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SUMMARY

In perceptual decision-making, prior knowledge of action outcomes is essential,
especially when sensory inputs are insufficient for proper choices. Signal detec-
tion theory (SDT) shows that optimal choice bias depends not only on the prior
but also the sensory uncertainty; however, it is unclear how animals integrate sen-
sory inputs with various uncertainties and reward expectations to optimize
choices. We developed a tone-frequency discrimination task for head-fixed
mice in which we randomly presented either a long or short sound stimulus and
biased the choice outcomes. The choice was less accurate and more biased to-
ward the large-reward side in short- than in long-stimulus trials. Analysis with
SDT found that mice did not use a separate, optimal choice threshold in different
sound durations. Instead, mice updated one threshold for short and long stimuli
with a simple reinforcement-learning rule. Our task in head-fixed mice helps un-
derstanding how the brain integrates sensory inputs and prior.

INTRODUCTION

In a professional tennis tournament, the opponents first serve is typically fast enough that one cannot judge

how to return it solely by looking at the ball. When sensory inputs are uncertain, Bayesian theory shows that

integration of sensory stimuli with prior knowledge of stimulus probability and action outcomes is essential

to optimize behavior (Dayan and Daw, 2008; Gold and Ding, 2013; Körding et al., 2004), as the prediction of

serve placement (stimulus probability) and the success rate of forehands and backhands (action outcome)

are the keys to returning the first serve. Previous studies have tested the integration of sensory inputs and

prior knowledge with a sensory discrimination task by biasing the reward outcomes or stimulus probabil-

ities in humans (Maddox, 2002), monkeys (Feng et al., 2009; Gold and Shadlen, 2007; Hanks et al., 2011;

Nomoto et al., 2010; Platt and Glimcher, 1999; Teichert and Ferrera, 2010), pigeons (McCarthy and Davison,

1979; Stüttgen et al., 2011), and rodents (Aguillon-Rodriguez et al., 2021; Lak et al., 2020a; Stoilova et al.,

2020). In these studies, subjects tended to select choices associated with a large reward amount or high

stimulus probability, indicating that animals integrate the sensory stimulus and the prior.

Signal detection theory (SDT), which is based on Bayesian inference, further predicts that prior-dependent

choice biases are also affected by uncertainty in sensory perception (Dayan and Daw, 2008; Gold and Ding,

2013; Maddox, 2002; Stüttgen et al., 2011). When the perceptual uncertainty is low, subjects do not need to

use prior knowledge to maximize outcomes in the sensory discrimination task. In contrast, when the uncer-

tainty is high, subjects maximize outcomes by utilizing the prior and bias choices. Previous studies have

shown that humans can optimally integrate sensory inputs and priors to make choices (Knill and Pouget,

2004; Körding and Wolpert, 2004). In a perceptual categorization task, humans change their decision

threshold depending on the sensory uncertainty and bias the choices (Maddox, 2002). Although animals

integrate sensory inputs and priors, it is unclear whether animals change their choice thresholds based

on sensory uncertainty to optimize choices.

Here, we developed a single interval forced choice (SIFC) task (Stoilova et al., 2020) for head-fixed mice

based on a previous study (Marbach and Zador, 2017), in which mice discriminated a tone frequency to

choose between a spout on the left and another on the right. The SIFC task is also known as yes-no task

(McCarthy and Davison, 1979; Yeshurun et al., 2008). The head-fixed system in mice will allow us to fully

leverage the recent advantages in transgenic, electrophysiology, and optical tools for further experiments
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(Funamizu et al., 2016; Jun et al., 2017; Rumyantsev et al., 2020). Our task presented either a long or short

auditory stimulus in each trial and changed the choice outcome according to the block of trials. Consistent

with previous studies in monkeys and rodents (Brunton et al., 2013; Hanks et al., 2014; Kiani et al., 2008), the

long-duration sensory stimulus increased the stimulus evidence; the choice behavior was more accurate

with long than with short sound durations. We then found that the choice behavior was less biased by

the asymmetric rewards with the long stimuli than with the short stimuli. Analyses with psychometric func-

tions showed that mice had low and high perceptual uncertainty for long and short stimuli, respectively. In

both sound durations, the decision threshold to determine left or right choice was similar. This result sug-

gests a suboptimal use of prior knowledge, as stimuli with high perceptual uncertainty require a large shift

of threshold in SDT. Instead of the optimal decision threshold, the threshold was shared across sound du-

rations and updated with a simple reinforcement-learning rule in our task. Mice also showed uncertainty-

dependent choices when we used high- and low-intensity sounds in the SIFC task. Our task in head-fixed

mice helps understanding how the brain integrates the sensory inputs and prior knowledge.

RESULTS

We first introduced our tone frequency discrimination task and showed that mice exploit not only tone

frequencies but also tone durations to make more accurate choices in long- than in short-stimulus trials.

Psychometric functions showed that the sound durations changed uncertainty in sensory perception,

i.e., stimulus sensitivity, while the decision threshold to bias choice was similar. Further analyses with a

behavior task and reinforcement learning (RL) model showed that the reward expectations for deciding

the choice threshold were shared between the sound durations. The stimulus sensitivity also depended

on tone intensities in our SIFC task.

