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Are shorter telomeres causal risk factors for Alzheimer’s disease (AD)? This study aimed
to examine if shorter telomeres were causally associated with a higher risk of AD using
Mendelian randomization (MR) analysis. Two-sample MR methods were applied to
the summary effect sizes and standard errors from a genome-wide association study
for AD. Twenty single nucleotide polymorphisms of genome-wide significance were
selected as instrumental variables for leukocyte telomere length. The main analyses were
performed primarily using the random-effects inverse-variance weighted method and
complemented with the other three methods: weighted median approaches, MR-Egger
regression, and weighted mode approach. The intercept of MR-Egger regression was
used to assess horizontal pleiotropy. We found that longer telomeres were associated
with lower risks of AD (odds ratio = 0.79, 95% confidence interval: 0.67, 0.93,
P = 0.004). Comparable results were obtained using weighted median approaches,
MR-Egger regression, and weighted mode approaches. The intercept of the MR-Egger
regression was close to zero. This may show that there was not suggestive of horizontal
pleiotropy. Our findings provided additional evidence regarding the putative causal
association between shorter telomere length and the higher risk of AD.
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INTRODUCTION

Telomeres are composed of nucleotides and proteins, which are found at the end of each
chromosome. Their functions are assumed to be stabilizing the structures of chromosomes and
protecting the end of chromosomes from fusion with adjacent ones (Blackburn et al., 2015).
Although dementia has unknown causes (Boyle et al., 2019; Morbelli et al., 2019; Ohara et al.,
2019; Tropea et al., 2019; George et al., 2020; Iversen et al., 2020; Lu et al., 2020; Martinez-Miller
et al., 2020; Mueller et al., 2020; Nadim et al., 2020; Osler et al., 2020; Scarioni et al., 2020; Seblova
et al., 2020; Strandberg et al., 2020), several previous studies, including epidemiological surveys
and clinical reports, showed that telomeres were shorter in patients with Alzheimer’s disease (AD),
cognitive disorders, other aging-related diseases, and mortality (Panossian et al., 2003; Franco et al.,
2006; Thomas et al., 2008; Lukens et al., 2009; Zekry et al., 2010; Guan et al., 2012; Hochstrasser
et al., 2012; Honig et al., 2012; Moverare-Skrtic et al., 2012; Takata et al., 2012; Mathur et al.,
2014; Kota et al., 2015; Tedone et al., 2015; Zhan et al., 2015, 2018a,b; Staffaroni et al., 2018;
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Wang et al., 2018; Zhan and Hagg, 2018, 2020; Gao et al., 2019;
Guo and Yu, 2019; Kaja et al., 2019; Subedi et al., 2019; El
Assar et al., 2020; Fani et al., 2020). A recent meta-analysis that
summarized these findings (Panossian et al., 2003; Franco et al.,
2006; Thomas et al., 2008; Lukens et al., 2009; Zekry et al., 2010;
Guan et al., 2012; Hochstrasser et al., 2012; Honig et al., 2012;
Moverare-Skrtic et al., 2012; Takata et al., 2012; Mathur et al.,
2014; Kota et al., 2015; Tedone et al., 2015; Fani et al., 2020;
Supplementary Table 1) concluded that shorter telomeres were
associated with higher risks of AD (Forero et al., 2016; Smith
et al., 2019). Of them, only two used prospective cohort designs
and studied incident AD cases. The others, however, used case–
control designs. These studies, taken together, provided valuable
information regarding the roles of telomeres in AD. However,
significant limitations as acknowledged in these publications are
also obvious—small sample sizes in these case–control studies or
prospective cohort investigations and residual confounding that
was not collected in these studies. All these limitations render it
hard to make firm conclusions on if telomere length is a potential
causal risk factor or merely a predictive biomarker for AD.

