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Abstract: Pterygium is an eye condition that causes the fibrovascular tissues to grow towards the
corneal region. At the early stage, it is not a harmful condition, except for slight discomfort for the
patients. However, it will start to affect the eyesight of the patient once the tissues encroach towards
the corneal region, with a more serious impact if it has grown into the pupil region. Therefore,
this condition needs to be identified as early as possible to halt its growth, with the use of simple
eye drops and sunglasses. One of the associated risk factors for this condition is a low educational
level, which explains the reason that the majority of the patients are not aware of this condition.
Hence, it is important to develop an automated pterygium screening system based on simple imaging
modalities such as a mobile phone camera so that it can be assessed by many people. During the
early stage of automated pterygium screening system development, conventional machine learning
techniques such as support vector machines and artificial neural networks are the de facto algorithms
to detect the presence of pterygium tissues. However, with the arrival of the deep learning era,
coupled with the availability of large training data, deep learning networks have replaced the
conventional networks in screening for the pterygium condition. The deep learning networks have
been successfully implemented for three major purposes, which are to classify an image regarding
whether there is the presence of pterygium tissues or not, to localize the lesion tissues through
object detection methodology, and to semantically segment the lesion tissues at the pixel level. This
review paper summarizes the type, severity, risk factors, and existing state-of-the-art technology in
automated pterygium screening systems. A few available datasets are also discussed in this paper for
both classification and segmentation tasks. In conclusion, a computer-assisted pterygium screening
system will benefit many people all over the world, especially in alerting them to the possibility of
having this condition so that preventive actions can be advised at an early stage.

Keywords: pterygium assessment; eye disease screening; deep learning; classification; semantic
segmentation

1. Introduction

Pterygium or also known as surfer’s eye, is a condition in which there is an overgrowth
of fibrovascular tissues that originate primarily from the conjunctiva at the medial canthus
region [1]. For more severe cases of pterygium, the condition develops from both the
medial and lateral canthus regions, as shown in Figure 1. Initially, the abnormal tissues
will involve the conjunctiva over the sclera, whereby the disease will encroach towards the
corneal region once it becomes more severe. It is a noncancerous or benign type of tissue
abnormality that usually has a hedge or kite shape [2]. Generally, it is often treated as a
minor issue unless the abnormal tissues start to encroach upon the corneal region, which
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will consequently block light from coming into the macula region, whereby the eyesight
will start to deteriorate. In the early stage, it can cause irritation and astigmatism, and hence
cause discomfort to the patients [3]. Therefore, it is crucial to screen the condition at the
early stage so that preventative actions can be advised properly to reduce and, eventually,
to stop the growth of the abnormal tissues [4].

Figure 1. Medial canthus and lateral canthus of the eye.

This review paper is organized into six sections that start with a basic introduction
to the pterygium condition. Then, the following Section 2 discusses the type and severity
level of the pterygium condition, followed by risk factors for pterygium in Section 3.
After considering the possible reasons for developing pterygium, Section 4 explains the
management and treatment procedures of this condition, which are mainly divided into
early and late stages. Section 5 summarizes the main state-of-the-art methods in automated
pterygium screening systems for both classification and segmentation tasks, which are
further divided into several subsections that include the dataset used to fit the model,
conventional machine learning methodology, and deep learning techniques applied in the
screening system. The final Section 6 concludes the paper, followed by a few suggestions on
future research work to further improve the performance of a computer-assisted pterygium
screening system. The general information flow of this paper is shown in Figure 2.

Figure 2. General information flow of this review paper.
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2. Pterygium Type and Severity Levels

There are two types of pterygium, atrophic and progressive, which are differentiated
mainly by the growth patterns of the abnormal tissues [5]. In the progressive type of
pterygium, the fleshy tissues will continually grow towards the corneal region with more
vascularity. On the other hand, the atrophic pterygium is a lighter version between these
two types, whereby the tissues will stop growing after the initial growth stage. Medical
practitioners have grouped the severity levels of pterygium into four classes, which are
trace, mild, moderate, and severe cases [6]. In the trace stage, the pterygium tissues rarely
reach the corneal region and they appear translucent, with very few dilated blood vessels.
During the mild stage, the density of the dilated blood vessels increases significantly, which
makes the pterygium tissues resemble a pinkish kite pattern. Then, in the moderate cases,
the dilated blood vessels become denser, and hence, the kite pattern tissues appear more
reddish rather than pinkish in color. In the last stage or the severe case, the red tissues can
cover the majority of the white areas of the eyes, and dense networks of blood vessels can
be observed clearly. Figure 3 shows some samples of the severity levels of pterygium.

Figure 3. Samples of pterygium-infected tissues according to the severity level.

