOYSAY þ HXOSAXÞ � HOOSASÞ � dbHOOS

dHOYO

dt
¼ kðHOYSAS þ HXYOAX � ð1� bÞHOYOAYÞ � dbHOYO

dHXOO

dt
¼ kðHXOSAS þ HXYOAY � ð1� bÞHXOOAXÞ � dbHXOO

dHOOO

dt
¼ kðHOOSAS þ ð1� bÞðHOYOAY þ HXOOAXÞÞ � dbHOOO

dBX

dt
¼ sBX

HXYS þ HXYO þ ð1� bÞðHXOS þ HXOOÞ þ dðHOYS þ HOYO þ HOOS þ HOOOÞ
�þ HXYS þ HXYO þ ð1� bÞðHXOS þ HXOOÞ þ dðHOYS þ HOYO þ HOOS þ HOOOÞ
� �

� 1

1þ aðHXYO þ ð1� bÞðHXOS þ HXOOÞ þ dðHOYS þ HOYO þ HOOS þ HOOOÞÞ
� �

dBY

dt
¼ sBY

HXYS þ HXYO þ ð1� bÞðHOYS þ HOYOÞ þ dðHXOS þ HXOO þ HOOS þ HOOOÞ
�þ HXYS þ HXYO þ ð1� bÞðHOYS þ HOYOÞ þ dðHXOS þ HXOO þ HOOS þ HOOOÞ
� �

� 1

1þ aðHXYO þ ð1� bÞðHOYS þ HOYOÞ þ dðHXOS þ HXOO þ HOOS þ HOOOÞÞ
� �

dBS

dt
¼ sBS

HXYS þ HOYS þ HXOS þ HOOS þ dðHXYO þ HOYO þ HXOO þ HOOOÞ
�þ HXYS þ HOYS þ HXOS þ HOOS þ dðHXYO þ HOYO þ HXOO þ HOOOÞ
� �

