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Despite promising breakthroughs in diagnosing and treating acute coronary

syndromes, cardiovascular disease’s high global mortality rate remains

indisputable. Nearly half of these patients died of ischemic heart disease.

Primary percutaneous coronary intervention (PCI) and coronary artery bypass

grafting can rapidly restore interrupted blood flow and become the most

effective method for salvaging viable myocardium. However, restoring blood

flow could increase the risk of other complications and myocardial cell death

attributed to myocardial ischemia-reperfusion injury (IRI). How to reduce

the damage of blood reperfusion to ischemic myocardium has become an

urgent problem to be solved. In preclinical experiments, many treatments

have substantial cardioprotective effects against myocardial IRI. However,

the transition from these cardioprotective therapies to clinically beneficial

therapies for patients with acute myocardial infarction remains elusive. The

reasons for the failure of the clinical translation may be multi-faceted, and

three points are summarized here: (1) Our understanding of the complex

pathophysiological mechanisms of myocardial IRI is far from enough, and

the classification of specific therapeutic targets is not rigorous, and not

clear enough; (2) Most of the clinical patients have comorbidities, and single

cardioprotective strategies including ischemia regulation strategies cannot

exert their due cardioprotective effects under conditions of hyperglycemia,

hypertension, hyperlipidemia, and aging; (3) Most preclinical experimental

results are based on adult, healthy animal models. However, most

clinical patients had comorbidities and received multiple drug treatments

before reperfusion therapy. In 2019, COST Action proposed a multi-target

drug combination initiative for prospective myocardial IRI; the optimal

cardioprotective strategy may be a combination of additive or synergistic

multi-target therapy, which we support. By establishing more reasonable

preclinical models, screening multi-target drug combinations more in line

with clinical practice will benefit the translation of clinical treatment strategies.
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Introduction

Translating single, mechanistic basic experimental research
to clinically beneficial outcomes is not a parallel, idealized
process. Predicting clinically meaningful outcome endpoints
is difficult, even from a well-recognized, robust preclinical
indicator. The contradiction between successful animal research
and ineffective translation of clinical effects has become
an urgent problem to be solved (1). Due to improved
tertiary prevention strategies, mortality in ST-segment elevation
myocardial infarction (MI) patients has declined over the past
15–20 years, while the number of patients with post-MI heart
failure is increasing (2). The unpredictable onset of acute MI
severely limits pharmacologically protective preconditioning
(1, 3, 4). However, this does not mean that cardioprotection
is no longer necessary. It is just that it is increasingly
difficult to demonstrate its utility, so the target population
must be carefully selected. There is still, and always will
be, a subset of patients who develop heart failure, especially
those with the anterior wall or multiple recurrent MI. This
may be why cardioprotective research is still ongoing for
50 years (5). In 2019, the COST ACTION cardioprotection
consortium proposed a multi-target treatment strategy, that
is, in the case of the coexistence of clinically uncontrollable
variables, the rational combination of two or more different
protection strategies may help produce a solid and robust
cardioprotective effect (3). In this regard, we should start
from the following aspects in the future to improve the
possibility of successful clinical translation: (1) to deeply explore
the complex pathophysiological mechanism of myocardial
ischemia-reperfusion injury (IRI) and focus on the changes
of the pathophysiological mechanism under the condition
of comorbidities (3, 6, 7); (2) clarify the classification of
specific therapeutic targets and screen out more reasonable
and promising multi-target therapeutic strategies based on
this; and (3) establish more reliable preclinical evaluation
standards and preclinical animal models that conform to clinical
practice, including animal models with multiple comorbidities
and animal models receiving “background drug treatment.” In
addition, the multi-target therapeutic strategies that have been
screened should be able to be reproduced.

Cardioprotective targets for
myocardial ischemia-reperfusion
injury: A cornerstone for
therapeutic strategy development

In 1960, Jennings and colleagues (8) proposed the concept
of myocardial IR based on heart studies in ischemic dogs,
confirming that blood flow reperfusion leads to increased infarct
size and cardiomyocyte death. In recent years, cardioprotective

strategies for myocardial IRI have been continuously proposed.
The classification depends on the mode of action, duration of
action, cellular target, and intracellular target (Figure 1).

Cardioprotective targets for
myocardial ischemia-reperfusion
injury: Classification by mode of action

Cardioprotective strategies are classified according to the
mode of action, that is, ischemic conditioning (episodes of brief
ischemia and reperfusion), pharmacological protection (the
administration of chemical substances), and physical methods
(hyperoxia, hypothermia, and electrical nerve stimulation).

The components of ischemic conditioning include ischemic
preconditioning (IPC), ischemic postconditioning (IPostC),
and remote ischemic preconditioning (RIC) (2). IPC reduces
myocardial damage by briefly blocking blood flow for several
cycles and restoring perfusion before reperfusion of ischemic
myocardium. Its clinical application is limited due to the
inability to determine the ischemic time of clinical patients
(9). IPostC is to reduce MI size through four cycles of
blood flow occlusion/reflow within a short period (usually
within 1 min) after the start of blood reperfusion (10, 11).
Similarly, RIC reduces MI size by inducing transient IR in
other non-cardiac organs before persistent coronary occlusion.
Inflation/deflation of the upper arm or thigh through the blood
pressure cuff can simulate the RIC model and is widely used
in clinical experiments (12, 13). RIC is uniquely attractive
because it acts to stimulate away from the heart. In short,
RIC produces transferable cardioprotective factors that affect
downstream signaling pathways shared by the three through
idiographic neurohumoral courses (14, 15). For example,
extracellular vesicles accumulated in damaged myocardium
during IR promote cell survival, and the underlying mechanism
involves the regulation of extracellular vesicle miRNAs (16).
Likewise, RIC cannot exert its cardioprotective effect under
the condition of brainstem vagotomy and vagotomy of the
innervating heart (17, 18). The exact interplay between
neuronal and humoral pathways underlying RIC remains
to be elucidated. The downstream signaling pathways
shared by the three have been confirmed to include the
Reperfusion Injury Rescue Kinase (RISK) pathway (PI3K/Akt
and Erk1/2), the Survivor Activator Factor Enhancement
(SAFE) pathway (TNF and JAK/STAT), and cGMP-protein
Kinase G (PKG) pathway (10). These salvage pathways
activate downstream mediators and exert cardioprotective
effects by inhibiting pathophysiological processes such as
calcium overload, oxidative stress, inflammatory cascades, and
mitochondrial permeability transition pore (MPTP) opening
(19–21).