The performance ofmice depends on the stimulus duration in a tone-frequency discrimination

task

To investigate how different levels of sensory uncertainties affect the choice behavior based on sensory in-

puts and reward expectations, we developed a tone-frequency discrimination task with two sound dura-

tions based on a previous study (Figure 1A) (Marbach and Zador, 2017). Mice were placed on a cylindrical

treadmill facing two lick spouts. Each trial started by moving the two spouts away from the mice. After a

random delay between 1.0 and 2.8 s, a sound stimulus of tone cloud was presented (Xiong et al., 2015; Zna-

menskiy and Zador, 2013). The tone cloud was a mixture of short-duration pure tones (0.03 s) in which the

frequency of each tone was either low (5–10 kHz) or high (20–40 kHz). In each trial, the proportion of high-

frequency tones was selected from 6 settings (0, 0.25, 0.45, 0.55, 0.75, 1) with low variability in the propor-

tion, and the dominant frequency determined the correct choice. Immediately after the sound ended, the

spouts were moved forward, which allowed the mice to choose the left or right spout. The correct or error

choice provided 10% sucrose water (2.4 mL) or a noise burst (0.2 s), respectively.

In each trial, we presented either a long (1.0 s) or short (0.2 s) tone cloud, except that the first 40 trials in each

session were always long stimuli with 100% low- or high-tone clouds. After the first 40 trials, we biased the

reward sizes of the left and right spout for correct choices, with 3.8–1.0 mL or 1.0–3.8 mL (left – right), in each

block of 90–120 trials. We defined the asymmetric reward blocks as left or right blocks according to the

large-reward side. Left and right blocks were alternated for 4 cycles, and the reward size became 2.4–2.4 mL.

We analyzed the choice behavior of 10 mice, with 71 sessions in total. The high-category tones were asso-

ciated with the correct choice in the left and right spouts in 5 mice each. In the example session (Figures 1B

and 1C), the mouse succeeded in selecting the correct choices in both the long- and short-stimulus trials. In

the short trials, choice behavior was less accurate andmore biased toward the large-reward side than in the

long trials.

Since mice tended to use the initial part of the stimulus to make choices in previous studies (Morcos and

Harvey, 2016; Odoemene et al., 2018), we first checked whether mice used the whole stimulus duration

to make choices (Figures 1D and S1). In the long-stimulus trials, the choices were correlated with the

tone frequency of entire durations (linear mixed-effects model, p = 1.3 3 10�4 – 5.0 3 10�12 (10 mice, 71

sessions)). The choices were also biased by the asymmetric reward conditions (Figure 1E). The choice per-

formance was better in the long trials than in the short trials, especially when the tone cloud was easy (100%

low or high frequency) and moderate (75% low or high) (Figures 1F and S2). The difference in the correct

rate between the long and short trials was also observed when the task had no reward bias (Figure S3).
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These results indicate that not only the average tone frequency but also the tone duration affected the

choices made by the mice.

Mice have low and high perceptual uncertainty for long and short sound stimuli, respectively

We analyzed the choice behavior of the mice with a psychometric function in which sensory perception was

modeled with a truncated Gaussian distribution (one session, Figure 1C; all sessions, Figures 2A and S4)

(Masset et al., 2020). The mean of Gaussian was the proportion of tones associated with right-side reward

in the tone cloud. The Gaussian distribution was truncated between 0 and 1 (STARMethods, Equation 2), as

the proportion of tones was restricted at the range. Based on the distribution, we computed the cumulative

Figure 1. Tone-frequency discrimination task with short and long sound stimuli

(A) Task structure. Each trial started by moving the spouts away from the mouse (Start). After a random delay between 1.0 and 2.8 s, a sound stimulus was

presented (Sound). Immediately after the sound ended, the spouts were moved, and the mice were allowed to lick the left or right spout to receive a water

reward (Decision). The middle panel shows the time course of the trial. The right panels show example tone clouds with long (top) and short durations

(bottom). The parentheses show the proportion of high frequency tones.

(B) Choice behavior in one session. The correct-response rate during tones associated with left or right choice was processed by taking the moving average

with a Gaussian function (s = 10 trials). The top panel shows the stimulus length and proportion of tones associated with left or right choice. Blue and red

boxes show the asymmetric-reward blocks (left and right blocks).

(C) Psychometric function of choice behavior in B. Means and 95% confidence intervals.

(D and E) Psychophysical kernels. Logistic regression analyzed how tones at each time point and the asymmetric rewards correlated to the choice behavior.

(D, medians andmedian absolute deviations, linear mixed-effects model, 71 sessions in 10 mice) (E, central mark in box: median; edges of box: 25th and 75th

percentiles; whiskers: most extreme data points not considered outliers (beyond 1.5 times the interquartile range), here and throughout). (F) Correct rate of

choice behavior for all, easy, moderate, and difficult tone clouds (linear mixed-effects model, 71 sessions in 10 mice).
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Figure 2. Perceptual uncertainty depends on sound durations

(A) Average psychometric function in each block and duration. Psychometric function had independent decision threshold and stimulus sensitivity in each

sound duration and block (4 conditions) to model the behavior of mice. Randomness of choice (lapse rate) was also set in each condition. Error bars show the

standard deviation of choice probability (71 sessions).

(B) Block- and duration-dependent choice biases. D fraction rightward was the difference in the average rightward choices between the left and right blocks

(linear mixed-effects model, 71 sessions in 10 mice).

