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Validating Dose Uncertainty Estimates
Produced by AUTODIRECT: An
Automated Program to Evaluate
Deformable Image Registration Accuracy
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Abstract
Deformable image registration is a powerful tool for mapping information, such as radiation therapy dose calculations, from one
computed tomography image to another. However, deformable image registration is susceptible to mapping errors. Recently, an
automated deformable image registration evaluation of confidence tool was proposed to predict voxel-specific deformable image
registration dose mapping errors on a patient-by-patient basis. The purpose of this work is to conduct an extensive analysis of
automated deformable image registration evaluation of confidence tool to show its effectiveness in estimating dose mapping errors.
The proposed format of automated deformable image registration evaluation of confidence tool utilizes 4 simulated patient
deformations (3 B-spline-based deformations and 1 rigid transformation) to predict the uncertainty in a deformable image regis-
tration algorithm’s performance. This workflow is validated for 2 DIR algorithms (B-spline multipass from Velocity and Plastimatch)
with 1 physical and 11 virtual phantoms, which have known ground-truth deformations, and with 3 pairs of real patient lung images,
which have several hundred identified landmarks. The true dose mapping error distributions closely followed the Student t dis-
tributions predicted by automated deformable image registration evaluation of confidence tool for the validation tests: on average,
the automated deformable image registration evaluation of confidence tool–produced confidence levels of 50%, 68%, and 95%
contained 48.8%, 66.3%, and 93.8% and 50.1%, 67.6%, and 93.8% of the actual errors from Velocity and Plastimatch, respectively.
Despite the sparsity of landmark points, the observed error distribution from the 3 lung patient data sets also followed the expected
error distribution. The dose error distributions from automated deformable image registration evaluation of confidence tool also
demonstrate good resemblance to the true dose error distributions. Automated deformable image registration evaluation of
confidence tool was also found to produce accurate confidence intervals for the dose–volume histograms of the deformed dose.
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Introduction

Deformable image registration (DIR) has been used for various

clinical applications in radiation oncology. The resulting defor-

mation vector field (DVF) from DIR can reduce the time

needed for image segmentation1-7 and can be used to transfer

dose from one image to another1-3,8-11 for adaptive radiation

therapy or to evaluate the composite dose from multiple treat-

ment courses. Deformable image registration, however, has

inherent uncertainties, which makes the application to dose

transfer much more challenging, as there is currently no clinical

means to verify its accuracy.

Many studies12-16 have highlighted the accuracy of DIR

algorithms in terms of landmark tracking and image similarity.

A few studies17-21 have investigated how DIR uncertainty

affects dose transfer, and some9,22,23 have developed the auto-

mated processes for spatial uncertainty modeling. Bender et al9

suggested finding the region of spatial DIR uncertainty by

assessing the inverse inconsistency of a deformation field, but

this ignores DIR errors in the inverse consistent regions. A

distance-to-dose difference tool was introduced by Saleh-

Sayha et al22 that maps the effect of dose gradients on the

uncertainty. It, however, does not account for other causes of

DIR inaccuracy, including the increased errors frequently

found in regions of homogeneous image intensity. The work

proposed by Murphy et al23 obtained a spatial DIR error map

by analyzing the effect of varying the region of interest (ROI)

on the resulting DVF. This, however, does not consider the

variability between different DIR algorithms, as well as other

causes of DIR uncertainty other than those caused by the ROI.