� 1

1þ aðHOYS þ HXOS þ HOOS þ dðHXYO þ HOYO þ HXOO þ HOOOÞÞ
� �

dAX

dt
¼ aBX � kðHXYS þ HXYO þ ð1� bÞðHXOS þ HXOOÞÞAX � dAAX

dAY

dt
¼ aBY � kðHXYS þ HXYO þ ð1� bÞðHOYS þ HOYOÞÞAY � dAAY

dAS

dt
¼ aBS � kðHXYS þ HOYS þ HXOS þ HOOSÞAS � dAAS

Supporting Information
S1 Text. Fig A. Boosting of antibodies to the head and stem epitopes of HA following vacci-
nation with inactivated H1N1. Serum antibody titers against the head and stem of HA were
measured by the ability of serum to block the binding of monoclonal antibodies that bind to
the head and stem of HA, respectively. The BD50 is proportional to the serum antibody titer
against the head and stem epitopes [25]. Panel A shows antibody titers in terms of BD50 mea-
surements against HA head (red) and stem (blue) epitopes measured prevaccination and 30
days postvaccination. Panel B shows the fold-increase in antibody titers against HA head
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(red) and stem (blue) epitopes calculated from the data in panel A. Panel C shows the rela-
tionship between the pre- and postvaccination antibody titers. In the absence of boosting, we
expect the data to fall on the dashed line (slope = 1). If the degree of boosting is independent
of the initial titer, boosting would result in the data falling on a line parallel to (and above)
the dashed line. The solid line, representing the best fit line, has slope less than one (least
squares; slope = 0.31; 95% CI = [0.086,0.532]), indicating that there is less boosting when ini-
tial antibody titers are high. Data are from [20]. Fig B. Three-epitope model with steric inter-
ference. Panel A. Schematic for the three-epitope model with steric interference. Eight
antigen states are shown. Unbound antigen (XYS) has three antibody binding sites, two on
the head (i.e., X and Y) and one on the stem (S). Sites that are bound by corresponding anti-
body are represented with an O; for example, antigen with just the stem-specific antibody
bound is represented as XYO. Panel B-E: Fold increase in antibody to the head (X+Y) and
stem (S) as a function of preexisting humoral immunity to stem S (naive initial condition for
humoral immunity to head epitopes X and Y) in the three-epitope versions of the basic
model, ACM, FIM and EMM, respectively. Parameters are in the Table 1. For ACM parame-
ter db is equal 3, for FIM parameter α = 0.01 and α = 0 for other models. Fig C. Correlation
between initial antibody titers to a given epitope (on either head or stem of HA) and boosting
of antibodies to the same or another epitope for H5N1 data. Analysis of H5N1 data shows
that the degree of boosting of antibody to the head epitope is negatively correlated with the
initial IgG titers for the same epitope (p − value = 0.0009) and not correlated with the initial
IgG titers for the stem epitope (p − value = 0.34) (and vice versa for boosting of antibody to
the stem epitope). See Table A in S1 Text for corresponding statistics. Fig D. Correlation
between initial antibody titers to a given epitope (on either head or stem of HA) and boosting
of antibodies to the same or another epitope for H1N1 data. Analysis of H1N1 data shows
that the degree of boosting of antibody to the head epitope is negatively correlated with the
initial level of antibody for the same epitope (p − value = 0.007) and not correlated with the
initial values of antibody for the stem epitope (p − value = 0.98) (and vice versa for boosting
of antibody to the stem epitope). Antibody titers are in terms of BD50 measurements [25].
See Table A in S1 Text for corresponding statistics. Table A. Regression analysis from Figs C
and D in S1 Text. Fold increases in IgG titers to head and stem epitopes were plotted against
initial IgG titers to either head or stem epitopes for H5N1 data as shown in Fig C in S1 Text
and corresponding regression analysis is presented. Similar regression analysis for H1N1
data from Fig D in S1 Text is also shown. These results indicate that the dependence of boost-
ing of antibodies to the head and stem of HA on the level of prevaccination antibodies to the
head and stem epitopes, respectively, is not significantly different. It also shows that prevacci-
nation antibody titer to the head of HA does not significantly affect boosting of responses to
the stem, and vice versa. Fig E. Predictions of the models when different individuals vary in
the level of pre-existing antibody to both head (red circles) and stem (blue triangles) epitopes.
Using a three-epitope framework we calculate how different amounts of pre-existing immu-
nity to the head and stem of HA affect boosting of the antibody responses to these epitopes in
Basic model, ACM, FIM, EMM and all combinations of ACM, FIM and EMM (of two or all
three models). We consider ten individuals (ten initial conditions) with different amounts of
antibody to the head and stem of HA prior to immunization. Fig F. Effect of antigen dose
and prevaccination immunity to an epitope on epitope-specific antibody boost in EMM. Pre-
vaccination immunity reduces the boost and for high antigen doses there is approximately
linear relationship between log(revaccination immunity) and log(fold increase in antibody).
For a given antigen dose a threshold value of revaccination immunity exists above which
there is little antibody boosting. Increasing antigen dose allows to overcome the threshold
effect. Table B. Models parameter ranges, outcomes and robustness. Model parameters such
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as decay rate of antibody (dA) have been relatively accurately estimated in vivo [50] and we
do not expect much variation. The maximum effective proliferation rate of B cells (s) was set
in the range 1� s� 2 which corresponds to division times between 1 and 0.5 days. The mean
value of a was obtained by rescaling the concentration of antibodies so as to have A � B at
equilibrium, and we would expect little variation between individuals. Biological ranges for
the antigen for half-maximum proliferation (ϕ) and decay rate of antigen (df) were estimated
to allow the duration of antigenic stimulation for B cells to encompass a range of 3 to 14 days.
Our model is robust to the value of the rate constant for antibody binding provided k > 0.01
which is needed for rapid binding of antibodies to the antigen compared with the duration
of the response. We note that we have rescaled the concentrations of antigen, B cells and
antibodies as described in the main text and for their concentrations we use the scaled unit
s defined as ratio of specific antibody and B cells to their value prior to vaccination. The
concentration of antibodies and antigen is scaled so that B � A at equilibrium. The unit of
time is one day. Table C. Experimental Data from H5N1 vaccination study. IgG titers against
HA head and stem epitopes measured pre-vaccination and 30 days post-vaccination by
ELISA. For details of the study see [20]. We would like to note that this vaccination study fol-
lowed both prime and boost vaccination with inactivated H5N1 avian influenza virus. We
focus on the data obtained following the boost for the following reason. Individuals in the
prime vaccination study were divided into two groups with first group vaccinated with Viet-
nam strain and second group vaccinated with Indonesia strain of H5N1. Head-specific anti-
bodies were measured by binding to the head of HA from the Indonesia strain. It has been
shown previously [48] that little cross-reacting antibody against Indonesia antigen was
induced by 2 doses of Vietnam vaccine and thus we did not use the data for evaluating the
fold increase in the head antibody after prime vaccination. In contrast, all individuals
received a boost with the same Indonesia strain and head-specific antibodies were measured
by binding to the head of HA from the same Indonesia strain. Table D. Experimental Data
from H1N1 vaccination study. We used the data from blocking dilution (BD50) assay [25]
because it measures the total specific antibody rather than ELISA measurements of IgG titers.
Serum antibody titers against the head and stem of HA were measured pre-vaccination and
30 days post-vaccination by the ability of serum to block the binding of monoclonal antibod-
ies to the head and stem of HA, respectively, and antibody titers are shown in terms of BD50.
For details of the study see [20]. Fig G. Illustration of the main qualitative result for randomly
selected sets of parameters in the one-epitope model. Antigen mediated clearance (ACM),
Fc-mediated inhibition (FIM) and epitope masking (EMM) all reduce the magnitude of anti-
body boosting during secondary responses, and this is robust to changes in parameters in the
one-epitope model. We used Latin hypercube sampling (LHS) [49], with the ranges of each
model parameter shown in the table. Panel A, B, C and D correspond to the results of param-
eter variation in Basic, ACM, FIM and EMM, respectively. The antigen is shown in red and
the antibody response in black. The basic dynamics is robust showing that preexisting immu-
nity in ACM, FIM and EMM result in smaller secondary boost in comparison to primary
boost. Panel E shows the summary from Panel A-D for the ratio of secondary boost versus
primary boost.
(PDF)
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