(C) Comparison of D fraction rightward in each tone category. Means and standard errors (linear mixed-effects model, 71 sessions in 10 mice).

(D) Model fitting with likelihood ratio test (71 sessions, 10 mice). D log likelihood in the left panel shows how much the log likelihood of an unbiased model,

which did not distinguish the blocks and stimulus durations, increased by adding a block-dependent decision threshold (Block threshold). Right panel shows

how much the log likelihood of block-threshold model increased by adding each parameter. Parentheses show the number of parameters in the

psychometric function.
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Gaussian at a decision threshold to estimate the right-choice probability in each trial. By assuming inde-

pendent decision threshold and stimulus sensitivity (standard deviation of Gaussian) in each tone duration

and reward block (2 x 2 = 4 conditions), we investigated the effects of tone durations and reward sizes on

the choice behavior. The psychometric function also modeled the randomness of choices (lapse rate), but

the following model comparison showed that the lapse rates were zero (Figure 2D), implying that the error

choices for easy stimuli (Figures 1C and 2A) were explained by the shift of decision threshold and large

stimulus sensitivity for short-duration sounds.

Based on the average rightward choice probability in the psychometric function, we compared the fraction

rightward of mice between the left and right blocks and between the long and short sounds (Figure 2B). In

both the long- and short-stimulus trials, the choice behavior was biased to the large-reward side (linear

mixed-effects model, p = 1.9 3 10�21 and 2.9 3 10�35). The biases were larger in short- than in long-stim-

ulus trials (p = 1.5 3 10�8). Additionally, the choice bias was particularly large when the tone cloud was

100% high or low tones (linear mixed-effects model, p = 6.8 3 10�6 or 7.4 3 10�12) (Figure 2C), which

was captured by the psychometric function with a truncated Gaussian.

To investigate whether the difference in choices between the long- and short-stimulus trials reflected the

optimal integration of sensory stimulus and prior, we investigated the parameters in psychometric function.

We first made a simple psychometric function which only had a unique pair of decision threshold and stim-

ulus sensitivity for all the four combinations of tone durations and reward blocks. Adding a parameter in the

simple psychometric function always increased the log likelihood; the likelihood ratio test investigated

whether the additional parameter significantly improved the fitting (D log likelihood in Figure 2D, left)

(Daw, 2011; Maddox, 2002). We verified that the psychometric function adding the block-dependent deci-

sion threshold (block threshold) significantly improved the fitting than the simple psychometric function

(likelihood ratio test, p = 1.8 3 10-10) (Figure 2D, left), indicating that the asymmetric reward blocks biased

the choices as reported in previous studies (Daw, 2011; Lak et al., 2020a; Nomoto et al., 2010; Stoilova et al.,

2020; Stüttgen et al., 2011). We then found that the psychometric function with block-dependent thresh-

olds and duration-dependent sensitivities fit the choices (likelihood ratio test, p = 0.0073), but the param-

eters for duration-dependent thresholds (p = 0.048), block-dependent sensitivities (p = 0.041), or lapse rate

(p = 0.35) did not significantly improve the fitting after Bonferroni correction (Figure 2D, right). These results

were consistent with the model fitting with Bayesian information criterion (BIC) (Table S1).

Moreover, we fit the psychometric functions with independent decision thresholds and stimulus sensitiv-

ities in each of blocks and sound durations (4 conditions); we found that the decision thresholds were signif-

icantly different only by block (linear mixed-effects model, p = 2.23 10�24 and 2.23 10�24 in long and short

trials [10 mice, 71 sessions]), whereas the stimulus sensitivities were different only by stimulus duration

(p = 2.93 10�19 and 3.43 10�17 in left and right blocks) (Figure 2E). These results suggest that the decision

thresholds and stimulus sensitivities were shared and independent between the sound durations, respec-

tively. Duration-dependent stimulus sensitivities were also observed in the task without reward bias

(Figure S3).

SDT shows that a large amount of sensory uncertainty requires a large choice bias to optimize choice

(Dayan and Daw, 2008; Maddox, 2002). Based on the estimated stimulus sensitivities in the psychometric

function (Figure 2E, right), we analyzed the optimal decision thresholds for the long and short stimuli. As

expected, the optimal choice biases were significantly larger in short- than in long-stimulus trials (linear

mixed-effects model, p = 4.13 10�18 and 5.03 10�15 in left and right blocks [10 mice, 71 sessions]) (Figures

2F and S5). Also, the optimal decision thresholds were significantly larger than the estimated thresholds of

mice (linear mixed-effects model, p = 0.014–7.4 3 10�8 in all the 4 conditions). These results suggest that

although mice had different stimulus sensitivities across sound durations, the choice biases were subopti-

mal in our task.

Figure 2. Continued

(E) Decision threshold (threshold) and stimulus sensitivity (sensitivity) in the psychometric function. The decision threshold did not have significant

differences between the long and short stimuli, while the stimulus sensitivity was not different between the left and right blocks (linear mixed-effects model,

71 sessions in 10 mice).