Our general goal for radiotherapy is to deliver doses to

patients that are within 5% of that prescribed, when accounting

for all sources of uncertainty (International Commission on

Radiation Units, ICRU Report 24). For many patients, DIR

becomes a contributing component to this uncertainty, but there

is not currently a clinically established method to evaluate this

uncertainty for a patient and how it contributes to the overall

treatment uncertainty. Recently, Kirby et al24 proposed a new

software tool, the automated DIR evaluation of confidence tool

(AUTODIRECT) that evaluates the spatial dose mapping accu-

racy of a DIR algorithm on a patient-by-patient basis. The auto-

mated confidence methodology utilizes a small number of test

deformations (currently 4 for computational efficiency) to esti-

mate the uncertainty in the DIR algorithm’s performance. It

analyzes the spatial dose mapping errors from the 4 test cases

by modeling them using a Student t distribution.25

This validation is differentiated from the previous proof-of-

principle study24 in 2 ways. First, the implementation of

AUTODIRECT in the previous study overpredicted DIR

uncertainty. This issue has now been corrected in the current

implementation, and it yields results close to the expected sta-

tistical behavior. Second, to demonstrate the performance and

clinical relevance of the proposed framework, the validation is

comprehensively performed with a total of 15 data sets. Twelve

of these are phantoms (11 virtual and 1 physical) with known

ground-truth deformations. The remaining 3 are actual lung

patient data sets containing hundreds of pairs of manually

defined landmarks. This extends the testing of AUTODIRECT

to several anatomical sites (head-and-neck [HN], pelvis, and

lung). Also, as virtual phantoms are simulated deformations,

the addition of the physical phantom and real patient data sets

benchmarks AUTODIRECT with real deformations.

Methods

Review of AUTODIRECT

For the phantom data sets in this study, the true deformation is

known (Dtrue) and can be compared to the DVF (Dc) predicted

by the clinical DIR algorithm (Ac) when applied to the phantom

images, as seen in Figure 1A.

Figure 1B shows the workflow of AUTODIRECT.24 It

requires fixed and moving CT images (Fc and Mc) and 2 noise

scans (N1 and N2) describing the noise characteristics of the

imaging system to produce DIR error estimates. More specif-

ically, Figure 1B illustrates how AUTODIRECT applies a gen-

erator DIR algorithm (Ag) to Mc and Fc to produce a test DVF

(Dt). A filter with edge preserving and smoothing functions

processes Mc to remove noise that could potentially skew DIR

accuracy determination, yielding a processed moving image

(Mp). The test deformation field (Dt) is applied to Mp to create

an artificial-processed fixed image (Fp). This test deformation

is the ground-truth deformation for the pair Mp and Fp. Two

unique noise scans are then added to Mp and Fp to create the

final test moving and fixed images (Mt and Ft). The pair of Mt

and Ft is passed to the clinical DIR algorithm (Ac), and the

resulting deformation field (Dr) is compared to Dt. In AUTO-

DIRECT, this procedure is performed 4 times using different

generator algorithms (3 B-spline DIRs and 1 rigid transform).

The comparison of the 4 test and resulting deformations are

used to create a statistical model of the dose errors for each

voxel. When small sample sizes (<20) are used to estimate

Gaussian distributions, a Student t distribution is better suited

to represent the probability distribution of variables. As the

current version of AUTODIRECT has small number of sam-

ples (n ¼ 4), the distribution of DIR dose mapping error is

Figure 1. A, Diagram depicting the clinical use of a deformable image

registration (DIR) algorithm. B, Diagram depicting the procedure used

by automated deformable image registration evaluation of confidence

tool (AUTODIRECT) to create a pair of patient-specific images with

known deformation to test the performance of a DIR algorithm.
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assumed to conform to the Student t distribution with 3 (N�1)

degrees of freedom. Thus for each voxel, a Student t variable

can be defined as expressed in Equation 1.
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where N is the number of the test deformations (N¼ 4). E is the

actual dose mapping error, given by the difference between the

true dose at that voxel (dactual) and the dose predicted ðdpredÞ by

the clinical (Dc) deformation. Both di and pi are the doses

warped by the test (Dt, i) and resulting (Dr, i) deformations,

respectively. di and pi represent the known errors produced by

Ac when tested using the simulated data. As seen in Equation 1,

the mean and standard deviation of the known errors are used to

predict the distribution of errors in Dc, which are not known.

