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Oncogenes and RNA splicing of human tumor viruses

Masahiko Ajiro and Zhi-Ming Zheng

Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human

papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi’s

sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the

exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the

viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA

transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing

factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how

alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human

carcinogenesis.
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INTRODUCTION

Infection with human oncogenic viruses is the cause of ,10.8% of

human cancers worldwide.1 The first oncogenic virus to be identified,

avian Rous sarcoma virus, was discovered by Peyton Rous in 1911.2

Decades later, a series of other oncogenic viruses were also discovered,

including cottontail rabbit papillomavirus,3 mouse mammary tumor

virus,4 adenovirus,5,6 and simian virus 40 (SV40).7 The theory of virus-

mediated oncogenesis was finally experimentally demonstrated in 1976

by Harold Varmus and Michael Bishop through the identification of

v-src as the Rous sarcoma virus viral oncogene.8 Characterization of

viral oncogenes also brought numerous landmarks in understanding

of the oncogenic process, such as the discoveries of p53 as an SV40 T-

antigen-associated protein9,10 and E2F as a mediator of adenovirus

E1A function.11

Although the oncogenic viruses found in the early studies exhibited

oncogenic activity in animal cells, they failed to transform human

cells. The theory of viral oncogenesis in humans remained controver-

sial until 1965, when Epstein–Barr virus (EBV) was discovered in

Burkitt lymphoma cells (Table 1).12 Subsequent demonstrations,

including isolation of human T-cell lymphoma virus-1 (HTLV-1)

from adult T-cell lymphoma (ATL)13–15 and the association of high-

risk human papillomaviruses (HPVs) with cervical cancers,16–19 paved

the way for the concept of human tumor viruses. Discovery of the

association of Kaposi’s sarcoma-associated herpes virus (KSHV) with

Kaposi’s sarcoma20 and lymphoma,21 and of Merkel cell polyomavirus

(MCV) with Merkel cell carcinoma (MCC)22 underscores the possibi-

lity that even more tumor viruses will be discovered by modern tech-

nology. These tumor-inducing human viruses encode viral oncogenes

or genes with oncogenic activities and utilize cellular machinery for

their expression and the transformation of host cells. One of the indis-

pensable steps for viral oncogene expression is RNA splicing, which is

essential for almost all tumor viruses to diversify their transcriptomes

during virus infection and oncogenesis. This review will highlight the

recent advances in understanding of human viral oncogenes and the

importance of RNA splicing in their expression.

HUMAN PAPILLOMAVIRUS

HPV and oncogenic activity

HPVs are a group of non-enveloped double-stranded DNA viruses

that preferentially infect the cells in the basal layer of skin and mucosal

tissues, primarily through microtraumas or close contact. More than

180 HPV genotypes have been reported (http://pave.niaid.nih.gov).

HPVs associated with cancers are referred to as high-risk HPVs, and

those associated with benign anogenital or skin warts are low-risk

HPVs.23,24 To date, more than 95% of cervical cancers, 50%–90% of

other anogenital cancers and 20%–30% of oropharyngeal cancers have

been associated with persistent infection and genomic integration of

high-risk HPVs.24–26 Among the common high-risk HPVs (HPV16,

18, 31, 33, 45 and 58), HPV16 is the most prevalent genotype and is

responsible for ,60% of cervical cancer cases worldwide.18,26 The

HPV16 viral genome encodes eight open reading frames (ORFs). Six

(E1, E2, E4, E5, E6 and E7) are encoded from the early region and two

(L1 and L2) are encoded from the late region of the virus genome. E6

and E7 are responsible for the oncogenic activities of high-risk HPVs.

The ,18 kDa HPV16 E6 oncoprotein consists of ,150 amino acid

(aa) residues with four CxxC zinc-binding motifs (Figure 1A), which

form two hypothetical zinc fingers. The C-terminus of HPV16 E6 has a

PSD-95/disks large/zonula occludins (PDZ)-binding domain and

interacts with several PDZ proteins, such as SAP97/hDlg30,31 and

MAGI-1.32,33 HPV16 E6 is targeted to the nucleus through its three

nuclear localization signals,34 and its oncogenic activity depends

mainly on E6-mediated p53 degradation. E6 from high-risk HPVs,
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but not from low-risk HPVs, interacts with E3 ubiquitin ligase E6-

associated protein (E6AP) and promotes the target recognition of

E6AP, which leads to ubiquitination of p53.35 HPV16 E6 appears to

be more potent than HPV18 E6 for p53 degradation.35 E6AP binds to

E6 through its acidic LxxLL motif and stabilizes the E6 protein.36–38

The N-terminal region of HPV16 E6 is responsible for E6 homodi-

merization, which is necessary for the p53-targeting activity of HPV16

E6.39 The F47 residue within the N-terminal hydrophobic interface of

HPV16 E6 is essential, and mutation of this residue results in loss of

the p53 degradation activity of E6.39–41 E6 also participates in multiple

oncogenic events through protein–protein interactions. E6 interacts

with Cylindromatosis (CYLD) deubiquitinase to inactivate the tumor

suppressor CYLD and to activate the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) pathway in hypoxic condi-