(F) Optimal decision threshold. Based on the stimulus sensitivity in (E), we estimated the optimal threshold with signal detection theory. The optimal shift of

threshold from the baseline (0.5) was larger in short than in long trials (linear mixed-effects model, 71 sessions in 10 mice).
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The reward expectations of choices are shared between long and short sounds

We proposed two hypotheses to test why the choice biases were suboptimal and became similar between

the long- and short-stimulus trials: (i) the reward expectations of left and right choices were shared among

different durations; (ii) the reward expectations were independent but learned from similar outcome expe-

riences (Figure 3A). To dissociate the two hypotheses from behavior observations, we made a small change

in our task so that the first 40 trials of each block were always long stimuli (Figure 3B). In the revised task, if

the reward expectations for long and short stimuli were shared (i), mice could leverage the reward expe-

riences with long stimuli such that the choice in short trials was biased to the large-reward side from the

beginning of each block. In contrast, if the reward expectations were independent between the sound du-

rations (ii), the first choice in the short trial was biased to the small-reward side, i.e., the large-reward side in

the previous block.

We tested the revised task in 9 mice and analyzed 43 sessions. In the example session (Figure 3B), the

choices for short stimuli were biased to the large-reward side from the initial trials of each block. We sum-

marized how the choices in moderate and difficult tone clouds were shifted before and after the block

changes (Figure 3C). In our original task in which the long and short stimuli were randomly presented,

mice required at least 1 trial to flip the choice biases (comparison of correct rate between the large- and

small-reward sides in the first trials of the blocks: linear mixed-effects models, p = 0.54 and 0.48 for long

and short trials [213 trials in 71 sessions, 10 mice]). In contrast, in the revised task in which only the long stim-

uli were presented in the initial trials of each block, mice flipped their choices without direct outcome

Figure 3. Reward expectations are shared between long and short sounds

(A) Two hypotheses of reward expectations for choices. The shared- and independent-value models hypothesized that the reward expectations for long and

short stimuli were jointly or independently updated, respectively.

(B) Example session of a revised task in which the first 40 trials of each block were always long stimuli. The correct-response rate in short trials was flipped from

the beginning of each block. Data presentations comply with Figure 1B.

(C) Correct-response rate for moderate and difficult tone clouds around block changes. Blue and black lines show the correct rate of choices associated with

large and small rewards in previous blocks, respectively. Means and 95% confidence intervals (linear mixed-effects model; 213 and 121 trials from 71 to 43

sessions, 10 and 9 mice (top and bottom panels)).
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experiences in short trials (p = 0.42 and 2.2 3 10�7 [121 trials in 43 sessions, 9 mice]) (direct comparison be-

tween the original and revised task for short stimulus: linear mixed-effects models, p = 2.5 3 10�4 and

0.0012 for large- and small-reward sounds [213 and 129 trials], respectively). These results indicate that

the reward expectations for long and short stimuli were shared between the sound durations.

The RL model shows shared reward expectations and independent stimulus sensitivities for

long and short sounds

Trial-by-trial analysis around block changes showed a reward-dependent gradual change in choices (Fig-

ure 3C), which was often characterized by a RL model (Funamizu et al., 2012; Ito and Doya, 2015; Stoilova

et al., 2020). To understand the computation behind the behavior, we analyzed the choices with RL models

(Figure 4A). Our model updated the decision threshold with the outcome experiences of both the long-

and short-stimulus trials, while the stimulus sensitivities were independent between the sound durations.

In the example session, our model captured the change in the correct rate by block with the gradual updat-

ing of reward expectations (Figure 4B). The RL model also captured (i) the high and low accuracy of choices

in long- and short-stimulus trials and (ii) the large effect of asymmetric reward sizes in short trials (Figure 4C).

Model comparison with cross validation (STAR Methods) showed that the RL model with shared reward

Figure 4. Reinforcement learning model with shared reward expectations and independent stimulus sensitivities for long and short sounds

captures choice behavior

(A) Scheme of reinforcement learning (RL) model. The model had shared reward expectations and independent stimulus sensitivities between the long- and

short-stimulus trials.

(B) Simulation of choices with RL model in one session. Data are presented in the same manner as in Figure 1B. Based on the fitted parameters in RL model,

we simulated the choices of mouse 100 times. Means and standard deviations in simulated correct-response rate.

(C) Simulated psychometric function in B. Means and standard deviations.

(D) Model comparison with cross validation. Our model (RL shared) fit to the choice behavior better than the psychometric function (Psychometric) or an RL

model with independent update of reward expectations between the long and short trials (RL independent) (linear mixed-effects model, 71 sessions in

10 mice).
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expectations fit mice behavior better than the psychometric function (linear mixed-effects model, p = 1.63

10�12) and an RL model with independent reward expectations between the long and short trials (p = 4.53

10�6) (Figure 4D). These results further suggest that mice had different degrees of stimulus sensitivity and

shared reward expectations between the sound durations.

Perceptual uncertainty depends on sound intensities in the SIFC task

In addition to the sound durations, we tested how the choice behavior was changed by sound intensities

(Meijer et al., 2018). We developed a two-sound intensity tone frequency discrimination task in which either

a high- (70 dB SPL [sound pressure level in decibels with respect to 20 mPa]) or low-intensity (30 or 40 dB SPL)

tone cloud was presented randomly (Figure 5A). The sound duration was always 0.6 s. The asymmetric

reward schedule was identical to the task with two sound durations.