The discovery of specific therapeutic targets in basic
research provides a theoretical basis for drug research, and the
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FIGURE 1

Multitarget cardioprotective strategies to reduce myocardial infarction. Cardioprotective strategies fall into four broad categories, which may be
combined in different manners to achieve multitarget cardioprotection. RISK, reperfusion injury salvage kinase; SAFE, survivor activating factor
enhancement; PKG, protein kinase G. [Adapted from Davidson el al. (3)].

cardioprotective properties of new drugs offer more therapeutic
methods for clinical application (22).

Acute myocardial IRI can lead to autonomic dysfunction
and is positively associated with mortality in patients with MI,
making vagus nerve stimulation a promising therapeutic
target (23, 24). The protective effect of hypothermia-
induced IR brain injury has stimulated interest in applying
therapeutic hypothermia to myocardial IRI (25). However,
most physical therapy focuses on preclinical experiments,
and more ideal primary research results are needed to give
people confidence before entering clinical investigations
(26, 27).

Cardioprotective targets for
myocardial ischemia-reperfusion
injury: Classification by the duration of
action

Cardioprotective strategies are classified according to the
duration of action, including before ischemia, during ischemia
and reperfusion, and after reperfusion. In a clinical setting,
ischemia time is difficult to predict, and the myocardium
is ischemia before symptoms appear, so we only discuss
cardioprotective strategies after ischemia. Interventions [such
as metoprolol (28–30), metformin (31), and NO donors
(32)] can be cardioprotective during acute ischemia. Early
administration of metoprolol or RIC may have potential
cardioprotective potential during patient transport to the

cardiac catheterization laboratory. However, in patients with ST-
segment elevation MI, reperfusion of the ischemic myocardium
with emergency PCI remains the best treatment and should not
be delayed (3).

Cardioprotective targets for
myocardial ischemia-reperfusion
injury: Classification by ultimate
protection of intracellular target

Cardioprotective strategies can be classified according to
their protective mechanisms. The first category is intracellular
pro-survival signaling targets, including NO/PKG signaling
cascades, SAFE, and RISK pathways (33). The second
category is the regulation of cell death pathways, with targets
including reactive oxygen species, MPTP, protein kinases, ion
exchange channels, and inflammatory mediators. Necrosis,
autophagy, and apoptosis are the three main types of cell
death. Together, necrosis, pyroptosis, ferroptosis, parthanatos,
and CypDmediated necrosis constitute regulated necrosis,
providing theoretical support for necrotic cell regulation after
MI (34). The third category targets intracellular organelles,
including mitochondria (35), endoplasmic reticulum,
lysosome, and nucleus. Such techniques are usually proposed
based on existing pharmacological theories to solve the
problem that drugs cannot act on target targets smoothly.
However, these techniques rarely develop into clinical trials
(36, 37).
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Cardioprotective targets for
myocardial IRI: Classification by
ultimate protection of cellular target

Finally, cardioprotective strategies may protect
cardiomyocytes or non-cardiomyocytes such as leukocytes,
monocytes, macrophages, platelets, etc. Although
cardiomyocytes are most susceptible to IRI, non-
cardiomyocytes, including smooth muscle cells, nerve cells,
endothelial cells, and fibroblasts, are also greatly affected.
Other components, including extracellular vesicles, cytokines,
chemokines, etc., play signal transduction functions during IRI
(38, 39). Existing experiments have demonstrated that platelets
can carry and release various factors and then activate the
SAFE and RISK pathways to play a cardioprotective role by
mediating cardiomyocyte secreted factors (such as sphingosine-
1 phosphate, stromal cell-derived factor 1α, transforming
growth factor β1, and microRNAs) (40). In contrast, in addition
to promoting arterial thrombosis, activated platelets can
mediate the formation of microvascular microthrombi,
leukocyte-platelet interactions, release vasoconstrictor
molecules and microbubbles, and increase the risk of cardiac IRI
through intravascular effects (41, 42). Therefore, an in-depth
understanding of the protective factors released by activated
platelets may contribute to developing new cardioprotective
drugs, which can be combined with existing P2Y12 receptor
antagonists to exert additional cardioprotective effects (43).
Available evidence suggests that erythrocyte arginase tightly
controls the biological activity of NO exported and exerts a
significant protective effect during IRI (44). Myocardial IR can
also lead to coronary circulation damage (45–47), including
endothelial cell damage, erythrocyte stasis, microembolization
of debris, and release of soluble factors (48), ultimately leading
to microvascular occlusion and no-reflow and intramyocardial
hemorrhage. Stabilizing endothelial cells and protecting
pericytes may be potential targets for preventing IRI (41, 49).

Therapeutic strategy for
myocardial ischemia-reperfusion
injury: Choosing the appropriate
target population and time point

Treatment strategies should be applied
to appropriate populations

The etiology of the acute coronary syndrome is mainly
the rupture of cholesterol plaques caused by inflammation-
induced platelet-rich thrombus formation. Other etiologies
include plaque erosion, coronary spasm and embolism, calcified
nodules, and spontaneous coronary dissection (50). The size

FIGURE 2

Hypothetical temporal relationship between reperfusion and
cardioprotection in STEMI [Adapted from Bainey and Armstrong
(27)].

of MI is jointly determined by ischemia and reperfusion-
induced injury, and prognostic factors include (1) the size of the
ischemic area at risk; (2) the duration and continuity of coronary
occlusion; and (3) the blood supply of residual collateral
circulation and the degree of microvascular dysfunction (46).
The prevention of microvascular occlusion may reduce the
incidence of adverse cardiovascular events after IR more
than limiting infarct size (3, 41, 45). Experiments have
shown that myocardial hemorrhage drives MI dilation after
reperfusion and impairs myocardial salvage (19, 20, 51).
Myocardial ischemia may act as one of the determinants
of MI size and play an independent clinical predictive
role (52). Future clinical trials must focus on patients
who genuinely need adjunctive cardioprotection, i.e., severe
hemodynamic changes.