tions.42 E6 interacts with p300/cAMP response element binding

protein (CREB)43,44 and interferon regulatory factor 3 (IRF-3)45 to

regulate gene expression and with c-Myc to induce upregulation of

human telomerase reverse transcriptase to promote cell immortaliza-

tion.46–48 HPV16 E6 in the cytoplasm is also important for the onco-

genic activity through its regulation of signal transduction by

interactions with cytoplasmic E6BP (Erc55),49 E6TP1,50,51 tumor-

necrosis factor (TNF) receptor 152 and protein tyrosine phosphatase

H1.53 In addition to its oncogenic activities, HPV16 E6 also protects

HPV16-infected keratinocytes from the innate immune system by

suppressing pro-IL-1b expression.54

The E7 oncoprotein consists of ,100 aa. In HPV16 and 45, two

CxxC zinc-binding motifs (Figure 1A) and a hydrophobic surface are

essential for E7 homodimerization and protein stability.55 E7 is largely

distributed in the nucleus, with a small fraction shuttling to the cyto-

plasm through two nuclear localization signals and a single nuclear

export signal at the C-terminus.56 The N-terminus of E7 contains

sequence similarity to a portion of the conserved region 1(CR1) region

and the entire CR2 region of adenovirus E1A and the related sequences

in SV40 T antigen. Oncogenic E7 binds pRB and the related pocket

proteins p107 and p130 with high affinity via an LxCxE motif in CR2

(Figure 1A). Although low-risk or non-oncogenic E7 only weakly

binds pRB, oncogenic E7 induces pRB degradation by interacting with

the cullin 2 ubiquitin ligase complex.57 E7 induces aberrant cell cycle

progression through upregulation of p2158,59 and p16.60 E7 also

induces chromosomal instability and aneuploidy through asso-

ciation with c-tubulin; this inhibits it from being recruited to the

centrosome61 and complements the requirement for cyclin-dependent

kinase 6 (CDK6), ERBB3, FYN, adaptor-associated protein kinase 1

and testis-specific serine kinase 2 for cell survival in colorectal cancer

cells.62 Although E7 from both high-risk and low-risk HPVs interacts

with p300,63 p300/CBP protein-associated factor (PCAF),64 steroid

receptor co-activator 165 and p600,66 these interactions are not suf-

ficient for E7-mediated transformation.