We conducted the two-intensity task in 5 mice and analyzed 28 sessions. The choices were more biased

to the large-reward side and less accurate in the low-intensity trials than in the high-intensity trials

(example session, Figure 5B; all sessions, Figures 5C and S6 and S7). The analyses with psychometric func-

tion showed that the decision thresholds were similar across sound intensities (linear mixed-effects

model, p = 0.49 and 0.49 in high- and low-intensity trials), while the stimulus sensitivities were different

(p = 3.4 3 10�6 and 3.4 3 10�6) (Figures 5D and 5E). These results again suggest the suboptimal choice

behavior of mice.

Figure 5. Sound intensity changes perceptual uncertainty in SIFC task

(A) Two-intensity tone-frequency discrimination task. Each trial had either a high- or low-intensity tone cloud with a duration of 0.6 s. Data are presented in

the same manner as in Figures 1 and 2.

(B) Psychometric function in one session. Means and 95% confidence intervals.

(C) Comparison of D fraction rightward between the high- and low-intensity trials (linear mixed-effects model, 28 sessions in 5 mice).

(D) Model fitting with likelihood ratio test (28 sessions, 5 mice).

(E) Shared decision thresholds and independent stimulus sensitivities between the sound intensities (linear mixed-effects model, 28 sessions in 5 mice).
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DISCUSSION

Our results showed that mouse behavior in the tone-frequency discrimination task depended not only on

the average tone frequency but also on the duration or intensity of the sounds. When we manipulated the

sound duration, the choices were more biased to the large-reward side for short stimuli than for long stim-

uli. Analyses with psychometric functions then showed that the large choice biases were due to the large

perceptual uncertainty in short stimuli and were not due to the shift of decision threshold. This result sug-

gests suboptimal behavior in our task: SDT shows that the optimal decision threshold for uncertain stimuli is

more biased by asymmetric rewards than for less uncertain stimuli. A revised task and RL model suggested

that the reward expectations for deciding decision threshold were shared across sound durations. This

result explained the suboptimal behavior in our task.

In SDT, the optimal choice threshold depends on the perceptual uncertainty and reward size of each choice

(Figure S5; STAR Methods, Equation 8) (Dayan and Daw, 2008). To compute the optimal threshold, mice

needed to understand their own perceptual uncertainty and compute Bayesian inference. Previous studies

investigate the optimal integration of sensory inputs and reward expectation in humans (Maddox, 2002)

and animals (Feng et al., 2009; Lak et al., 2020a; Nomoto et al., 2010; Pisupati et al., 2021; Stüttgen

et al., 2011; Teichert and Ferrera, 2010). In humans, choice biases are often smaller than the optimal (Mad-

dox, 2002). This is consistent with the findings in rodents including our study (Figure 2) (Stoilova et al., 2020).

In contrast, monkeys had larger choice biases than the optimal (Feng et al., 2009; Teichert and Ferrera,

2010). Recent study in pigeon found that the reward-dependent choice bias is overshoot at begin and be-

comes optimal after 1000 trials (Stüttgen et al., 2011). Our study changed the asymmetric reward blocks in

about 100 trials, which might not be enough to reach the optimal choice behavior. Another study in human

showed that humans changed their decision thresholds depending on sensory uncertainty (Maddox, 2002).

This human study changed the sensory uncertainty in every 60 trials, while our study randomly presented

the long and short sound stimuli (Figure 1B). Our task schedule possibly affected the optimization of choice

behavior in mice.

Instead of Bayes optimal integration of sensory inputs and prior knowledge, a simple way to update the

choice threshold is to use recent outcome experiences (Lak et al., 2020b; Rao, 2010). This gradual updating

of choice bias was captured by our RL model (Figure 4). Previous studies also found that prior knowledge of

stimulus probability and reward amount was updated trial by trial in an RL rule to bias choices (Bell et al.,

2016; Lak et al., 2020a; Stoilova et al., 2020).

We developed our auditory discrimination task in a head-fixed system for mice. Head fixation is suitable for

large-scale neural recording with two-photonmicroscopy (Rumyantsev et al., 2020; Stringer et al., 2019) and

silicon neural probes such as Neuropixels (Jun et al., 2017; Steinmetz et al., 2019). In addition, the head-

fixed system easily controls the parameters of the sensory stimuli. We manipulated sound durations and

intensities in our task. We particularly focused on the task with stimulus durations, as the initial phase of

stimuli can be identical across durations: mice were required to use the entire stimulus to improve the per-

formance in the long stimuli (Figure 1).

One candidate neural implementation of perceptual uncertainty is probabilistic population coding in which the

population of neural activity in sensory cortices encodes the distribution of sensory perception (Knill and Pouget,

2004; Ma et al., 2006). To test population coding, we need to simultaneously record hundreds of neurons. This is

suitable for our head-fixed system. Another candidate basis for implementation is the neurons in the orbitofron-

tal cortex that represent decision confidence (Kepecs et al., 2008; Masset et al., 2020).

In summary, we found that the sound duration or intensity changed the uncertainty in sensory perception

and changed the mice behavior in perceptual decision-making task with asymmetric reward conditions.

The reward-dependent choice thresholds were determined based on a simple RL rule rather than the

optimal Bayesian inference; thus, the choices were suboptimal. Neural recording with two-photon micro-

scopy or high-density silicon probes in our task will provide how the brain represents sensory uncertainty

and integrates sensory inputs and prior knowledge to guide behavior.