The treatment strategy should choose
an appropriate time point

Since most cell death occurs within the first few minutes
of reperfusion, therapeutic strategies should be used early
after IR. Loss of cardioprotective effects of drugs (such as
insulin) was observed if treatment was extended to 15 min (33,
53). Myocardial protection is also temporal: early reperfusion
may reduce or even terminate myocardial necrosis and
prevent reperfusion injury. However, with reperfusion of the
myocardium at 2–6 h, the effect of salvaging the myocardial area
dropped dramatically. After 12 h, the reperfused myocardium
can no longer recover (27) (Figure 2). The time curve of
myocardial protection indicates the strong protective ability
of early reperfusion, and exogenous myocardial protection
measures are challenging to produce the effect. Exogenous
interventions can be protective when reperfusion is delayed
but cardiomyocytes are still viable. Future clinical trials
of novel cardioprotective agents should demonstrate drug
susceptibility in specific populations at different times of
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FIGURE 3

Pathophysiological mechanism of myocardial ischemia-reperfusion injury [adapted from Heusch et al. (4)]. ROS, reactive oxygen species; MPTP,
mitochondrial permeability transition pore; TNF-α, tumor necrosis factor-α;IL-6, interleukin-6.

myocardial ischemia to obtain a potential “sweet spot”
(54, 55).

The pathophysiological mechanism of
myocardial ischemia-reperfusion injury
should be further explored

Reperfusion as a method to rescue ischemic myocardium
has been controversial since it was proposed (21, 56–58).
With an in-depth understanding of the pathophysiological
mechanism of IRI, coupled with the breakthrough results
of cardioprotective strategies in preclinical experiments, can
people maintain confidence (59, 60)?

The pathophysiological
mechanism of myocardial
ischemia-reperfusion injury

To better explain the inconsistency between the positive
results of animal experiments and the problematic translation
of clinical practice, it is clinically relevant to discuss the
pathophysiological mechanisms of myocardial IRI. Figure 3
shows the appropriate pathophysiological mechanisms
during myocardial IRI.

Calcium overload, oxidative stress, and
mitochondrial dysfunction

After coronary occlusion, anaerobic glycolysis is enhanced
in the ischemic myocardium, and H+ accumulation leads to
a decrease in intracellular pH and an increase in Na+/H+

exchange. Abnormal inactivation of 3Na+/2K+-ATPase due
to decreased ATP production. Intracellular Na+ overload
leads to abnormal activation of the 2Na+/Ca2+ exchanger,
leading to calcium overload. Toxic substances such as oxygen
free radicals generated during IR can damage the cell
membrane structure, leading to an imbalance of intracellular
calcium storage-release (61–63). Excessive intracellular calcium
entering mitochondria leads to mitochondrial calcium overload,
resulting in disturbance of mitochondrial energy metabolism
and ultimately induction of cardiomyocyte apoptosis (37,
64, 65).

Endoplasmic reticulum stress,
epigenetic changes, and the
inflammatory cascade

Endoplasmic reticulum stress (ERS) activates the unfolded
protein response to degrade and clear abnormal proteins
during IRI. Dual protective/degradative effects of ERS during
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revascularization make it impossible to demonstrate the
protective effect of ERS on ischemic myocardium. Likewise,
drugs related to ERS in clinical practice remain to be developed
(66). Epigenetic changes, including non-coding RNA, DNA, and
histone modifications, are emerging therapeutic targets because
of their close relationship with the pathogenesis of IRI (67).
There are comments that IRI is driven by inflammation
through the interaction of multiple pathways, which
mediates cardiomyocyte death. There are also comments that
inflammation is merely an adaptive response to infarction (68).

Apoptosis and necrosis

To date, six distinct forms of regulatory cell death have
been observed in cardiac pathology: apoptosis, necroptosis,
mitochondrial-mediated necrosis, pyroptosis, ferroptosis, and
autophagic cell death [for details, please refer to Ref. (69)].
Necrosis and apoptosis are two separate cell death processes:
(1) Apoptosis, an apoptotic body-mediated programmed
process involving professional phagocytes. (2) Necrosis is an
unregulated, passive cell death process that ultimately triggers
an inflammatory cascade leading to cell swelling and loss
of integrity. Recent studies have speculated that apoptosis
and necrosis may be interconnected during myocardial IRI
or continuously occur. However, the respective contributions
of apoptosis and necrosis in cardiomyocyte death remain
unclear (70, 71). There are comments that massive necrosis
of cells during myocardial ischemia and activation of pro-
apoptotic pathways after reperfusion induces aggravation of
cardiomyocyte apoptosis (72). Most cardiomyocytes die within
24 hours of coronary occlusion. Pro-inflammatory responses
and biological stress in the infarct zone may trigger a second
wave of cardiomyocyte death, but its intensity is significantly
reduced (4, 73).

Microcirculation obstruction/no reflow
phenomenon

Microcirculatory perfusion cannot be restored after
recanalizing ischemic coronary vessels, mainly manifested
as prominent low perfusion area and severe inhibition
of blood flow (4, 74, 75). No-reflow is the most severe
form of myocardial IRI in microcirculation. No-reflow is
as essential a poor prognostic factor in clinical patients as
intramyocardial hemorrhage. Epicardial coronary blood
flow can be restored in clinical PCI procedures, but distal
coronary perfusion is incompletely restored in about half of
patients. Pre-PCI comorbidities, such as diabetes, hypertension,
hypercholesterolemia, and smoking, may increase the risk of
microcirculatory reperfusion injury in clinical patients (41,
76, 77).

Multi-target strategies for
myocardial ischemia-reperfusion
injury: Application in animals with
co-morbidities

Multitarget cardioprotective therapy is defined as multiple
cardioprotective agents or interventions targeting different
targets acting together to exert additive or synergistic
cardioprotective effects. A single intervention strategy can
also be considered a multi-target strategy if it protects against
multiple targets (3). To solve the contradiction between
the significant cardioprotective effect obtained by a single
cardioprotective strategy in animal experiments and the
failure of clinical translation is the original intention of the
multi-target strategy. One of the common denominators of the
shortcomings of multiple translational trials is that patients have
other specific comorbidities in addition to the application of
PCI (1, 3, 22, 45, 59, 71, 78–80). Consequently, we hypothesize
that the multi-target strategy for protecting myocardial IRI
in the animal testing stage may be applied to specific co-
morbidities, exert a more substantial cardioprotective effect,
and better guide clinical trials (81). We summarize preclinical
multi-target cardioprotective strategies for myocardial IRI
and other comorbidities, including diabetes, hypertension,
hyperlipidemia, and aging (Figure 4).