Once the t variable is defined for each voxel, Equation 2

shows how to estimate the range of possible dose errors from

our proposed framework at a certain confidence interval:
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where k represents the confidence interval defined by the t

distribution, that is, k ¼ 3.182 at 95% confidence interval

for 3 (N � 1) degrees of freedom. Notably, once Equation 2

is derived under assumption of the t statistic, the minimum

and maximum doses for the confidence interval are com-

pletely defined by the mean and variance of the dose map-

ping errors from the test cases without the true deformation.

Hence, if the t statistic assumption is validated, AUTODIR-

ECT will demonstrate the ability to provide valuable dose

uncertainty information for the clinical case without prior

knowledge of the true deformation. For the clinical usage of

this method, when the ground-truth deformation is not

known, the test deformation fields would be utilized to cal-

culate the statistical parameters in Equation 2 to derive the

dose confidence interval.

Evaluation of AUTODIRECT

For validation testing of AUTODIRECT, we employed 11

pairs of virtual phantom images based on patient CT images

for various body sites (1 prostate, 1 craniospinal, and 9 HN

cases). The prostate data set is from a treatment of the prostate

and lymph nodes to a dose of 45 Gy in 25 fractions. The

craniospinal data set is from a treatment with the prescription

of 39.6 Gy in 22 fractions. The HN cases had several different

disease sites: base of tongue, tonsil, nasopharynx, and supra-

glottic larynx. These cases had prescriptions that were either 70

Gy in 35 fractions or 69.96 Gy in 33 fractions. For each set, a

patient image was digitally deformed with ImSimQA, software

available from Oncology Systems Limited (OSL), Shrewsbury,

Shropshire, UK, to create a target image. It allows the user to

manually define the deformation for a small set of control

points and then utilizes a thin-plate spline algorithm to define

the DVF for the entire volume. The 3 virtual phantoms on 3

different body sites created by Nie et al21 utilized 30 pairs of

anatomical landmarks defined by a physician to simulate ana-

tomical changes in the prostate region due to bladder filling,

changes along the cranio-spinal axis due to switching between

a prone and supine position, and changes in the HN region due

to patient weight loss. The remaining 8 virtual HN cases, cre-

ated by Pukala et al,19 simulated anatomy-driven deforma-

tions due to mandible translation/rotation as well as tumor

and parotid shrinkage. ImSimQA can export the applied

deformation, which serves here as the ground-truth deforma-

tion for each data set. An additional HN physical phantom

set was also used, which was developed by Singhrao et al17

with a measured ground-truth deformation determined with

891 optical markers. This physical phantom represented

deformation from HN flexion. The physical phantom was

modeled after an actual patient. The patient’s nasopharynx

dose distribution (70 Gy in 35 fractions) was fused to the

phantom for the dose analysis performed here.

To demonstrate its effectiveness in actual clinical cases, the

workflow was also tested with 3 pairs of lung patient images

with 300 identified pairs of landmarks, provided by DIR-

LAB14 (http://www.dir-lab.com). These 3 data sets were cho-

sen at random from the 5, high-resolution (512 � 512 in the

axial plane) four-dimensional computed tomography (DCT)

data sets available on this site. For each case, the image in

inhale breathing cycle was set to be the moving image, while

the exhale was set to be the fixed image. Thus, the ground-truth

deformations for these cases were the movement of the lungs

from exhalation to inhalation. The true mapping between land-

marks in the 2 images was provided by the DIR-LAB. As the

landmarks were widely distributed throughout the entire lung,

we simulated a whole lung treatment for each case. The pre-

scriptions for these cases were 12 Gy in 6 fractions to the

patient midplanes, delivered with anterior-posterior (AP)/ pos-

terior-anterior (PA) fields. Because these landmarks are manu-

ally identified, their positions are not exact and have an

inherent error associated with them. To account for this inher-

ent error, we computed a uniform random variable ranging

from �0.5 to 0.5 mm (half of the image resolution in x-, y-

directions) for each landmark, multiplied this spatial error by

the local dose gradient (Gy/mm), and added this additional

dose error to the dose error calculated assuming perfect land-

mark correspondence.