Limitations of the study

Our study did not investigate the neural correlates of sensory uncertainty which is essential for the choice

behavior in our task. Our task randomly presented the long- or short-sound stimuli and switched the reward
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amount for correct choices in every 90–120 trials. These task settings might affect the optimality of choice

behavior in mice.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to Akihiro Funamizu (funamizu@iqb.u-

tokyo.ac.jp).

Materials availability

Not applicable.

Data and code availability

Behavioral datasets have been deposited at Mendeley and are publicly available as of the date of publica-

tion. Original code has been deposited at Zenodo and is publicly available as of the date of publication.

The DOIs for datasets and code are listed in the key resources table. Any additional information required

to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used 11 male CBA/J mice (Charles River, Japan), 8 to 9 weeks of age at the start of behavioral training.

All animal procedures were approved by the Animal Care and Use Committee at the Institute for Quanti-

tative Biosciences (IQB), University of Tokyo. Mice were housed in a temperature-controlled room with a 12

h/12 h light/dark cycle. All experiments were done during the dark cycle.

The mouse surgery was based on the procedure used at the previous institute of the first author (Cold

Spring Harbor Laboratory). Before surgery, mice were restricted to 1.5 mL of water per day for at least

two weeks. The weight of each mouse was checked daily to avoid dehydration. Two days before surgery,

mice received free access to water. For a behavior task with head-restrained mice, we implanted a custom-

designed lightweight head bar. Mice were anesthetized with isoflurane (1.5% at induction, below 1% at

maintenance) with an additional analgesic (meloxicam 2 mg/kg, subcutaneous) and eye ointment. The

mice were placed in a stereotaxic apparatus. The scalp was removed above the entire cortical area. The

skull was cleaned with povidone iodine and hydrogen peroxide. The head bar was attached to the skull

with superbond adhesive (Sun Medical or Parkell S380) and cyanoacrylate glue (Zap-A-Gap, PT03) (Musall

et al., 2019). After surgery, the mice received free access to water until they recovered.

METHODS DETAILS

Tone-frequency discrimination task

After recovery from surgery, behavioral training started. The weight of each mouse was carefully moni-

tored, and additional water was given after daily training to avoid dehydration. The behavioral setup

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mouse behavioral data This paper; Mendeley Data https://dx.doi.org/10.17632/jp9ytffdt9.1

Experimental models: Organisms/strains

CBA/J Mice Charles River Japan JAX stock 000656

Software and algorithms

Matlab 2016b Mathworks 2016b

Reinforcement learning model This paper; Zenodo https://dx.doi.org/10.5281/zenodo.5054897

Other

Bpod framework (control for behavioral task) Sanworks r0.5

Speaker Avisoft Bioacoustics 60108

Microphone for sound calibration Brüel and Kjaer Type 4939
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and the task have been described previously (Marbach and Zador, 2017). All the training was performed

inside a custom sound booth. Mice were head-fixed and positioned over a cylinder treadmill. One speaker

(#60108, Avisoft Bioacoustics) was placed diagonally to the right of the mice for auditory stimulation. The

speaker was calibrated with a free-field microphone (Type 4939, Brüel and Kjaer). Water was delivered

through two spouts connected to a custom lick detection circuit. The spouts were moved back and forth

in each trial, and their position was controlled by an Arduino with a servo motor (hsb-9475sh, Hitech). Water

was calibrated before experiments. The behavioral system was controlled by a custom MATLAB

(MathWorks) program running on the Bpod framework (https://sanworks.io) on Windows.

The task required mice to select the left or right spout depending on the frequency of the sound stimulus

(Figure 1). Each trial started by retracting the two spouts away from mice. After a random interval between

1.0 and 2.8 s, a sound stimulus was started. The sound stimulus was a tone cloud consisting of a series of

30 ms pure tones with rise/decay ramps of 3 ms at a rate of 100 tones per second (98 and 18 tones for long

(1.0 s) and short (0.2 s) stimuli) (Xiong et al., 2015; Znamenskiy and Zador, 2013). The frequency of each tone

was sampled from 18 logarithmically spaced slots (5 to 40 kHz). The tone cloud in each trial contained the

low (5 – 10 kHz) and high frequency tones (20 – 40 kHz) andwas categorized as low or high depending on the

dominant frequency. The proportion of high tones in each tone cloud was selected from 6 settings (0, 0.25,

0.45, 0.55, 0.75, 1) with a probability of (25%, 12.5%, 12.5%, 12.5%, 12.5%, 25%, i.e., 2:1:1:1:1:2). In each trial,

the proportion of high tones had low variability from the settings except for the 100% low or high tone.

Immediately after the sound end, the two spouts were moved forward, and mice could select the left or

right spout. For each mouse, the high- or low-category tone was associated with a 10% sucrose water

reward in either the left or right spout as a correct trial. The selection of the opposite spout triggered a

noise burst (0.2 s) marking an error trial. The outcome was delivered immediately after the choice. When

mice did not select a spout within 30 s of the start of the trial, a new trial started.