Myocardial ischemia-reperfusion injury
combined with diabetes mellitus

Diabetic patients have increased adverse cardiovascular
events and worse clinical outcomes after acute MI. Despite
the lack of clinical evidence, animal studies suggest diabetic
hearts are resistant to cardioprotective strategies (82). A review
concludes that hyperglycemia initially causes the heart to
become resistant to IR, contradicting our understanding.
However, its mechanism may be related to activating the
Akt/hexokinase II pathway due to the increase of insulin levels
in the body under hyperglycemia. IRI is exacerbated when
diabetes and insulin resistance develops (83).

Hyperglycemia inhibits the cardioprotective
effects of sevoflurane preconditioning and
ischemic regulation strategies

Diabetes increases myocardial susceptibility to IRI and
alters the myocardial response to ischemic regulatory
strategies by disrupting normal intracellular signaling (84).
Diabetes-induced blockade of cardioprotective is caused by
the diseased myocardium, independent of humoral factors
released by RIC. The research should focus more on blocked
signaling cascades in diseased myocardium under diabetic
conditions (85). Maintaining or enhancing normal intracellular
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FIGURE 4

A multi-target strategy for myocardial ischemia-reperfusion injury in animal models with specific comorbidities. IPostC, ischemic
postconditioning; SPC, sevoflurane postconditioning.

protective signaling, thereby reversing the cardioprotection
of hyperglycemia-suppressing ischemic regulatory strategies,
becomes the therapeutic target of multi-target systems. In
cardiovascular risk factors such as diabetes, autophagy’s
protective and harmful effects on myocardial IRI must be
clarified further (86).

Myocardial ischemia from cardiac surgery may also lead to
IRI. Brief administration of a volatile anesthetic before initiation
of reperfusion, known as anesthetic postconditioning, reduces
MI size and improves cardiac function. The study confirms that
sevoflurane postconditioning (SPC) protects normal rat hearts
from IRI, and its mechanism depends on NO-mediated recovery
of autophagic flux (87). However, SPC has no protective effect
on diabetic myocardial IRI, confirmed in a diabetic mice model
of myocardial IRI. The reason may be related to the impaired
activation of the PTEN/PI3K/Akt signaling pathway mediated
by TOPK (88).

A multi-target strategy based on ischemic
regulation under hyperglycemia

Increased expression of autophagy activation-related
proteins in isolated rat hearts exerts cardioprotection. However,
no increase in autophagy activation-related protein expression
was found in left ventricular biopsies from CABG patients
undergoing IPC (89). This discrepancy between preclinical
and clinical experimental results makes the cardioprotective
function of autophagy more controversial. Studies have shown
that the combined effect of IPostC and alpha-lipoic acid in
diabetic rats’ hearts can reduce the infarct size of isolated
diabetic hearts by restoring autophagic flux and mitochondrial
function. The experimental results coincide with the common
expectation that induction of controlled autophagy at the

appropriate time and level and inhibition of inappropriate
autophagy can exert cardioprotective effects (90). However,
the experiment did not give the specific protective mechanism
of the cardioprotective strategy alone. Whether or not the
autophagy-induced cardioprotective mechanism is jointly
activated needs to be verified experimentally (91). Strong
experimental evidence indicates that the cardioprotective
effect induced by IPostC is related to the up-regulation of
PI3K/Akt survival signaling pathway and MPTP inhibition, and
the specific mechanism involves the inactivation of GSK-3β

and the increased expression of anti-apoptotic proteins such
as Bcl-2. However, the cardioprotective effect of IPostC is
counteracted by the hyperresponsiveness to IR in diabetic
patients (92). Co-administration of additional drugs that
protect PI3K/Akt/GSK-3β signaling [such as thymoquinone
(93) and cyclosporine A (94)] reversed the inhibitory effect
of chronic hyperglycemia on IPostC and provided additional
cardioprotection in diabetic rats’ hearts. Therefore, we can
reasonably assume that the application of drugs that protect
other signaling cascades, including SAFE and NO/PKG
signaling cascade, combined with IPostC, can exert the
same additional cardioprotective effect, which needs further
experimental verification.

A multi-target strategy based on SPC under
hyperglycemic conditions

Zhang et al. (95) confirmed that hydrogen sulfide
(H2S) attenuates hyperglycemia-induced oxidative stress
and mitochondrial dysfunction induced during myocardial
IR in hyperglycemic rats by enhancing the SIRT1/NrF2
signaling pathway and restores the cardioprotective effect
of SPC. This experiment is the first to explore the relative
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roles of STAT1\/Nrf2 signaling in regulating mitochondrial
dysfunction and oxidative stress in H2S, restoring SPC-
mediated cardioprotection in diabetic rats. Diabetes also
leads to impairment of the JAK-STAT3 pathway. The
antioxidant N-acetylcysteine restores the cardioprotective
results of SPC in diabetic rats by enhancing STAT3 activity
and adiponectin and reducing Fox1 and CD36 (96). This
experiment also prospectively expresses expectations for the
combined therapeutic effect of N-acetylcysteine and IPostC.
Deferoxamine acts as an iron chelator to stabilize HIF-1α

expression, improve HIF-1α activity in hyperglycemic states,
and protect diabetic rats’ hearts. Deferoxamine restores HIF-
1/BNIP3-mediated mitophagy, reduces ROS production, and
restores mitochondrial function, ultimately restoring the
protective effect of SPC on diabetic rats’ hearts (97, 98).