For this version of AUTODIRECT, the 4 generator algo-

rithms (Ag in Figure 1B) for the simulated deformations con-

sisted of 1 rigid and 3 DIR algorithms. The DIR algorithms

Kim et al 887
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were B-spline-based algorithms26,27 implemented in a research

build of Velocity, with a wide range of control point spacings

and passes. Thus, the 4 different generator algorithms produced

simulated deformations with varying amounts of smoothness

and pliability. For the clinical DIR algorithms (Ac in Figure 1),

we applied 2 B-spline DIR algorithms: the B-spline multipass

from the commercial version of Velocity (version 2.7) and the

B-spline method from an open-source software, Plastimatch27

(http://www.plastimatch.org) (Version 1.6.1). Velocity utilizes

mutual information as its similarity metric, whereas mean-

square difference was applied here for the Plastimatch DIR

algorithm. Thus, 30 comparisons were made between

AUTODIRECT-computed uncertainty maps and the true dis-

tribution of DIR errors: one comparison for each combination

of 2 different clinical DIR algorithms and 15 different test

image pairs (11 virtual phantom, 1 physical phantom, and 3

landmark image data set).

The noise scans (N1 and N2 in Figure 1B) were acquired by

scanning a water phantom to capture noise and image artifacts,

such as ring and nonuniformity artifacts. Two types of noise

scans were acquired for this study. The first was from a large

pelvic-shaped water phantom for the prostate phantom, and the

other was a small cylindrical water phantom for the HN and

craniospinal irradiation (CSI) phantom studies.

To assess how well AUTODIRECT modeled the distribu-

tion of DIR-related dose errors, the true error and the mean

and variance of the test mapping errors for every voxel were

calculated by AUTODIRECT for the 30 validation cases. If

the AUTODIRECT method is accurate, then the computed t

statistic should follow the theoretical t distribution. In addi-

tion, AUTODIRECT was used to estimate 50%, 68%, and

95% confidence intervals for the DIR dose errors using Equa-

tion 2. The percentage of voxels within the 3 designated con-

fidence intervals was calculated. The spatial distribution of

dose mapping errors was also visualized on the axial CT

image and in the form of dose–volume histograms (DVHs)

of specific structures.

Results

Phantom Studies

Figure 2 illustrates the distribution of dose mapping errors

compared to the theoretical t distribution estimated by

AUTODIRECT for the B-spline multipass DIR algorithms

in Velocity and in Plastimatch. The HN physical

phantom yielded a somewhat noisy distribution mainly due

to the small number of samples (891 landmarks). The

AUTODIRECT-predicted error distributions underestimated

the errors for HN phantom 9 with the Velocity B-spline

multipass, and slightly overestimated the errors for HN

phantom 4 with the B-spline Plastimatch DIR algorithm.

For the remaining cases, however, the t statistic estimated

from AUTODIRECT closely conformed to the theoretical

error distribution closely. The AUTODIRECT-derived con-

fidence values were calculated at 3 different designated lev-

els: 50%, 68%, and 95%, corresponding to k ¼ 0.765, 1.189,

and 3.182 in Equation 2, respectively. Figure 3 plots the

percentage of voxels of the deformed dose lying within the

3 confidence intervals for the 12 data sets, which resulted in

the average values of 48.8%, 66.3%, and 93.8% and of

50.1%, 67.6%, and 93.8%, for the Velocity and Plastimatch

algorithms, respectively.

Figure 4 displays the examples of the spatial distribution of

DIR errors for the prostate, CSI, HN phantom1, and HN phan-

tom 9 phantoms. There is a high degree of correlation between

the gradient of the dose distributions and DIR uncertainty.

Figure 4 also shows the similarity between the actual dose

errors (difference between true and clinical deformations) and

the predicted uncertainty (mean of the dose mapping errors as

defined in Equation 2) by the AUTODIRECT workflow.

These examples demonstrate the ability of AUTODIRECT

to capture the dose transfer uncertainty without knowing the

actual errors.