3. Pterygium Risk Factors

According to the meta-analysis of 20 studies by Liu et al. [3], the global prevalence
of pterygium is around 10%, with a slightly higher occurrence among males compared to
females. A few risk factors are associated with pterygium and the most popular among
them is frequent exposure to ultraviolet radiation [7]. A few papers have discussed the
possible risk factors among pterygium patients in China, including the Inner Mongolian
region, Shandong province, and Dali city. According to Zhong et al. [8], the risk factors of
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pterygium among the residents of Yunnan province are older age, lack of formal education,
and presence of outdoor work. The work in [9] then pointed out two additional risk
factors, which are the usage of hats and sunglasses. However, they did not find any
significant correlation between the prevalence of pterygium between women and men.
Another study that focused on the Inner Mongolian region of China found that the main
risk factors of pterygium are frequent outdoor activities and older age [10]. Contrary to
previous findings, they did not find any associated risk factor between educational level
and pterygium. In addition to these studies from China, Malekifar et al. [11] analyzed the
risk factors for pterygium in Iran. They found two unique risk factors, which are a family
history of pterygium and severe blepharitis. Another study from the Asian region was
performed in [12] and they found that a significant risk factor could be observed among
males compared to females. This finding is in contrast to the studies in [8,9], whereby the
authors concluded that systemic factors will not induce the pterygium condition. Besides
the above, another study [13] from Gambella, Ethiopia agreed with the previously observed
major risk factors, such as exposure to sunlight and outdoor activities. However, they also
found that males have greater risk of being affected by pterygium compared to females,
which supports the findings of Cahjucom-Uy et al. [12]. The findings from a study in the
American region [14] also supported the general conclusion of previous works, relating the
pterygium risk to the educational factor and exposure to sunlight. Table 1 summarizes the
main risk factors of pterygium and the experimental details.

Table 1. Summary of the risk factors of the pterygium condition.

Study Publication Year Sample Size Study Location Risk Factors

West and Munoz [14] 2009 4774 Arizona, USA Low income, low educational status, and exposure to sunlight
Cajucom-Uy et al. [12] 2010 3282 Singapore Increasing age, male, outdoor occupation, and systemic factors
Zhong et al. [8] 2012 2133 Dali, China Increasing age, lack of formal education, and outdoor occupation
Jiao et al. [9] 2014 17,816 Shangdong Province, China Older age, outdoor time, educational level, and usage of sunglasses
Malefikar et al. [11] 2017 420 Ilam Province, Iran Family history of pterygium, cigarette smoking, history of baking, age,

and severe blepharitis
Wang et al. [10] 2020 2651 Inner Mongolia, China Age, outdoor occupation, and time spent in rural areas
Fekadu et al. [13] 2020 400 Gambella, Ethiopia Male, outdoor occupation, and exposure to sunlight

4. Pterygium Management and Treatment

Generally, ophthalmologists have agreed that pterygium at the early stage is a minor
concern, in which a short-term solution is usually advised through topical corticosteroid
eye drops [2]. Therefore, a detailed history of the suspected pterygium patient will be
analyzed first to identify any anomaly or other early indicators. It is important to distin-
guish the pterygium case from the ocular surface squamous neoplasia case, which can be
distinguished through the period of the abnormal tissue growth [15]. At the early stage, pre-
cautions include ultraviolet-filtered sunglasses, lubricant eye drops, and anti-inflammatory
eye drops. Meanwhile, for severe cases, surgery is the most viable option for treatment [16].
Some ophthalmologists will alert the patients if the pterygium tissues grow to more than
3 mm, which is the distance measured from the limbus to the apex of the corneal region,
as shown in Figure 4. According to Aminlari et al. [17], three surgical procedures can be
performed to remove the benign tissues, which include bare sclera excision, the conjunctival
autograft technique, and amniotic membrane grafting. In [18], Janson and Sikder suggested
additional three surgical procedures to treat pterygium, namely primary closure surgery,
the conjunctival flap procedure, and a limbal conjunctival autograft.
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Figure 4. Measurement distance between the limbus and the apex of abnormal tissues in the
corneal region.

5. Automated Pterygium Detection and Localization

Since only the most severe cases of pterygium will require corrective surgery, this
condition needs to be detected at the early stage, especially during the trace and mild
phases. During these early phases, simple medication such as eye drops can prevent the
condition from becoming worse, hence avoiding the need for surgery. As a result, screening
for pterygium is very important and needs to be made available to lower-income workers.
Furthermore, pterygium’s main risk factor is a low educational level, which is common
among workers who work outdoors and are frequently exposed to sunlight for long periods.
Therefore, a simple screening system should be developed to enable everyone to perform
self-screening simply by using a standard mobile phone camera. It is worth noting that
the reviewed methods aim to detect and localize the pterygium cases without considering
any possibility of recurrent cases. This is because the reviewed images and their labels
do not contain enough information to determine whether the detected cases are new or
recurrent ones. More labeling information is needed by ophthalmologists to further detect
cases of repeated conditions. Taking motivation from this argument, many studies have
been carried out on pterygium detection using anterior segment photograph images [19],
which can also be captured using a standard mobile phone camera. However, the user
then still needs to verify the presence of pterygium and its severity level with licensed
medical practitioners. Hence, many researchers have embarked on automated pterygium
detection and localization research. The goal of the detection module is to determine the
presence of pterygium tissues in an image without knowing the severity level of the disease.
The user will be notified of their likelihood of having the pterygium condition or not. As
an extension to the detection module, the localization module is designed to provide the
severity level information, whereby the size of the benign tissues is directly correlated with
the pterygium stage. Two popular approaches to identify the size of the tissues are object
detection and semantic segmentation methods. The following subsections will discuss the
existing dataset available to train the computer-assisted system, followed by a discussion
of the state-of-the-art automated detection and localization of pterygium.
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5.1. Dataset