A multi-target strategy based on hypoglycemic
drugs under hyperglycemic conditions

Studies have shown that metformin is more effective than
sulfonamides and insulin in reducing all-cause mortality and
diabetes-related end events. However, gastrointestinal reactions,
drug-induced dermatitis, and lactic acidosis became apparent
after a period of clinical use in patients. The liver and kidney
damage of metformin limits the use of high doses of metformin.
In this regard, metformin-based combination drug therapy has
been widely concerned. The study found that the combined
impact of hydrogen and metformin on the protection of diabetic
mice myocardium is better than that of metformin monotherapy
(99). Glucagon-like peptide-1 analogs combined with insulin
therapy can significantly affect myocardial IRI in diabetic rats
(100). Vildagliptin has also been shown to restore the protective
effect of IPostC on diabetic rats’ hearts (101). However, the
experimental study did not give the specific mechanism of the
cardioprotective influence of hypoglycemic drugs but only a
particular elaboration of the observed infarct size phenomenon.
Other combination therapy strategies have explored the specific
means of glucose-lowering medications. Still, they have not been
tested in animal models of diabetes, thus circumventing the
effects of hyperglycemic conditions on drug interactions (102).

Other multi-target strategies in hyperglycemic
conditions

Studies have shown that low-dose NaSH alone does not
exert cardioprotective effects. NaSH combined with nitrite
increases the cardioprotective effect of nitrite in type 2 diabetic
rats by enhancing cystathionine γ-lyase and endothelial NOS
expression (103). Experiments suggest that the combination
of H2S and NO may provide more therapeutic value and
explore more potential drug combinations. The cardioprotective
effect of post-treatment with the Ca2+ sensitizer levosimendan
was inhibited under hyperglycemia. Different experimental
settings in vivo and in vitro resulted in the opposite results
on whether the increase of levosimendan concentration

could have a protective effect on the diabetic rats’ hearts.
However, it is impractical to use levosimendan at 10-fold
higher concentrations (104, 105). Cyclosporine A, an MPTP
opening inhibitor, reverses the loss of cardioprotective effects of
levosimendan in diabetic rats under high glucose environments,
suggesting the possibility that increased drug stimulation can
change the loss of cardioprotective function. Diabetic heart
disease increases tetrahydrobiopterin oxidation and increases
arginase activity, uncoupling NO production. Sepiapterin acts
as a stable precursor of tetrahydrobiopterin, and L-citrulline
is an efficient precursor of L-arginine. The combined action
of the two overcomes the protection limitation of a single
drug. It protects coronary endothelial function and nitric oxide
production by protecting the dimerization of endothelial NO
synthase and exerting the effect of resisting diabetic mice
myocardial IRI (106). As a targeted mitochondrial quality
control drug, Melatonin attenuated the progression of diabetic
cardiomyopathy and reduced the vulnerability of diabetic rats’
myocardium to IRI by mediating the SIRT6-AMPK-PGC-1α-
AKT axis to maintain mitochondrial quality control (107).

Myocardial ischemia-reperfusion injury
combined with hypertension

Hypertension inhibits the cardioprotective
effects of ischemic regulation strategies

Studies have found that pretreatment with ischemic
regulation strategies and pharmacological strategies (e.g.,
adenosine receptor agonists, propofol) can reduce MI size in
normal rats (108, 109). However, hypertensive rats treated with
IPostC did not achieve a reduction in infarct size. Likewise,
IPostC increased GSK-3β phosphorylation in normotensive
rats, but this increase was not present in hypertensive rats (110).
Cardiac hypertrophy also increases myocardium susceptibility
to IRI, impairing the cardioprotective effects of IPostC by
inhibiting Akt phosphorylation. Ultimately IPostC failed to
reduce infarct size (111).

A multi-target strategy based on ischemic
regulation under hypertension

An effective cardioprotective strategy is to reduce
angiotensin II production (using angiotensin-converting
enzyme inhibitors or angiotensin receptor blockers) (112,
113). However, there are still few studies on hypertrophic
cardioprotective preconditioning (114, 115). Studies have
confirmed that long-term olmesartan treatment can alleviate
left ventricular hypertrophy by downregulating the expression
of HIF-1a, miR-21, and miR-210 and finally restore the
cardioprotective effect of IPostC in spontaneously hypertensive
rats (116). Chronic captopril treatment reduces ventricular
hypertrophy and infarct size in spontaneously hypertensive
hearts. Confusingly, acute captopril combined with IPostC
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is not protective in hypertensive hearts. The reason does not
exclude that the antioxidant effect of captopril can avoid the
cardioprotective effect of IPostC (110).

Other multi-target strategies in hypertension
conditions

Renal denervation therapy, a novel therapeutic modality
for refractory hypotension, has been proven to protect
hypertensive rat myocardium from IRI by improving NO
bioavailability, inhibiting oxidative stress and GRK2 signaling
(117). Renal denervation reduces myocardial fibrosis and
improves left ventricular function in patients with heart
failure, which relies on increasing circulating natriuretic
peptide levels (118). Early cardiosphere-derived cells combined
with adjuvant renal denervation improve left ventricular
ejection fraction and ventricular remodeling, suggesting a
novel combined alternative to cell therapy after MI (119).
Recent studies have found that renal denervation therapy
inhibits the outflow of myeloid cells from the spleen and
protects myocardial ischemia mice from reperfusion injury
by protecting splenic immune cell mobilization (120). This
experiment revealed a new link between sympathetic nerve
activity and the inflammatory response to myocardial IRI.
Whether combined anti-inflammatory intervention and renal
denervation therapy can exert additional cardioprotective
effects needs further investigation.

Myocardial ischemia-reperfusion injury
combined with hyperlipidemia

Studies found that hyperlipidemia interferes with
cardioprotective signaling and directly damages the
myocardium (80, 115). Hyperlipidemia leads to increased
oxidative stress, mitochondrial dysfunction, and inflammation-
induced apoptosis during myocardial IRI, which may account
for myocardial dysfunction and increased susceptibility of the
myocardium to infarction (121, 122). Hyperlipidemia needs
to be considered one of the comorbidities that interfere with
cardioprotection.

Hyperlipidemia inhibits the cardioprotective
effects of ischemic regulation strategies

Ischemic regulatory strategies have a strong protective effect
on myocardial IRI. However, the cardioprotective effects of IPC,
IPostC, RIC, and SPC were inhibited in hyperlipidemia (123–
126). Osipov et al. demonstrated enlarged MI size in a porcine
model of hyperlipidemia (122). Likewise, cardioprotective
effects of ischemic modulation strategies have been shown
to be lost in different hyperlipidemia rat models (127). In
one study, however, IPostC was still therapeutically effective
in hyperlipidemic rats. The underlying mechanism may be
that hyperlipidemia does not affect the up-regulation of

HIF-1α, which provides a new therapeutic idea for treating
hyperlipidemia (128).