In the two-sound-duration tone frequency discrimination task (Figure 1), a duration of either 1.0 or 0.2 s was

randomly selected in each trial (long or short trial), except that the first 40 trials in each session were always

long stimuli with 100% low- or high-tone clouds. The intensity of the tone cloud was constant in each trial

but sampled from either 60, 65 or 70 dB SPL (sound pressure level in decibels with respect to 20 mPa) to

prevent mice from using loudness for tone discrimination. After the first 40 trials, the reward amount of

the left and right spout was switched by a block of 90 – 120 trials. In each block, the reward size for a correct

left or right choice was either 1.0 and 3.8 ml, respectively, or 3.8 and 1.0 ml, respectively. We defined the left

and right blocks depending on the large reward for the corresponding choice. After mice had experienced

asymmetric reward blocks 4 times, the reward sizes of the left and right spouts became identical (2.4 –

2.4 ml). If mice did not complete the 4 blocks, we did not use the session for analysis.

In the two-sound-intensity tone-frequency discrimination task (Figure 5), the sound duration was always 0.6

s, while the sound intensities were randomly sampled from low (30 or 40 dB SPL) or high (70 dB SPL) in each

trial. In one mouse, we tested different combinations of sound intensities (combination of 30-70 dB SPL or

40-70 dB SPL) and used the sessions with 30-70 dB SPL for analyses, as the combination had a larger inten-

sity difference. The first 40 trials in each session were always high-intensity sounds with 100% low- or high-

tone clouds. The reward schedule was identical to that of the two-duration task.

Data analysis

All analyses were performed with MATLAB (MathWorks). In each session, trials in which mice succeeded in

selecting the left or right spout were analyzed. In the two-duration task, we analyzed 71 sessions from 10 out

of 11 mice (mouse a01 – a10: 4, 9, 8, 8, 10, 6, 6, 8, 6, 6 sessions) (Figure S1). In one mouse, we obtained data

from only one session, which was not included in the analyses. Additionally, we did not use the session for

analyses when mice did not select correct choices at least 80% of the time for the 100% low- and high-tone

clouds. In the two-duration task without reward bias (Figure S2), we analyzed 37 sessions from 9 mice

(mouse a02 – a10: 5, 4, 5, 6, 3, 4, 4, 3, 3 sessions). In the two-intensity task (Figure S4), we analyzed 28 ses-

sions from 5 mice (mouse a04, a05, a06, a08, a10: 6, 6, 6, 6, 4 sessions).
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Psychophysical kernels

We used logistic regression (MATLAB: glmfit) to quantify which tone-cloud timing and asymmetric reward

blocks were correlated with the choice in each trial t:

log

�
pðright; tÞ

1� pðright; tÞ
�

= b0 + b1bðtÞ+
XT

time= 0

btimeErightðtime; tÞ; (Equation 1)

where pðright; tÞ was the rightward choice probability at trial t. b was a regression coefficient. Eright(time, t)

was the proportion of tone frequency associated with rightward choice in a tone cloud at trial t, time win-

dow time. b(t) was the asymmetric reward block at trial t (left or right). Eright(time, t) and b(t) were normal-

ized. For the psychophysical kernels, we used only the trials with moderate (75% low or high frequency) and

difficult (55% low or high) tone clouds.

Psychometric function

We assumed that when a tone cloud of Eright(t) was presented at trial t, its noisy sensory perception bE had a

Gaussian distribution with the mean Eright(t) truncated between 0 and 1 of stimulus x, as the proportion of

tone frequency in the sound stimulus was bounded at the range:

bE = N
�
x
��ErightðtÞ;s2

�,Z1
0

N
�
x
��ErightðtÞ;s2

�
dx = ZN

�
x
��ErightðtÞ;s2

�
; (Equation 2)

where s was the perceptual uncertainty (standard deviation). Z truncated the Gaussian distribution be-

tween 0 and 1 here and throughout. Based on the noisy sensory perception, we estimated the rightward

choice probability by analyzing the cumulative Gaussian:

pðright; tÞ = l1 + ð1� l1 � l2Þ
Z1

A

ZN
�
x
��ErightðtÞ; s2

�
dx;

A = b0 + b1bðtÞ+ b2sðtÞ;
s2 = b3 + b4bðtÞ+ b5sðtÞ; (Equation 3)

where b(t) and s(t) were -1 or 1 for the left or right block (b) and the short or long stimulus (s), respectively.

b0�5 were regression coefficients. b0�2 determined the threshold for selecting the left or right choice. b1 and

b2 quantified the choice bias by the blocks and sound durations, respectively. b3�5 determined the slope of

the psychometric curve of behavior (stimulus sensitivity or perceptual uncertainty). l1,2 were lapse rates that

quantified the randomness of choices in all stimuli. We could set different lapse rates in each block and

sound duration, but the following model fitting showed that the lapse rate was zero in our task (Figure 2D,

Model comparison). This implies that the error choices for easy stimuli (Figures 1C and 2A) were explained

by the shift of decision threshold and large stimulus sensitivity for short-duration sounds. In the two-inten-

sity task (Figure 5), we used Equation 3 to analyze the psychometric function except that s(t) was the stim-

ulus intensity (-1 or 1 for low or high intensity).