Any computer-assisted system that utilizes a supervised learning approach will require
a reasonable number of data and their corresponding labels so that the model is able to
learn the disease characteristics. In general, the conventional machine learning approach
requires a lesser number of training data compared to the deep learning approach [20]. In
addition, the data augmentation method can also be implemented to increase the variety of
the training data, either through simple image transformation or synthetically generated
images [21]. Moreover, the most basic technique to overcome the limitations in the training
dataset is by using transfer learning, either by freezing the convolutional layers or retraining
the whole network again. There are two main components that will be the main concern for
an automated pterygium screening system, which are to detect the presence of pterygium
in an image and to segment the pterygium tissues so that the disease severity level can
be determined. Currently, there are two popular datasets that have been collected for
classification purposes, which are Zaki et al.’s [19] and Fang et al.’s [22] datasets. Moreover,
a dedicated dataset has been developed by Abdani et al. [7] for segmentation purposes that
contains a combination of all severity levels. Cai et al. [23] go a step further by providing
images for both classification and segmentation purposes.

In Zaki et al. [19], the dataset was extracted from four different sources, which were
UBIRIS, MILES, Australia Pterygium, and Brazil Pterygium. The two former sources
represent normal eye cases, while the latter two sources represent pterygium cases. The
dataset does not provide severity labels, but it consists of all pterygium stages from the
trace to the severe cases. A total of 30 normal samples each were randomly chosen from the
UBIRIS and MILES datasets, and 30 random samplings each were also extracted from the
Australian Pterygium and Brazil Pterygium datasets. Hence, the total number of samples
was 120 anterior segment photograph images with various resolutions. Table 2 shows the
full information of the Zaki et al. dataset. This dataset intends to cover both blue and
brown iris-colored eyes with both low- and high-resolution images. However, the samples
for normal cases were captured in a more standardized condition with stable lighting and
a straight gaze towards the camera. On the other hand, the lighting condition for the
pterygium cases varies significantly from one sample to another, as some of the images
were captured while the pupil was not directed straight at the camera. These variations
between normal and pterygium cases might lead the feature extraction module to learn
the setup condition rather than the overgrowth of tissues in detecting pterygium. The
ground truth for this dataset was annotated independently by two optometrists, whereby
all images were saved in Joint Photographic Experts Group (JPEG) format. Some samples
of the dataset are shown in Figure 5.

Table 2. Summary of the Zaki et al. [19] pterygium dataset.

Sources No. of Samples Resolution Format Iris Colors

Australian Pterygium 30 4064 × 2704 JPEG Blue and Brown
Brazil Pterygium 30 308 × 231 JPEG Blue and Brown
MILES 30 1747 × 1180 JPEG Blue
UBIRIS 30 200 × 150 JPEG Brown
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Figure 5. Sample of images from Zaki et al. [19] dataset; sample no. 1 is from the Australian
Pterygium dataset, sample no. 2 is from the Brazil Pterygium dataset, sample no. 3 is from the MILES
dataset, and sample no. 4 is from the UBIRIS dataset.

Another classification dataset was collected by Fang et al. [22], with a total of 2106 im-
ages, which are further divided into training, validation, and testing subsets according to
the ratio of 7:1:2. The authors have ensured that the sample distribution between normal
and pterygium cases is almost equal; they were randomly pooled from a large source of
15,192 images. The data were originally collected by Singapore Epidemiology of Eye Dis-
eases using two cameras, which were the Topcon model DC-1 and MEC-5-ASL-D7100-N85,
and were also saved in JPEG format. Some of the samples were taken with a slit-lamp con-
figuration, while some of them were captured from a hand-held configuration. The samples
were taken from among three major ethnicities in Singapore, Chinese, Malay, and Indian,
whereby the iris color is predominantly brown. The authors have added another class of
referable pterygium, which is defined as mild and severe cases, in which the encroachment
has intruded more than 2.5 mm into the corneal region. However, the number of samples
is considerably low compared to the early-stage cases, with only 8.4% of the total samples.
They have resized all images to 224 × 224 pixels to match the input requirement of the
deep learning model that they have tested.

Abdani et al. [7] focused only on the segmentation dataset. The images were sourced
from the full Australian Pterygium classification dataset, which was collected by Professor
Lawrence Hirst from the Australian Pterygium Centre. The total number of images in
this dataset is 328 anterior segment photograph images with their corresponding semantic
segmentation ground truth. The label was manually traced by the medical and biomedical
researchers, and it is saved in JPEG format. They have followed the annotation protocol
from the 2017 Automated Cardiac Diagnosis Challenge: Segmentation [24], whereby the bio-
medical researcher will trace the pterygium tissues’ outline first, before the final boundary
is finalized together with the medical researcher. Only two semantic classes are considered,
namely whether the pixel belongs to the pterygium class or not. The original resolution
of 4064 × 2704 is reduced to 450 × 300, whereby the user can down-scale the resolution
further, independently, according to the deep learning model requirement. GIMP2 version
2.10.14 with the pencil tool was used to trace the pterygium tissue boundary. This dataset
also contains cases from various severity levels of pterygium, which include trace, mild,
moderate, and severe cases. Some of the pterygium samples and their corresponding
ground truth labels are shown in Figure 6.