NO-cGMP-PKG signaling pathway fails to exert
cardioprotective effect under hyperlipidemia

Once considered a promising therapeutic target, the NO-
cGMP-PKG signaling pathway is one of the most extensively
studied protective pathways against hyperlipidemia. However,
NO donor pretreatment did not significantly reduce MI size
in hypercholesterolemic animals, and the mechanism may
be related to the inactivation of PKG oxidative dimerization
(32, 80, 115, 123). The cardioprotective effect of the ATP-
sensitive K+ channel activator diazoxide is also inhibited under
hyperlipidemic conditions (129). Experiments targeting the
MPTP have yielded conflicting results. On the one hand,
neither IPostC nor cyclosporine A could exert cardioprotective
effects in hyperlipidemia rats (130). On the other hand,
experiments confirmed that combining the two could restore
the cardioprotective development of IPostC (131). However,
neither group of experiments made a specific signaling pathway
explanation for the results, and the reason for the positive results
was only based on observing simple phenomena.

Other promising therapeutic targets for
cardioprotection in hyperlipidemic conditions

Experiments suggest that a matrix metalloproteinase-2
inhibitor (MMP-2) plays a protective role in hyperlipidemic
hearts (132). The cardioprotective effects of MMP-2 inhibitors
are independent of RISK/mPTP signaling, paralleling known
cardioprotective pathways (133). RISK pathways also play
a cardioprotective role in hyperlipidemia. Studies have
shown that the PTEN inhibitor bisperoxovanadium can
restore the cardioprotective effect of RIC in hyperlipidemia
rats, which may be related to promoting downstream
Akt/GSK-3β phosphorylation (134). In hyperlipidemia
research, pharmacological inhibition of GSK-3β may
be a promising future therapeutic target (135). The
cardioprotective effects of statins are independent of
their lipid-lowering products. Cardioprotective effects of
statins are blocked in an animal model of hyperlipidemia
as in IPostC (136). Combination therapy with statins
and other cardioprotective strategies becomes a potential
multi-target strategy for addressing hyperlipidemia
with myocardial IRI.

Myocardial ischemia-reperfusion injury
combined with aging

Aging inhibits the cardioprotective effects of
ischemic regulation strategies

Aging can block the protective effects of ischemic regulation
strategies against myocardial IRI (80, 115, 137). A study using
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endothelial function as an endpoint found that increasing age
was associated with the loss of IPC on the protective function of
the brachial artery endothelium (138). Similarly, many studies
have focused on changes in the components of relevant signaling
cascades with aging, evaluating differences in adult versus old
cardiac function, which may help explain the observed loss of
cardioprotection with age (139).

A multi-target strategy based on ischemic
regulation under aging

Studies have confirmed that exogenous H2S can upregulate
autophagy by activating the AMPK/mTOR pathway in aging
hearts, thereby restoring the cardioprotective effect of IPostC
(140). Nicotinamide mononucleotide preconditioning in aging
hearts restores the cardioprotective results of IPostC by
protecting mitochondrial function (141). Interestingly, applying
the tandem effect of training combined with food restriction
can restore the protective effect of IPostC against IRI in aging
hearts by restoring norepinephrine release (142). However, these
studies have focused on IRI in isolated hearts in vitro, and
it is still inconclusive whether the in vivo experiments can
exert the same effect. Potential drug combinations still need
to be tested in large animals to obtain clinical translational
evidence support.

A multi-target strategy based on mitochondria
protection under aging

Increased production of ROS in aging cardiomyocytes leads
to mitochondrial dysfunction, leading to increased susceptibility
of aging hearts to ischemia (143). A study on aged rats confirmed
that melatonin and nicotinamide mononucleotide combined
effect could alleviate myocardial IRI by reducing mitochondrial
oxidative stress and ROS generation (144). Cardiac aging may be
associated with calcium-induced MPTP opening and increased
susceptibility to the mitochondrial release of cytochrome C.
Studies have demonstrated that melatonin inhibits both events
by protecting cardiolipin from ROS damage during reperfusion
preventing cardiomyocyte necrosis and apoptosis (145).

Other promising therapeutic targets for
cardioprotection in aging conditions

Other combination strategies have not yet been tested in
animal aging models but show promising promise. Hydrogen
combined with metformin has been shown to have an
excellent protective effect on diabetic cardiomyopathy (99).
Metformin rescues autophagy defects by inhibiting p62
accumulation and protects the aging myocardium from
IRI (146). Similarly, H2 combined with CO can show
an enhanced therapeutic effect against myocardial IRI
through anti-inflammatory and antioxidant mechanisms
(147). Combination therapy of metformin, H2, and CO
may vigorously protect against IRI in aging hearts. The
anti-aging drug dasatinib combined with quercetin has

shown an excellent protective effect in patients with
idiopathic pulmonary fibrosis and diabetic nephropathy.
Whether connecting the two drugs can translate into
cardioprotection in the elderly requires more preclinical
evidence (148).

Clinical translation of multi-target
strategies for myocardial
ischemia-reperfusion injury: How
can we move forward

No trials have demonstrated clinical benefit despite
attenuating myocardial IRI on the bench. Thus, the hope for
clinical application of cardioprotective therapy is fading. Heusch
(1) calls for “Cardioprotection research must leave its comfort
zone.” We are all describing bright application prospects for
the cardioprotective effects obtained in preclinical research,
but few people rationally consider how to translate preclinical
experiments into clinical trials. Rossello and Yellon (149)
call this phenomenon a “disconnected paradigm,” a complete
disconnect between preclinical and clinical cardioprotection
studies. They propose to add similar bench conditions
to the clinical setting, i.e., “Cardioprotection needs to go
backward before it can move forward.” They describe
cardioprotection translation as a 4-step process, starting
from (1) simplified animal studies, (2) clinically relevant
animal studies, (3) clinical proof-of-concept studies with
surrogate endpoints, and (4) clinical outcomes experiments
(149). Here, we will discuss possible issues with current
cardioprotective translation for researchers to adopt before
beginning clinical studies. The aim is to improve the
possibility of translating novel cardioprotective measures into
clinical applications.