To address concerns of unmeasured confounding (e.g.,
unmeasured shared environmental factors) and to exploit the
large sample sizes for this type of aim, Mendelian randomization
(MR) design using two samples was previously discussed. MR
methods make the best use of genetic variants as instrumental
variables to test if there is an association between an exposure and
an outcome and further to calculate the effect magnitude of an
exposure variable on an outcome variable (Smith and Ebrahim,
2004). This approach has been used to examine these topics
previously (Zhan et al., 2015; Zhan and Hagg, 2018; Gao et al.,
2019; Guo and Yu, 2019), which found that shorter telomeres
were associated with higher AD risks. However, a recent study
did not find a significant association between telomeres and
Parkinson’s disease (Chen and Zhan, 2020). In the present short
communication, we aimed to revisit the relationship between
telomere length and AD using the MR design. We will use
the updated summary statistics generated previously from the
published genome-wide association study (GWAS) for leukocyte
telomere length (Li et al., 2020) and clinically diagnosed AD
(Kunkle et al., 2019).

MATERIALS AND METHODS

Instrument Variable Selection
In the most recent GWAS of leukocyte telomere length
(Li et al., 2020), the European Network for Genetic and
Genomic Epidemiology1 conducted a GWAS for leukocyte
telomere length in 78,592 individuals of European ancestry.
Mean leukocyte telomere length measurements were conducted
using an established quantitative polymerase chain reaction
technique, which expressed telomere length as a ratio of the
telomere repeat number (T) to a single-copy gene (S). Leukocyte
telomere length measurements were standardized either by
using a calibrator sample or quantifying against a standard

1https://downloads.lcbru.le.ac.uk/engage

curve. In total, 20 single-nucleotide polymorphisms (SNPs)
at 17 genomic loci were selected. These SNPs were reported
to be independently top loci for leukocyte telomere length,
and they were of genome-wide statistical significance (at a
level: P < 5 × 10−8). In our study, we use these 20 SNPs
as instrumental variables and included proxy SNPs through
LDlink if SNPs were unavailable in the AD GWAS or found
to be palindromic. These variants explained around a 2%
variance of leukocyte telomere length. These SNPs are presented
in Table 1.

Assumptions of Mendelian
Randomization Design
Three assumptions are needed for the MR analysis. Firstly, the
instrumental variables are robustly associated with the exposure
of interest (i.e., telomere length). Secondly, instrumental variables
are not associated with any confounders of the exposure
and outcome. Lastly, the effects of instrumental variables
on the outcome are only through the exposure of interest
(Burgess and Thompson, 2017).

Statistical Analysis
In total, these 20 SNPs for telomere length were merged
with the genetic associations (effect sizes and standard errors)
of them from the AD GWAS2 following the guideline of
performing MR analysis. The magnitudes (effect sizes) of the
causal effects (odds ratio and 95% confidence interval) were
estimated by applying various MR estimators. We used the
inverse variance weighted method as our primary analysis. We
treated the weighted median approach, MR-Egger regression,
and weighed mode approaches as secondary and sensitivity
analysis. This study only uses summary statistics, all data are
publicly available, and no individual participant data were
used, and an institutional ethical permit is therefore not
necessary. These statistical analyses in this study were conducted
from the TwoSampleMR package in R 4.0 (R Project for
Statistical Computing). We also performed E-value to assess
the minimum strength of association on the risk ratio scale
that an unmeasured confounder would need to have with both
the exposure and the outcome, conditional on the measured
covariates, to fully explain away a specific exposure-outcome
association. The input associations were obtained from a meta-
analysis of case–control studies and two cohort studies, and
analyses were performed using the online E-value calculator
(Mathur et al., 2018).

RESULTS

Figure 1 describes the genetic associations of the instrumental
variables (genetic variants) on telomere length and AD. The
causal effects of telomere length and AD were also presented. The
results show that longer telomere length was associated with a
lower risk of AD in almost all these different methods. The odds
ratio was 0.79 (95% confidence interval: 0.67, 0.93, P = 0.004)

2https://www.niagads.org/datasets/ng00075
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TABLE 1 | SNPs selected as instrumental variables and their associations with leukocyte TL in European Network for Genetic and Genomic Epidemiology Consortium
and with AD in International Genomics of Alzheimer’s Project Consortium.