Diagnostics 2022, 12, 639 8 of 18

Figure 6. Samples of pterygium images and their corresponding ground truth semantic images. The
first row of images are the original anterior segment photograph images and the second row of
images are the corresponding ground truth label images.

EyeHealer is a database dedicated to various eye diseases based on anterior segment
photograph imaging [23]. It contains 3813 images of 23 diseases, with unbalanced sample
distribution between the classes. The authors also provide the label for the semantic
segmentation of the lesions for all diseases. Each of the images contains only a unique eye
disease and, hence, one image corresponds to one disease only. The pterygium class has
the second-highest number of samples, with 482 images, which were taken using a slit-
lamp configuration with various types of camera. This dataset does not contain a healthy
normal class and all diseases were initially validated by six ophthalmologists from the
Zhongshan Ophthalmic Centre of Sun Yat-sen University and West China Hospital, before
two senior ophthalmologists verified the labeling output. Any discrepancy is finalized
through discussion between the two seniors. However, only 10 classes of diseases have
a total sample of more than 100 images and, thus, training a deep learning model from
scratch will be a difficult task. It is even more challenging to fit a deep learning semantic
segmentation model for diseases with a low number of samples due to over-fitting issues.
Moreover, no severity level information of the diseases is provided. In our opinion, this
dataset is not a large-scale resource for training an automated eye system as the authors
have claimed, although it provides a dataset for various eye diseases’ detection but with
a low number of samples for most classes. The resolution of the image provided is also
relatively small compared to the other datasets, with just 256 × 256 pixels, and images are
also stored in JPEG format. For all datasets that were collected through slit-lamp anterior
segment photograph mode, each image was captured when the respective subject had
placed his whole head on a dedicated mechanism. Hence, the physical distance between
the subjects and the camera remains relatively constant. As for the field of view, it varies
according to the different types of camera used to capture the images. However, the lens
has been set up optimally so that it will zoom directly into the eye region only, either the
left or right eye. EyeHealer has used BX-900 slit lamps with a stereo angle of 13◦ with a
maximum ocular magnification of 12.5. Pupil distance between the eyes is set at a minimum
of 52 mm, which results in a field of view of 14.6 mm × 21.9 mm when the magnification
level is set to unity. The spectral range of the captured image is 400 nm to 750 nm, which
can be maximally rotated by ±90◦. The focal length is 170 mm, whereby the captured
slit image width and length have a continuous range of [0 mm, 8 mm] and [1 mm, 8mm],
respectively. The camera can be operated by a single operator with a 3-dimension adjuster
of length, height, and side. Besides this, for the deep learning-based test, the physical
distance variation will not pose a difficult challenge to the classification and segmentation
networks as some of the models are embedded with multi-scale capability and, hence, a
wider range of physical measurement can be tolerated.
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5.2. Conventional Approach to Automated Pterygium System

In the conventional approach of computer-assisted pterygium systems, basic computer
vision algorithms and conventional machine learning techniques are used to deduce the
presence of pterygium inside an image. The researchers need to handcraft the feature
extraction method or select the best set of features that were used to represent the pterygium
cases in order to distinguish them from normal healthy eyes. In [25], the authors have
performed a reliability test on the basic pterygium grading system based on the redness
value of the fibrovascular tissues. They have classified the redness levels according to
three categories, which are atrophic, intermediate, and fleshy, based on Tan et al.’s [26]
assessment protocol. They have collected eye images from 93 samples from both male and
female participants with confirmed pterygium conditions. However, they also ensured that
the patients, who are aged between 20 to 70 years old, did not have other eye conditions
that might have affected the reliability of the test, such as ocular trauma or ocular surgery.
The results, which were measured using intraclass correlation coefficients, showed that
the reliability of the proposed method is on par with medical expert grading, with a
small coefficient difference between them. Mesquita and Figueiredo [27] argued that the
pterygium surgical procedure should only be performed for severe cases, as recurrence
cases are normal if the benign tissues are removed at the early stage. Hence, they have
designed a computer-assisted system to measure the encroachment of the benign tissues
into the corneal region. A small-sized dataset of only 58 images was analyzed, whereby they
extracted the iris region first by using circular Hugh transform, before the encroachment
region was extracted from the segmented circular region. Therefore, their method is
only applicable for the later stage of pterygium, since the early stages of pterygium do
not display visible tissue encroachment onto the corneal region. A combination of Otsu
thresholding and dilation operator was performed to extract the possible regions of interest,
which resulted in a few fragmented detections. These regions were linked together using
the connected components procedure to produce a single large lesion segmented map.
Canny edge detector and Gaussian filter were also applied during the iris segmentation
phase to produce a better circular map of the iris region.

In [28], Gao et al. have developed a pterygium detection system that is able to
distinguish the condition compared to cataract cases. They have also focused on the later
stage of pterygium, whereby only benign tissues inside the iris region were analyzed.
Although the tested dataset comes in RGB format, they have utilized only the red channel
and the transformed Fisher channel to extract the abnormal tissues based on the redness
level assumption. Once the pupil region has been detected, a simple thresholding method
is applied to extract the possible pterygium region. They have tested their proposed
method on a large-sized dataset, but with a relatively low pterygium class of only 67 cases.
Minami et al. [29] then analyzed the spherical property of the corneal region using Fourier
series harmonic analysis. They identified six distinct uniform diameter values that ranged
from 1 mm to 6 mm to represent pterygium advancement. Although their analyzer is able
to measure a diameter up to 8 mm, they found that the higher values tend to be affected
by eyelid disturbance, especially for older people, who tend to have droopy eyelids. In
fact, their dataset consists of many senior patients, with an average age of 67 years old,
taken from among 456 primary pterygium patients. They have performed statistical linear
regression analysis to verify their findings, whereby they have proven the correlation
between corneal irregularity and pterygium tissue advancement.