We need in vivo standards for
preclinical assessments that are
sufficiently reliable to support clinical
trials

Based on the gradual revealing of the pathophysiological
mechanisms of myocardial IRI, mechanical and
pharmacological cardioprotective strategies targeting related
signaling pathways and molecular targets have been identified.
Animal experiments aim to establish new mechanisms
determined by their nature reductionist (150).

Systematic and rigorous preclinical evaluation
criteria

Therefore, the IMproving Preclinical Assessment of
Cardioprotective Therapies (IMPACT) criteria were proposed
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(81). The IMPACT criteria divide preclinical experiments
into three steps. (1) Step 1: Small animal model; (2) Step 2:
Small animal model (confounders); (3) Step 3: Large animal
model. The IMPACT criteria focus on the same points in the
different steps. The establishment of animal models should
include acute ischemia and reperfusion (non-permanent
occlusion to represent the clinical situation better) (20, 41).
Cardioprotection’s endpoint should be the infarct size relative
to the risk area (coronary microvascular occlusion is another
critical endpoint) (151). The IMPACT criteria set its minimum
requirements to validate infarct size and microcirculatory
damage in a single-center acute IRI model (minimum 2 h,
optimal at 24 h) in a single species (e.g., mouse, rat, or rabbit).
Reperfusion time can be extended to 72 h in large animals such
as pigs. In contrast, ideal criteria were validated infarct size
and left ventricular remodeling in male and female models of
chronic IRI (minimum 28 days in small animals and 3 months
in large animals) (19, 46). It needs to be re-validated to make
the experimental effect closer to the clinic in the presence of
two or more confounding factors. Although not all steps are
relevant to the evaluation of mechanical or pharmacological
cardioprotective strategies, successful implementation of more
steps will help reduce the risk of failure to translate novel
cardioprotective measures clinically.

Multi-target strategy should go deep into
specific mechanism research

The research on preclinical multi-target strategies focuses
on discovering cardioprotective phenomena, and the specific
protective mechanisms of different cardioprotective strategies
cannot be determined (93, 100, 116, 131). Meanwhile, most
experiments focus on isolated hearts and small animal
models such as mice, rats, and rabbits. Large animal models
(such as pigs) are rarely studied due to the complexity
of experimental design, experimental conditions, research
costs, and experimental regulatory requirements (130,
131, 141, 144, 148). Exenatide and RIC exert additive
effects on cardioprotection in porcine myocardial IRI by
activating distinct cardioprotective pathways, which looks
very attractive for clinical translation (152). However, no
short-term clinical benefit in infarct size reduction was
observed with exenatide and RIC alone or combined
(153). The failure of clinical trial translation also reminds
experimenters that clinical trials should be supported by
sufficient preclinical evidence.

The establishment of preclinical animal
models needs to be closer to clinical
practice

One of the reasons for the failure of the clinical translation
may be the significant difference in comorbidity status

between preclinical animals and clinical patients. Therefore, the
development of animal models that are closer to clinical practice
has become an urgent issue.

Preclinical cardiomyocyte model
Developing novel cardiomyocyte culture strategies

may be a potential model-building approach (154, 155).
A recent experiment successfully proposed the first in vitro
aging myocardial tissue model based on human-induced
pluripotent stem cell-derived cardiomyocytes, providing
a promising new platform for studying cardiovascular
disease and other age-related diseases (156). This
experiment is also the first to demonstrate that age-
appropriate in vitro disease models can be developed
to provide more cutting-edge physiological insights
into cardiovascular disease development, progression,
and improvement.

Similarly, most human specimens are used for isolated
cell preparation. The overall structure and function of the
cells after enzymatic digestion are greatly affected, and the
lack of multicellularity makes this cell model unsuitable for
studying pharmacological reactions. A recent survey produced
living myocardial slices with a high-precision vibrating group,
which preserves the natural multicellular structure of the
heart. Its ultra-thin (100–400 µm) thickness allows nutrients
to diffuse to the innermost cells, maintaining viability,
and preventing ischemic damage in vitro without blood
perfusion. Living myocardial slices overcome most limitations
of other in vitro models, preventing significant structural and
functional changes associated with chronic in vitro cultures
(157, 158).

Human atrial preparation technology
Human atrial preparation technology has also received

extensive attention. The study by Kleinbongard et al. (159)
demonstrated that the atrial myocardium’s mitochondrial and
contractile function might reflect the RIC’s cardioprotective
effects. Although the experimental conclusions cannot be
directly extrapolated to the left ventricular tissue due to the
limitations of the atrial myocardium, the establishment of
atrial preparation technology provides a new idea for exploring
the causal relationship between signaling and protection.
Similarly, establishing refined animal models can better reveal
the specific targets of cardioprotection. By establishing a mouse
model in which telomerase reverse transcriptase (TERT) is
expressed only in mitochondria or the nucleus, it was found
that the increase of mitochondrial TERT (non-nuclear TERT)
has a protective effect on myocardial IRI in mice (160).
Although this experiment did not reveal the specific details
of how mitochondrial TERT affects inhibin and complex I,
thereby improving mitochondrial respiration, this technology
provides a new idea for clarifying the targeted protection sites
of target factors.
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Isolated perfused heart model
Transgenic mouse hearts are widely used for human

heart disease research. However, the standard mouse
heart’s fast beating (400–600 bpm) limits its ability to
evaluate its kinetics. In a recent experiment, isolated
mouse hearts were stabilized at 120–130 bpm at 37◦C by
applying 300 µM lidocaine (161). The mouse heart’s positive
inotropic and gluco-optic responses were preserved, and
the Frank-Starling response was enhanced. While inherent
differences compared to normal hearts remain, it extends the
usefulness of this transgenic mouse model in human heart
disease research.