The resulting uncertainty is employed to estimate the

error bars in the form of the DVHs for critical structures

Figure 2. Probability density functions of errors. Comparison of the theoretical t distribution (red, dashed) and the distribution of dose

mapping errors estimated from automated deformable image registration evaluation of confidence tool (AUTODIRECT) (black, solid)

for 12 test data sets when Velocity B-spline multipass and B-spline Plastimatch clinical deformable image registrations (DIRs) are

evaluated.
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and the target volumes, as seen in Figure 5. The represen-

tative DVHs in Figure 5 represent organs at risk that receive

relatively high doses in regions of deformations, as well as

targets. The predicted error bars (dashed-dotted, red) mostly

encompass the true deformed dose (solid, black) for the

given structures.

Lung Landmarked Image Study

The AUTODIRECT workflow with Velocity and Plastimatch

clinical DIRs produced the resulting error distributions

in Figure 6, respectively, for the 3 lung patient data set with

300 landmarks. As stated earlier, the errors include an estimate

of the inherent placement error by simulating uniform random

Figure 4. Spatial dose mapping uncertainty: True warped dose (first column), actual error between true warped dose and dose warped by 2

clinical deformable image registrations (DIRs; second and fourth columns), and automated deformable image registration evaluation of

confidence tool (AUTODIRECT)-predicted dose (third and fifth columns) for prostate, CSI, HN phantom 1, and HN phantom 9 cases,

respectively.

Figure 3. Percentage of voxels within the corresponding automated deformable image registration evaluation of confidence tool (AUTO-

DIRECT)-predicted confidence interval for 12 phantom cases when the confidence intervals are defined to be 50%, 68%, and 95% with (A)

Velocity B-spline multipass clinical deformable image registration (DIR), (B) B-spline clinical DIR from Plastimatch.

Kim et al 889



noise multiplied by the dose gradient. Due to the small number

of samples, the error distributions were noisy relative to the

results of the virtual phantom study. Importantly, however, the

outlines tend to be close to the theoretical t distribution for the 3

lung cases with both B-spline clinical DIRs.

Discussion

An AUTODIRECT is an automated software tool that was

proposed to predict patient-specific dose mapping accuracy for

a clinical DIR. This study verified the accuracy of the dose

mapping uncertainty estimates provided by the workflow using

12 virtual/physical phantoms. The workflow was also tested on

3 clinical lung data sets with 300 landmarks. For the virtual/

physical phantoms with known deformation, the true dose error

distributions closely followed the t distribution predicted by

AUTODIRECT. The predictions of the uncertainty for the lung

patient data set with 300 landmarks were qualitatively close to

the true error distribution. The validation in terms of the prox-

imity of the dose mapping error to the theoretical one is sig-

nificant, as stated, since the true deformation is not known for

prospective patient analysis. The results above demonstrate

Figure 5. True warped dose (black, solid), dose warped by the clinical deformation (green, dashed) and range of warped dose estimated by

automated deformable image registration evaluation of confidence tool (AUTODIRECT) at 95% confidence interval (CI; red, dashed-dotted)

for (A, B) prostate and bladder contours in prostate phantom, (C, D) brainstem and spinal cord contours in CSI phantom, and (E, F) planning

target volume, (PTV) and parotid gland contours in HN phantom4 data sets.

Figure 6. Probability density functions of errors in 3 pairs of real lung images with 300 landmarks from automated deformable image

registration evaluation of confidence tool (AUTODIRECT; first row) Velocity B-spline multipass, and (second row) B-spline Plastimatch

deformable image registrations (DIRs) were used (dotted in red: t distribution, solid in black: predicted by AUTODIRECT).
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that our proposed framework may provide clinically important

information that is currently missing from existing platforms.

In particular, we believe this information could be valuable to

physicians evaluating composite dose distributions for patients

undergoing retreatment with radiation.