A simple artificial neural network algorithm (ANN) was implemented in [30] to
compare the grading performance of pterygium conditions between medical practitioners
and a machine learning system. Two medical practitioners were involved in this study,
whereby one practitioner was a junior ophthalmologist with less than 3 years of experience
and the other one was a senior ophthalmologist with more than 5 years of experience.
The main goal of their study was to classify an image into three classes of pterygium
severity level, which were annotated based on the redness level of the overgrowth tissues.
The ANN was trained for 300 epochs with a low number of data. A total of 68 slit-lamp
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images were divided equally into training and test subsets, which resulted in low training
data. The network architecture was also relatively small, with a single hidden layer of
10 nodes. Five handcrafted features were extracted from four different color spaces of
RGB, YUV, HSI, and CIE XYZ. Although the authors claimed that the machine learning
graders performed on par with the medical practitioners, the results are questionable as
the validation data were too low to come to a viable conclusion. A more comprehensive
set of features was studied in [19], which was in line with the previous study’s approach,
whereby the encroachment of the pterygium tissues into the corneal region was the primary
focus. They proposed a four-step approach through image enhancement, corneal region
segmentation, feature selection, and classification modules. In the image enhancement
module, the RGB color space is converted to HSV space through the HSV-Sigmoid image
enhancement method, which is followed by edge operator manipulation to extract the
corneal region. Four sets of handcrafted features were used as the input to the classification
module, which included circularity, Haralick’s circularity, eccentricity, and solidity. Two
types of classifier were tested, which were support vector machine (SVM) and ANN. Three
variants of ANN that differed according to the number of hidden nodes were tested, while
four variants of SVM were also tested that differed according to the kernel type. A total
of 120 images from four different sources were used to validate the performance, with 60
images each for the pterygium and normal classes. The best performance was achieved by
the SVM classifier, with a unity standard deviation of radial basis function (RBF) kernel.
However, the ANN classifier produced better average specificity performance compared to
the SVM-RBF classifier.

Jais et al. [31] focused more effort on the design of the classification module by
testing four different types of classifier. There were five input attributes or features used
to represent the pterygium condition, which were redness, thickness, length, total area,
and dry weight, which were taken from 93 samples. There were no pre-processing or
image enhancement procedures applied to the original input data. The four classifiers that
were tested were decision tree, SVM, logistic regression, and Naive Bayes, whereby the
best performance was obtained by the SVM classifier. They also analyzed the ensemble
architecture of the proposed classifiers with boosting and bagging procedures to better
train the networks. However, still the problem of low training data persists and might
limit the ability of the classifier in learning the optimal hyperplane. This assumption is
also supported by their results as the bagging, boosting, and ensemble procedures did
not increase the classification performance of the pterygium cases. Rather than focusing
on the classification task, the work in [32] used simple image processing algorithms to
extract the size of the pterygium tissues in the corneal region. The authors manually
annotated the circular region that surrounds the limbus, and they then smoothly marked
the pterygium tissue areas. This assumption results in a less accurate region of interest
division as the encroached tissues are not usually divided smoothly and, hence, it has
become the motivation of several researchers to perform semantic segmentation to extract
the exact lesions of interest [7,33]. Table 3 shows a summary of the conventional machine
learning approach to pterygium detection and localization.
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Table 3. Summary of automated pterygium screening systems using conventional approach.

Study Task Sample Size Strength Weakness

Hilmi et al. [25] Severity
grading

93 ptery-
gium images

Three-class problem;
atrophic, intermedi-
ate, and fleshy

Relies only on red-
ness information

Mesquita and
Figueiredo [27]

Tissue
growth
progress

58 ptery-
gium images

Good segmentation
even if the iris and
pterygium tissues
look similar in color

Circular Hugh trans-
form only works if the
gaze is perpendicular
to the camera

Gao et al. [28] Classification:
ptery-
gium
and non-
pterygium

30 ptery-
gium images
and 854 non-
pterygium
images

Utilizes unique Fisher
channel

Too many determinis-
tic thresholds, which
will not work when
tested on different iris
colors

Minami et al. [29] Tissue
growth
progress

456 ptery-
gium images

Fourier frequency
analysis to represent
the growth ring of
pterygium tissues

Only six quantized
levels to represent the
tissue growth

Azemin et al. [30] Severity
grading

68 ptery-
gium images

Utilizes compact
ANN with five
features as input

Relies heavily only
color information
without looking at
pterygium tissue
textures

Zaki et al. [19] Classification:
Ptery-
gium and
normal

60 ptery-
gium images
and 60
healthy eye
images

Gradient-based lesion
extraction, which is
robust to various iris
colors

Their dataset is
skewed, whereby
the healthy data
were captured in a
more standardized
condition