Optimal behavior in the SIFC task

SDT derived the optimal behavior in our SIFC task by estimating the category C (low or high) of each trial

from the tone cloud. The proportion of high frequency in the tone cloud fluctuated trial by trial; we thus

assumed that the proportion of high frequency in the low- and high-category tones had a uniform distribu-

tion of stimulus x from 0 to 0.5 and from 0.5 to 1, respectively. The likelihood of a sensory stimulus in cate-

gory Ci, P(x|Ci), was defined as follows:

PðxjCiÞ =
Z1

0

P
�
Ej

��Ci

�
ZN

�
x
��Ej;s

2
�
dEj : (Equation 4)

PðEj

��CiÞ was the probability of tone cloud Ej in a given category Ci. Posterior probability P(Ci|x) was given

with Bayes rule:

PðCijxÞfPðxjCiÞPðCiÞ: (Equation 5)
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PðCiÞwas a prior probability of category i. Each category provided a reward in left or right action a: ra,C. The

expected reward R of each action for a given sensory stimulus x was as follows:

Rleft;x = PðlowjxÞrleft;low + PðhighjxÞrleft;high
Rright;x = P

�
lowjxÞrright;low + Pðhighjx�rright;high: (Equation 6)

The optimal choice p�
x was then determined as follows:

p�
x = argmaxa˛fleft;rightg½Ra;x �: (Equation 7)

In particular, the choice threshold x0 satisfied Rleft;x0 = Rright;x0 .

In our task, the reward amount of error choice was zero. When the low-category tones were associated with

the reward in left choice, the rewards satisfied rleft;high = rright;low = 0. The prior probabilities of the low and

high categories were equal in our task. In these cases, the choice threshold x0 satisfied the following

equation:

Pðx0jlowÞrleft = Pðx0jhighÞrright : (Equation 8)

We wrote rleft;low and rright;high as rleft and rright . The optimal threshold depended on the perceptual uncer-

tainty and reward size of each choice.

Reinforcement learning model

The reinforcement learning (RL) model assumed that the expected reward of each choiceQa was updated

on a trial-by-trial basis by the choice and outcome:

Qaðt + 1Þ =
�
QaðtÞ+aðrðtÞ �QaðtÞÞ if a= aðtÞ
ð1� aÞQaðtÞ if asaðtÞ ; (Equation 9)

where a was the learning rate. We used forgetting Q-learning, which fit better in the choice behavior of ro-

dents than a standard Q-learning model in previous studies (Funamizu et al., 2012; Hattori et al., 2019; Ito

and Doya, 2015). We then estimated the choice threshold x0 with a softmax equation and an inverse tem-

perature parameter b:

x0ðtÞ = expðbQleftðtÞÞ
expðbQleftðtÞÞ+ exp

�
bQrightðtÞ

� : (Equation 10)

The softmax equation modeled a perceived reward size that might be different from the actual amount of

water (Constantinople et al., 2019; Ito and Doya, 2015). The choice probability in each trial was estimated

from a duration-dependent perceptual uncertainty ss and a bias parameter d:

Pðright; tÞ =
Z1

x0ðtÞ+d

ZN
�
x
��ErightðtÞ;s2

sðtÞ
�
dx: (Equation 11)

The initial expected reward for each choice was the average amount of reward (i.e., 2.4). In the RL shared

model (Figure 4), one pair ofQleft andQright was updated in both the long- and short-stimulus trials. The RL

independent model had separate pairs of Qa for the long and short trials.

Model comparison

To investigate which behavioral model fit the choices made by the mice, we defined the likelihood l(t) from

the estimated choice probability in each trial (Equations 3 and 11):

lðtÞ =
�
Pðright; tÞ if aðtÞ= right
1� Pðright; tÞ if aðtÞ= left

: (Equation 12)

We then analyzed the likelihood in each session L using the trials during the left and right blocks:

L =
YT
t = 1

lðtÞ; (Equation 13)

where T was the number of trials. Model comparison within the psychometric functions used the likelihood

ratio test (Daw, 2011), which investigated whether an additional parameter in the model significantly

increased the averaged log likelihood per session and determined which parameters were relevant for
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choices (Figures 2D, 5D, and S3F). The parameters were fit to achieve the maximum likelihood. Also, we

used Bayesian information criterion (BIC) for model comparison (Table S1) (Stoilova et al., 2020):

BIC = � 2 logðLÞ+ klogðTÞ; (Equation 14)

where k was the number of free parameters. The results of model fitting by the likelihood ratio test and BIC

were consistent.

For comparison between the psychometric function and RL models, the parameters were estimated with

cross validation: we analyzed the likelihood in one session by fitting the parameters with the rest of the ses-

sions (leave-one-session-out cross validation). We then compared the likelihood per trial in all the sessions

among models (Figure 4D) (Funamizu et al., 2012; Ito and Doya, 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed with MATLAB (MathWorks). For model fitting of psychometric functions, we

used the likelihood ratio test (Figures 2D, 5D, and S3F) and Bayesian information criterion (BIC)

(Table S1) (Methods details, model comparison). For all the other analyses, we used linear mixed-effects

models (MATLAB: fitlme), as we analyzed multiple sessions from each subject (mouse). To compare sam-

ples in each session, the fixed and random effects were the samples and subjects, respectively. To compare

samples in each trial (Figure 3C), the random effects were the subjects and trials; we tested all the 9 com-

binations of linear mixed-effects models and determined the best fitting model with BIC. All the statistical

details are found in the figure legends, figures, or results.
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