SNP Chromosome Position (hg37) Effect allele Other allele β_TL se(β_TL) β_AD se(β_AD)

rs3219104 1 226562621 C A 0.041 0.006 0.021 0.019

rs55749605 3 101232093 A C −0.037 0.006 0.019 0.014

rs2293607 3 169482335 C T −0.086 0.006 0.019 0.016

rs13137667 4 71774347 C T 0.076 0.013 −0.055 0.038

rs2086240 4 164098317 G T 0.055 0.005 −0.027 0.017

rs7705526 5 1285974 A C 0.081 0.005 −0.034 0.018

rs2853677 5 1287194 A G −0.063 0.005 0.011 0.016

rs34991172 6 25480328 G T −0.060 0.010 −0.013 0.031

rs707919 6 31641139 G A 0.033 0.005 −0.014 0.015

rs59294613 7 124554267 A C −0.040 0.005 0.008 0.015

rs9419958 10 105675946 C T −0.063 0.007 0.015 0.020

rs228595 11 108105593 A G −0.028 0.005 −0.008 0.014

rs2286836 14 73442192 T C 0.045 0.008 −0.035 0.023

rs7194734 16 82199980 T C −0.036 0.006 −2.00E-04 0.016

rs3785074 16 69406986 G A 0.035 0.005 −0.002 0.016

rs62053580 16 74680074 G A −0.038 0.007 0.030 0.021

rs8105767 19 22215441 G A 0.039 0.005 −0.011 0.015

rs75691080 20 62269750 T C −0.067 0.009 −0.040 0.026

rs73624724 20 62436398 C T 0.050 0.007 −8.00E-04 0.021

rs13038527 20 62218340 A G −0.138 0.022 0.070 0.063

FIGURE 1 | Scatter plot for genetic associations of SNPs on leukocyte telomere length and AD. IVW, inverse-variance weighted; MR, Mendelian randomization.
Horizontal axis represents genetic associations of each genetic variant on leukocyte telomere length, and vertical axis denotes genetic associations of each genetic
variant on AD.

Frontiers in Genetics | www.frontiersin.org 3 February 2021 | Volume 12 | Article 595864

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-595864 February 15, 2021 Time: 18:36 # 4

Yu et al. Telomeres and AD

TABLE 2 | Estimated causal effects of telomere length on Alzheimer’s disease
using MR analysis.

Methods OR 95% CI

Inverse variance weighted 0.79 0.68, 0.93

MR-Egger regression 0.70 0.44, 1.10

Weighted median 0.79 0.63, 0.99

Weighted mode 0.76 0.58, 0.99

MR, Mendelian randomization.

for the inverse variance-weighted approach. The unit of this
association was one standard deviation increase of telomere
length. Likewise, the remaining MR methods, including the
weighted median approach, MR-Egger regression, and weighted
mode approaches, yielded very comparable point estimates. The
minor differences were the confidence intervals, which are also
comparable (Table 2). The intercept of the MR-Egger regression
was not different from zero (β = −0.001, 95% CI: −0.03, 0.05,
P = 0.62), which implies that a potential horizontal pleiotropy
may not be a big concern. Further, no strong evidence was
observed for the heterogeneity of these SNPs (P = 0.71). Similar
results were obtained in the single SNP plot (Figure 2), which
showed that no single SNP could affect the results noticeably.
The funnel plot in Figure 3 implied that no single SNP
might be an outlier or have a heterogeneous effect on the
final MR estimations.