Jais et al. [31] Severity
grading

93 ptery-
gium images

Analyzes multi-
ple conventional
machine learning
classifiers

No cross-validation,
test dataset comprises
only 9 images

Radzi et al. [32] Lesion
segmenta-
tion

120 ptery-
gium images

Introduces pixel-
based ratio between
lesions and non-
lesions to determine
severity level

Smooth lesion bound-
ary, which is not accu-
rate for most cases

The primary weakness of the conventional methods lies in the need for handcrafted
features, whereby the optimal set will be manually formulated given the different circum-
stances. In [27,28], the images were captured in a low-resolution format, whereby not
many patterns could be discerned from a human observer’s perspective. Although the
work in [19] used a mixture of low and high resolution, still the quality division between
pterygium and non-pterygium is too obvious. The healthy eyes were captured at a rela-
tively higher resolution compared to the pterygium cases. Similarly, the works in [31,32]
only used subjects from Asian countries, which limits the variety in iris color. Hence,
these systems will not be robust enough to cater to mixed-race situations. Finally, all these
conventional experiments were validated by a relatively low number of samples per class,
except for the Minami et al. [29] and Gao et al. [28] works. Furthermore, many of these
experiments were trained and tested with less than 150 samples, which is far from the
current deep learning standard, which uses more than 1000 samples per class.

5.3. Deep Learning Approach to Automated Pterygium System

In the deep learning approach, the features are optimally extracted through the train-
ing process, rather than being selected by the model’s designer. The feature extraction
module is usually coupled with the classification/segmentation module, which is then
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optimally trained in an end-to-end procedure to obtain the best set of features to represent
the problem of interest. Hence, in the case of pterygium screening and diagnosis, the
input image will be passed to the networks, whereby three problems of interest will be
analyzed, which are pterygium classification, pterygium tissue localization, and pterygium
tissue semantic segmentation. During the early adoption of deep learning techniques for
pterygium screening, the network was designed to be compact in nature [34,35]. In [34],
Lopez and Aquilera designed compact deep learning networks with only a single layer of
convolutional neural networks (CNN) and two dense feed-forward layers. The network
was down-pooled and flattened before being passed to the dense classifier. They used
Zaki et al.’s dataset [19] with additional explicit data augmentation through Gaussian
blurring and rotation transformation to validate their proposed networks. The augmented
data were added to balance the training data distribution between normal and pterygium
cases. They analyzed two types of input data, either three-channel RGB or a single channel
of grey-scale images, both with an input resolution of 150 × 150 pixels. No pre-trained
weights were utilized and the best classification performance was obtained by the RGB
version of the networks. A single dropout unit [36] was added immediately after the
convolutional layers to reduce the likelihood of over-fitting. Another compact architecture
was proposed in [35] with two layers of convolutional networks and two layers of dense
feed-forward connections. The design of the CNN layers followed the first two layers of
the VGG-M architecture [37] so that the pre-trained weights could be used to initialize
the model. They tested its performance on the same dataset as the previous paper, but
no data augmentation was performed besides only the transfer learning of the weights.
They analyzed several configurations of network regularization, which included local
response normalization, batch normalization, and dropout. Their best accuracy of 98.33%
was obtained by using embedded local response normalization and dropout layers, which
is a significant improvement compared to Lopez and Aquilera’s [34] accuracy of 93.5%.

Instead of focusing on the compact version of the network, Zheng et al. [38] focused on
the lightweight analysis of the network, whereby the model size is the main concern. They
focused on a three-class problem of normal, observed pterygium, and surgery-required
pterygium. The last class involved cases in which the benign tissues had encroached onto
the pupil region. They collected their own dataset, with a total of 436 images, with all
patients having brown-colored irises. Both versions of the lightweight MobileNet [39] were
tested, which was benchmarked with other popular deep models, including AlexNet [40],
VGG-16 [41], and ResNet-18 [42]. The MobileNet reduces the memory usage by implement-
ing a factorized version of convolution, which is reduced to a combination of depth-wise
and point-wise convolution operations. The authors found that MobileNet with data
augmentation produced the best overall results, and the lowest classification performance
was returned for the second class, which was the observed pterygium class. Their dataset
was relatively small for training the MobileNet architecture optimally and they also opted
to use the small version of ResNet. This choice is understandable because of the limited
training data, whereby a deeper model will usually experience an under-fitting problem.
In fact, the usage of single-race patients resulted in a homogeneous iris color and reduced
the robustness capability of the network. Another work that analyzed the performance of
the VGG-16 architecture for pterygium classification was proposed by Fang et al. [22]. The
uniqueness of their method is that the validation process was tested on both slit-lamp and
hand-held eye imaging. All the previous methods used the slit-lamp mode of capturing
the anterior segment images, which produces fewer variations compared to hand-held
imaging. Although the total number of data was high, the tested pterygium cases were
relatively few, with only 217 images. Moreover, they further divided the pterygium cases
into observed pterygium and surgery-required subsets. The accuracy performance for
slit-lamp and hand-held imaging was high, with 99.1% and 99.7%, respectively. However, it
was observed that the specificity performance for the hand-held cases was lower compared
to the slit-lamp mode. The lower performance can be attributed to more angle variations in
capturing the eye images, as well as variations in background lighting.