The 4 test deformations (Dt, i) play a crucial role in predict-

ing the spatial uncertainty of the DIRs. The initial proof-of-

principal work24 on AUTODIRECT also used 4 generator algo-

rithms: 2 B-spline-based, 1 demons-based,28 and 1 rigid regis-

tration. The specific demons DIR algorithm used in that study

was shown to skew DIR uncertainty predictions, resulting in

overestimates. Also, the rigid registration was shown to be a

reasonable test deformation, yielding predicted errors that were

similar to the actual ones. For this reason, the current version

adopted 3 B-spline and 1 rigid registration as the test deforma-

tions. The B-spline test deformations captured the essence of

the ground-truth warping, with deformations in similar loca-

tions and of similar magnitude. This test DIR set is shown here

to create accurate dose warping uncertainty estimation, as iden-

tified in the 12 phantom studies and the 3 patient data sets. It is

important to note that this set of test deformations is not uni-

versally optimal for all clinical DIR algorithms. Some addi-

tional analyses (results not shown) were also performed using

a demons-based DIR as the clinical DIR (Ac). In these cases,

the predicted error distributions were also overestimated. These

dose uncertainty overestimates were as much as 60% for some

of the benchmarks in the initial proof-of-principle work. Thus,

it may be important to customize the test DIR algorithms

employed by AUTODIRECT for the clinical DIR algorithm

being used.

It is important to also address the computation burden

of this technique. This burden can be divided into 4 dif-

ferent parts: creating the test deformations, creating the

test image sets from these deformations, applying the clin-

ical DIR algorithm to the test image sets, and a final

analysis to compute the statistical parameters. For the cur-

rent implementation of AUTODIRECT, these steps take

140, 180, 140, and 80 seconds, respectively (9 minutes

total). This computation was timed for a Windows desktop

computer with an Intel Xeon E5-1620 v3 processor and 32

GB of random-access memory, (RAM).

Based on the validation performed in this work, the

AUTODIRECT workflow shows promise for estimating

DIR dose warping uncertainty when transferring dose from

one planning CT to another. There are, however, some lim-

itations to the current validation study. The virtual phantoms

were created by manually applying reasonable estimates for

typical anatomical deformations that occur in patients. In

cases, such as weight loss, there is some uncertainty in the

true nature of the underlying anatomical deformation. In

cases, such as bladder and rectal filling, the DVF is ill-

defined in some regions. In these cases, the validation test-

ing results really are only an indication that AUTODIRECT

calculations match well with the assumptions made when

creating the virtual phantoms. An additional limitation for

the virtual phantom validations is that they were produced

with synthetic splines and both the test and clinical DIR

algorithms utilized splines for warping. This has the poten-

tial to skew the produced DIR error predictions. For this

reason, the physical phantom and the lung data sets are

crucial to this study. Another limitation of the current

AUTODIRECT platform is that the image processing is

most appropriate for fan-beam, kilo-voltage CT imaging.

Work is ongoing to extend the AUTODIRECT process to

imaging typically used during image-guided radiotherapy to

enable its use for adaptive therapy applications.

Conclusion

Tested on 12 virtual and physical phantoms and 3 pair of lung

images from a real patient, the AUTODIRECT framework was

found to reliably estimate the DIR-driven dose mapping errors

for 2 widely available B-spline algorithms. Thus, the AUTO-

DIRECT workflow shows promise for providing clinically

important information on the uncertainty of a deformed dose

distribution.
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6. Hardcastle N, Tomé WA, Cannon DM, et al. A multi-institution

evaluation of deformable image registration algorithms for auto-

matic organ delineation in adaptive head and neck radiotherapy.

Radiat Oncol. 2012;7(1):90.

7. Hoffmann C, Krause S, Stoiber EM, et al. Accuracy quantification

of a deformable image registration tool applied in a clinical set-

ting. J Appl Clin Med Phys. 2014;15(1):4564.

8. Davis BC, Foskey M, Rosenman J, Goyal L, Chang S, Joshi S.

Automatic segmentation of intra-treatment CT images for adap-

tive radiation therapy of the prostate. Med Image Comput Comput

Assist Interv. 2005;8(pt 1):442-450.

9. Bender ET, Hardcastle N, Tomé WA. On the dosimetric effect
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