Small/large animal models
Most experiments in large mammals anatomically and

physiologically closer to humans than mice and other rodents
have been performed in young, healthy animals that lack the
confounding factors specific to patients with clinical MI. To
date, there are no reliable data from large animal models
addressing confounding factors in cardioprotection (80).
Similarly, small animal studies are more likely to incorporate
only a single confounding factor (diabetes, hypertension,
hyperlipidemia, etc.). Therefore, preclinical experiment design
needs closer to clinical reality to obtain more conducive
results for clinical translation (6). A recent study administered
a combined background drug mimic of an opioid agonist,
heparin, and a platelet inhibitor in rats before MI and
found that the background drug was cardioprotective and
independent of additional cardioprotective strategies (162).
The results of this experiment may explain the failure of the
translation of some cardioprotective strategies in the clinic;
that is, patients have been treated with background drugs
before the application of additional cardioprotective strategies.
The successful application of the model could provide a
new experimental platform to evaluate the effectiveness of
novel cardioprotective strategies. A retrospective analysis of
patients undergoing elective coronary bypass grafting with
or without RIC before ischemic cardioplegic arrest found
no impact of β-blockers, statins, ACE inhibitors, ARBs, or
intraoperative nitroglycerin (163). This example, combined
with clinical patients’ comorbidities and co-medication, shows
that it is impossible to establish a “perfect” animal model
relevant to all patients. Therefore, future translation of
clinical trials should be strictly limited to recruiting patients
with a view to discovering cardioprotective regimens in
special populations.

Preclinical experiments should be
rigorous and reproducible

In addition to the lack of reliable preclinical data to support
translational strategies for cardioprotection, issues of rigor and

reproducibility of preclinical studies are more general concerns.
Lack of blinding and randomization principles, small data
volume, and statistical testing methods with free significance
thresholds lead to high false-positive results that cannot be
replicated in preclinical experiments.

Why preclinical experiments need rigor and
reproducibility

Multicenter tests that consider the robustness of
interventions to numerous confounders and unknown variables
are an exception in studies of cardioprotective strategies
(164, 165). The few reproducibility studies conducted in the
biomedical field show that only 10–25% of small preclinical
studies can be successfully reproduced. Preclinical results
may be difficult to replicate due to biological complexity
and heterogeneity barriers. Many studies also suffer from
design bias, insufficient statistical power, or lack of adherence
to reporting standards. These problems can lead to wasted
time and resources, reduced funding, and even halting
potential treatment strategies, but these problems are entirely
avoidable (151, 166). In order to prove that preclinical
experiments have practical significance for guiding clinical
transformation, it is necessary to establish an organized multi-
center network and testing standards for rigorous testing of
preclinical data.

Our efforts to facilitate more successful clinical
translation of preclinical experiments

To this end, the National Heart, Lung, and Blood Institute-
sponsored and formed a clinical trials network as a model for
developing a shared collaborative infrastructure for research,
named CAESAR (Consortium for Preclinical Evaluation of
Cardioprotective Therapeutics). The consortium will study
promising heart-protective therapy in mouse, rabbit, and
pig models of myocardial IRI in a manner similar to a
multicenter clinical trial (in a multicenter, blinded, randomized,
independent core data, and statistical analysis). The overall
goal of CAESAR is to screen for truly effective cardioprotective
strategies in limiting infarct size through rigorous preclinical
evaluation and to provide recommendations for clinical trials
to test these cardioprotective strategies (167, 168). In less than
four years of CAESAR’s existence, no cardioprotective effects
were found among the three interventions (sildenafil, sodium
nitrite, and chloramphenicol succinate) reported extensively.
The several remaining therapies have a protective effect on
the heart but do not reduce the infarct size. Sadly, CAESAR
remains the only public network that has performed rigorous,
multicenter testing of cardioprotective therapies proposed
by external investigators. Although short-lived, its work has
shown that applying clinical trial-like rigor significantly impacts
the results of preclinical studies (5). Recently, the acronym
for Spanish network-center for cardiovascular biomedical
research has set up the “Cardioprotection Large Animal
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Platform” (CIBER-CLAP), which will also follow the CAESAR
model to verify the protective effect of IPC in a pig
model of acute MI (169). It is reassuring that the seeds
CAESAR sowed have germinated and borne fruit. There will
eventually be a fundamental change in current approaches to
cardioprotection to incorporate these stringent criteria into
preclinical studies.

Concluding remarks

In animal models of IRI, various cardioprotective
therapies can effectively reduce infarct size. However,
conventional animal models of IRI cannot adequately
reproduce the phenomenon of IRI in patients. Here, we
envision that multi-target cardioprotection is necessary
to achieve therapeutic effects in these animal models and
effectively apply cardioprotection to patients. Interventions
combined with drugs with robust mechanisms of action,
efficacy, and safety tested in preclinical experiments,
combined with appropriate routes of application, are good
candidates for translational clinical trials. At the beginning
of such experimental designs, a factorial method could
demonstrate the additive effect of combination therapy,
but this approach would increase the number of patients
required. Therefore, it may be better to test the combination
in patients and controls by confirming the additive effect in
an animal model.

Another factor that must be considered is that most
clinical patients receive drug therapy before reperfusion
therapy and have different comorbidities. There are no
reliable data to fully demonstrate the cardioprotective
effect of a multitarget strategy in large animals with IRI
presence of confounding factors. Therefore, preclinical
animal models should be as close to clinical reality
as possible to confirm the practical protective effect of
multi-target strategies.

Animal experiments on cardioprotection need to improve
rigor and reproducibility, and establishing a multi-center
experimental network similar to the standard of clinical
trials would be beneficial. Reliable preclinical data must
be available to support tests of cardioprotective strategies
in humans. The transition from single-center animal
experiments to initial clinical proof-of-concept trials,
and even directly to clinical outcome trials, is somewhat
unreasonable and disorganized. Such an approach is
undoubtedly burying heart protection strategies in the
grave. In the era of personalized medicine, clinical outcome
studies should be conducted in carefully selected patient
cohorts to prove or deny efficacy. While specific cardiac assist
interventions are protective in some patients, they are not a
problem as long as they are safe for most patients. Modern
oncology research can develop highly effective treatments

for selected small cohorts, as can current cardiovascular
medicine research.

Finally, based on the examples we discussed in previous
sections, some potential combination therapies for multi-target
cardioprotective strategies include:

(1) RIC combined with a drug with a different
mechanism of action.

(2) A drug that inhibits the cell death pathway and a drug that
activates an endogenous cardioprotective pathway.

(3) A single drug acts on different protection targets, such
as cyclosporin A.

(4) Background drug combination therapy (activation of RISK
pathway, SAFE pathway, or cGMP/PKG pathway).

Establishing an animal model with the coexistence of
multiple confounding factors and confirming that the multi-
target strategy has a cardioprotective function in this model will
have guiding significance for the translation of clinical trials.
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