Diagnostics 2022, 12, 639 13 of 18

A deeper network can be observed in the work by Xu et al. [43], whereby EfficientNet
is used to classify anterior eye images to identify the cases of observed and surgery-required
pterygium. EfficientNet-B6 [44], which is the second-deepest network from the EfficientNet
family of architectures, was trained by using a total of 750 images, and an additional
470 images were used during the validation phase. The images were obtained from [22],
which was collected from the Affiliated Eye Hospital of Nanjing Medical University. The
same result pattern could be observed between their work and the work by Fang et al.,
whereby the accuracy is the highest for the normal cases and the accuracy is the lowest
for the observed pterygium cases. For the observed pterygium cases, the benign tissues
are not clearly visible and, hence, some confusion might arise between this class and the
other two classes. Pterygium-Net [4] is a network of three convolutional layers with three
dense feed-forward layers that are specifically designed for pterygium classification and
localization. The authors designed the pterygium tissue localization system by using an
object detection-based methodology through bounding box representation. Candidate
boxes of various sizes and locations were sampled randomly according to the Gaussian
distribution throughout the eye image, and each box will be assigned a likelihood of
containing pterygium tissue. The Hanning window was also applied to give more weight
to the middle part of the candidate boxes, whereby the weights will gradually decrease as it
moves further away from the center of the box. They also explored network variations from
one to five convolutional layers, whereby three CNN layers produced the best detection for
both classification ad localization tasks. The localization output was finalized according
to the average value of the top-n candidate boxes; as such, the middle points, width, and
height of the output box are the results of mean values derived from the top-n candidate
boxes. Their method’s weakness can be observed if the pterygium tissues are slender in
shape, whereby the box representation will incorrectly capture the region of the lesion
compared to the semantic segmentation approach.

Taking motivation from the previous method’s weakness, the work in [33] approached
the problem of pterygium tissue localization through a semantic segmentation method-
ology. Hence, a more accurate representation of the tissues can be better obtained as the
output will be pixel-based labeling. In [33], the authors have proposed dense feed-forward
connection addition to the original DeepLab V1 [45] and Deeplab V2 [46] architectures by
concatenating a skip connection within each convolutional block. They have annotated a to-
tal of 328 images from the original Australian Pterygium dataset. The dense connection has
managed to increase the intersection over union (IoU) performance for both models. Dense
DeepLab V1 produced an IoU of 0.8250, compared to the original DeepLab V1, with an IoU
of 0.8004. Meanwhile, the dense feed-forward addition to the DeepLab V2 only managed
to increase the IoU slightly from 0.8381 to 0.8327. Hence, the contribution of the dense
feed-forward connection for DeepLab V1 is more significant compared to DeepLab V2. An-
other improvement in the semantic segmentation of pterygium tissues was proposed in [7]
by introducing group and shuffle units to the segmentation networks. The performance
improvement was significant, whereby the best variant returned an IoU of 0.8640. The
base network was derived from FC-DenseNet [47] with symmetrical encoder and decoder
modules. The group and shuffle unit was added to replace the first convolutional layer of
each block for both the encoder and decoder sides. This unit addition reduces the likelihood
of having a single set of dominant features, whereby the networks are forced to learn from
shuffled input streams. Moreover, the authors added a spatial pyramid pooling [48] unit
at the bottleneck layer to increase the multi-scale capability of the network. This work
still relies on gradual down-pooling steps, whereby the feature map size is reduced as
more convolutional layers are added and some information will be lost during the down-
sampling, which is in contrast to the recent methodology of the high-resolution semantic
segmentation approach [49]. Another paper by Cai et al. [23] also explored several existing
deep learning semantic segmentation models for locating pterygium lesions. They analyzed
four models, which were DRUnet [50], SegNet [51], PSPNet [48], and DeepLab V3 [52]. The
first two models represent the symmetrical encoder–decoder network architecture, while
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the last two models represent the asymmetrical encoder–decoder network architecture.
Their results, which were collected on 482 slit-lamp images, indicate that DeepLab V3
produced the best performance for pterygium lesion detection.

In summary, the work by Lopez and Aquilera [34] has a clear weakness in terms of
the quality of the extracted features due to the utilization of a single CNN layer only. On
the flip side, it has a very low computational requirement due to the compact architecture
with a low number of parameters. Meanwhile, the work in [4] not only introduced the
bounding box localization approach to the infected areas, but it also used a transfer learning
approach for initializing the CNN weights and biases. However, the utilization of the
local response normalization layer reduced the model’s computational speed due to the
low parallelization capability of the architecture. The slow computational speed issue
is overcome by Zheng et al. [38] through a lightweight model that has implemented a
factorized convolution scheme, which happens to reduce also the memory usage. However,
the proposed MobileNet architecture was only trained by using a low number of samples
without any pre-trained weights. A similar issue was also encountered in the works
in [22,43], whereby the authors used a low number of samples and, even worse, the
dataset distribution was imbalanced between the classes. Furthermore, the tested data
were relatively homogeneous, being derived from a single ethnicity only. In [33], the first
semantic segmentation approach to automatically extract the boundaries of the infected
areas has been introduced by promoting the DeepLab models. They have embedded a set
of dense connections to carry over more information between the deep layers. However,
the main weakness of this approach is that it requires a large amount of memory as the
number of channels will grow significantly due to the usage of the concatenate operator,
which combines the incoming layers and the existing output layers. A fine-tuned model
was introduced in [7] by introducing the group and shuffle layers, whereby the model was
found to be more capable of learning from diverse input streams for better segmentation
accuracy. However, the model capability will be severely affected if the number of groups
is not properly optimized since the number of filters per group might become too small.
On the other hand, the main advantage of Cai et al.’s [23] work can be traced to the
usage of a large number of data for several eye disease classes, which will enable a more
comprehensive screening system. However, its main weakness can be observed through the
standard utilization of existing deep models, without any model optimization. In addition
to this, no transfer learning scheme has been applied, which may pose an issue in training
a deep segmentation network of various eye diseases. Table 4 shows a summary of the
deep learning approach to pterygium detection and localization.