DISCUSSION

In the present study, we analyzed the GWAS summary statistics
using the MR design and various estimation methods to study
the relationship between leukocyte telomere length and AD,
involving 35,274 individuals with AD and 59,163 controls. By
taking advantage of 20 SNPs as instrumental variables, we found
that longer telomere length could reduce the risk of AD. This
study, updating previous studies (Zhan et al., 2015; Gao et al.,
2019; Guo and Yu, 2019), represents the largest MR study to
date on telomere length and clinically diagnosed AD, further
contributing to the knowledge of AD etiology and suggesting that
telomeres may be of paramount importance in AD pathogenesis.

Previously, a meta-analysis summarized the published studies
on the topic of telomere length and AD. In this study, it
showed that patients with AD might have shorter telomere length
compared with controls (Forero et al., 2016). However, this
study did not mention what confounders each of these studies
had controlled for. Therefore, the residual confounding could
explain the reported results. Our current study, on the other
hand, can address the concern of unmeasured or uncontrolled
confounding by re-analyzing GWAS summary statistics, which
are of large sample size and well-conducted. However, our
analysis is of limitations as well. MR analysis relies on three
assumptions. In particular, the third assumption that there is
no pleiotropic effect means that the genetic variants (SNPs and
genes) selected as instrumental variables have effects on the

FIGURE 2 | Single SNP plot for effects of SNPs on leukocyte telomere length and AD. IVW, inverse-variance weighted.
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FIGURE 3 | Funnel plot for selected SNPs as instrumental variables.

outcome (e.g., AD) only through the exposure, which is the
main interest (e.g., telomeres). This assumption, however, cannot
be tested in practice. Most of the time, it relies on biological
knowledge. We performed the MR-Egger regression test and
found that the intercept of the MR-Egger regression is close to
zero, implying that evidence of pleiotropy is not strong. The
small discrepancy between MR-Egger estimates and other MR
estimates may lie in the fact that the statistical power of MR-Egger
is known to be lower than that of inverse-variance weighted.
Therefore, the MR-Egger regression method is usually used to
assess the pleiotropy assumptions by its intercept.

We additionally performed the calculation of E-value defined
as the minimum strength of association on the risk ratio
scale that an unmeasured confounder would need to have
with both the exposure and the outcome, conditional on
the measured covariates, to fully explain away a specific
exposure-outcome association. The results implied that the
unmeasured confounding must be strong enough to explain
away the observed association in the epidemiological studies
(Supplementary Table 2).

The exact biological mechanisms of the observed association
between leukocyte telomere length and AD are to be explored.
Several potential pathways could be proposed. Firstly, previous
studies suggested that telomere maintained genomic stability
and played a role in neuroplasticity to oxidative stress (Zhang
et al., 2007; Spilsbury et al., 2015). In the telomerase RNA
component (TERC) knockout mice model, neuronal loss in the
frontal cortex was observed (Rolyan et al., 2011). Secondly,
shortened telomeres were correlated with amyloid plaques in the
transgenic mice (Baruch-Eliyahu et al., 2019). As oxidative stress

and inflammation are more pronounced in the elderly, these
mechanisms could be related to both telomeres’ shortening and
aging manifestations such as cognitive disorders (Eitan et al.,
2014). Thirdly, proinflammatory biomarkers, tumor necrosis
factor-α, were reported to be associated with both telomeres
and downstream senescence in microglial cells (Panossian et al.,
2003). The activation of microglial cells could further lead
to changes in the immunological microenvironment and AD
progression (Hansen et al., 2018; Barak et al., 2020; Czako et al.,
2020; Levit et al., 2020; Nguyen et al., 2020).

Although this is the largest MR analysis on telomere length
and AD, the full summary statistics of the most recent GWAS of
telomere length was unavailable. This limitation prevents us from
performing further functional genomic analysis using GWAS
summary statistics.

CONCLUSION

Our present analyses applied an MR approach and found
additional evidence for a causal relationship between telomere
length and AD. Further studies that focus on the elucidation
of this association could provide pivotal insights into the
physiological roles of telomeres in AD pathogenesis.
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