Table 4. Summary of automated pterygium screening systems using deep learning approach.

Study Task Sample Size Strength Weakness

Lopez and Aquil-
era [34]

Classifi-
cation

325 pterygium
images and 2692
healthy eye images

Perform data
augmentation
to balance
training
dataset

A single convolu-
tional layer only

Abdani et al. [35] Classifi-
cation

60 pterygium im-
ages and 60 healthy
eye images

Analyze
various reg-
ularization
methods
and imple-
ment transfer
learning

Trained using low to-
tal number of data
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Table 4. Cont.

Study Task Sample Size Strength Weakness

Zheng et al. [38] Classifi-
cation

142 normal im-
ages, 144 observed
pterygium im-
ages, and 150
surgery-required
images

Lightweight
deep model
using Mo-
bileNet archi-
tectures

Training data are rel-
atively low for train-
ing the MobileNet ef-
fectively

Fang et al. [22] Classifi-
cation

Test data: 217 ptery-
gium images and
6094 healthy eye
images

Tested on both
slit-lamp and
hand-held im-
ages

Dataset severely im-
balanced with small
number of pterygium
cases

Xu et al. [43] Classifi-
cation

189 pterygium im-
ages, 171 observed
pterygium, and 110
surgery-required
images

Implement
state-of-
the-art Ef-
ficientNet
architecture

Lowest detection for
observed pterygium
class, even though
tested on brown iris
color dataset only

Pterygium-Net [4] Locali-
zation

60 pterygium im-
ages

Locate the re-
gion of ptery-
gium lesions

Bounding box rep-
resentation is not
suitable for slender-
shaped tissues

Abdani et al. [33] Segmen-
tation

328 pterygium im-
ages

Embed dense
feed-forward
layer to
DeepLab
architecture

Dense connection
for DeepLab V2
only improves the
performance slightly

Abdani et al. [7] Segmen-
tation

328 pterygium im-
ages

Embed group
and shuffle
unit with
multi-scale
parallel net-
works

Available dataset is
relatively small for
complex deep learn-
ing architecture

EyeHealer [23] Classifi-
cation
and
Segmen-
tation

482 pterygium im-
ages

Compare with
various eye
disease

Low number of train-
ing data except for
cataract and ptery-
gium cases

6. Conclusions and Future Works

This paper has summarized the overall state-of-the-art techniques in automated ptery-
gium screening systems, which usually consist of two main tasks: either classification or
segmentation. Pterygium at the early stage is not a harmful condition, but at the later stage,
it will encroach towards the corneal region and eventually the pupil region, which will
affect the patient’s eyesight. Hence, it is important to diagnose the pterygium condition
at the early stage, so that mitigative procedures can be administered to prevent it from
becoming worse. However, most of the pterygium patients are not aware of the condition,
which may be related to one of its risk factors, which is a low educational level. Therefore,
an automated screening system using a hand-held camera will enable patients to perform
self-screening frequently, without any substantial cost. In addition to this, the accuracy of
pterygium screening has improved significantly with the implementation of deep learning
methods, compared to the conventional machine learning methods. This improvement can
be observed even for the lesion segmentation task, whereby the lesions of interest can be
directly extracted to determine the severity level. Furthermore, the number of available
datasets for training the deep learning methods has also increased during the past few years.
In conclusion, the research in automated pterygium screening systems has significantly
advanced, with good screening performance that has been validated on various datasets.
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Even with the current state-of-the-art systems, the performance of an automated pterygium
screening system can be further developed by addressing the following research directions:

1. Development of a comprehensive lesion dataset that can be used to determine the
severity level. The current research focuses on identifying the severity level, without
performing exact measurement of the lesions’ encroachment onto the corneal region.
Even with the combination of the dataset from both Abdani et al. [33] and Cai
et al. [23], the total annotated lesion data amounts to only 810 images, which is far
from the ideal number of training data.

2. Data augmentation through synthetically generated images using generative adver-
sarial network (GAN). At present, none of the research has implemented GAN to
augment the training data. Based on past research, only the explicit transformation of
the original data through rotation and blurring functions has been implemented to
increase the number of training data. The synthetic data can be generated according
to the specific label by using conditional GAN to balance out the number of training
data between various classes [53].

3. Integrate an attention mechanism into the classification and segmentation networks,
whereby the lesions are normally observed at certain locations. The likelihood of
pterygium tissue to originate from the medial canthus is also higher compared to the
lateral canthus, which indicates that certain regions should be emphasized more com-
pared to others. The attention mechanism will allocate more weight towards specific
locations on the image and, hence, increase the likelihood of accurate classification
and segmentation.
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