HPV oncogenes and RNA splicing

The HPV E6 and E7 oncogenes are juxtaposed in two different reading

frames in the HPV genomes. Low-risk HPVs and high-risk HPVs

utilize different strategies to express E6 and E7. In low-risk HPVs,

such as HPV1, 2, 6 and 11, E6 and E7 are transcribed individually

from two independent promoters. In contrast, E6 and E7 in high-risk

HPVs, such as HPV16, 18, 31, 45 and 58, are transcribed as a single

polycistronic E6E7 pre-mRNA from a single early gene promoter

upstream of the E6 coding region (such as P97 in HPV16). Although

early transcripts of both low-risk and high-risk HPVs contain an

intron with alternative splice sites overlapping the E1 or E2 coding

regions, and both utilize an early polyadenylation signal downstream

of the E5 coding region for RNA polyadenylation, a striking feature of

the high-risk HPV E6E7 polycistronic transcript is its unique E6 intron

structure and alternative RNA splicing in the E6 coding region.29 The

E6 transcript from low-risk HPVs does not have an E6 intron and thus

does not undergo RNA splicing in the E6 coding region.67 In general,

the E6 intron (also called intron 1) in high-risk E6E7 polycistronic pre-

mRNAs features one major 59 splice site (59 ss) and one major 39 splice

site (39 ss), and splicing of this intron disrupts the viral E6 ORF,

preventing translation of full-length E6.28,68 Moreover, the E6 intron

may extend into the E7, E2 or E4 coding regions through the use of an

alternative 39 ss further downstream of the E6 ORF. In the case of

HPV16, alternative E6 intron splicing of the polycistronic E6E7 pre-

mRNA leads to the production of seven RNA splicing isoforms, E6*I,

E6*II, E6*III, E6*IV, E6*V, E6*VI and E6‘E7 in addition to a full-

length, unspliced E6 mRNA (Figure 1B).27,29

As diagrammed in Figure 1B, the E6 intron of HPV16 bears three

alternative 59 ss in the E6 ORF and three alternative 39 ss either in the

E6 or E7 ORFs. The splicing of intron 1 from HPV16 E6E7 pre-mRNA

is highly efficient and depends on intron definition. The majority of

the spliced products in cervical cancer and its derived cell lines are

E6*I, derived from splicing of the nucleotide (nt) 226 59 ss to the nt 409

39 ss. Preferential selection of this pair of splice sites over the other

splice sites crossing over the intron minimizes the length of the intron

in RNA splicing for energy saving27,69,70 and is dictated by an aden-

osine at nt 385 within the branch-point sequence AACAAAC in the

virus genome.27 HPV16 E6*I encodes a truncated E6*I protein with 43

aa residues, which is in general expressed at levels below the detection

threshold. Although the function of the HPV16 E6*I protein remains

unknown, HPV18 E6*I appears to play a dominant negative role with

regard to full-length E6 oncoprotein71–73 and to induce proteasomal

degradation of PDZ proteins, including the tumor suppressor hDlg.74

Table 1 Oncogenic human viruses and viral oncogenes.

Tumor virus Associated cancer(s) Viral oncogenes or potential oncogenes*

High-risk HPVs Cervical cancer, anal cancer, penile cancer, vaginal cancer, oropharyngeal cancer E6, E7

MCV Merkel cell carcinoma T antigens

HTLV-1 Adult T-cell lymphoma Tax

EBV Burkitt lymphoma, Hodgkin lymphoma, non-Hodgkin lymphoma nasopharyngeal cancer,

T-cell and NK lymphoma

LMP1

KSHV Kaposi’s sarcoma, primary effusion lymphoma, multicentric Castleman’s disease LANA, vFLIP, vCyclin,

vGPCR, vIRF-1, K1

HBV Hepatocellular carcinoma HBx

HCV Hepatocellular carcinoma Core protein, NS3, NS4B, NS5A

* For KSHV, HBV and HCV, potential viral oncogenes are presented.
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Figure 1 HPV16 E6 and E7 and alternative RNA splicing. (A) Major functional domains and motifs of the HPV16 E6, E6*I, E6 ˆ E7 and E7 proteins. HPV16 E6 ˆ E7 has

the N-terminal half of E6 and the C-terminal half of E7. (B) Alternative RNA splicing products of HPV16 E6E7 pre-mRNA. Alternative RNA splicing (dashed lines) takes

place from three 59 ss at nt 191, 221 and 226 to three alternative 39 ss at nt 409, 526 and 742.27 The majority of RNA splicing occurs from the nt 226 59 ss to the nt 409

39 ss to produce E6*I, which is responsible for E7 translation.28 E6*III derived from the nt (226 59 ss to the nt 3358 39 ss and E6*IV derived from the nt 226 59 ss to the nt

2709 3’ ss29 are not included in this diagram. (C) Illustration of a ribosomal scanning model in HPV16 E6 and E7 translation, which is regulated by RNA splicing. Full-

length E6 is translated from the unspliced E6 mRNA (upper diagram). E7 (nt 562–858) is translated from spliced E6*I mRNA in which a premature stop codon (UAA) is

introduced by RNA splicing to form the E6*I ORF (lower diagram), which enlarges the space between the two ORFs. This enables a scanning ribosome to terminate

translation of E6*I and reinitiate translation of E7. Nucleotide positions are numbered according to the HPV16 reference genome (PaVE, http://pave.niaid.nih.gov).
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Thus, E6*I splicing is not a viral strategy to produce a potent E6*I

protein, but rather a strategy to create an E7 mRNA that can be trans-

lated into E7 oncoprotein.28 Because the E6 ORF is only two nucleo-

tides upstream of the E7 ORF in the HPV16 genome, a scanning

ribosome is unable to efficiently re-initiate E7 translation from an

RNA containing the unspliced, full-length E6 ORF because translation

termination of E6 and re-initiation of E7 translation has to occur

within the two nucleotides. Subsequently, only the E6 oncoprotein

is translatable from the unspliced, intact E6 ORF-containing RNA

(Figure 1C).27,68,75,76 The same is true for translation of HPV18 E6

and E7. However, splicing that produces E6*I creates a premature stop

codon immediately downstream of the splice junction and increases

the distance between the E6*I ORF and the E7 ORF to .130 nts

in both HPV16 and HPV18, a much better condition for scanning

ribosomes to re-initiate E7 translation.77 Therefore, the most abund-

ant spliced RNA, E6*I, actually functions as an E7 mRNA for efficient

E7 translation (Figure 1C).27,28,68

In spite of the importance of E6 intron splicing in the production of

E7, the regulatory mechanism underlying this splicing event remains

largely unexplored. Epidermal growth factor activates extracellular

regulated protein kinases 1/2 (Erk1/2), and this activation appears

to suppress the HPV16 E6 intron splicing, resulting in increased E6,

but decreased E7, translation.76 HPV16 E5 promotes epidermal

growth factor receptor activation78–81 and therefore, may regulate

splicing of the E6 intron through activation of the epidermal growth

factor pathway. Both HPV16 E2 and E6 act as RNA-binding proteins

and suppress splicing of the HPV16 E6 intron,82 suggesting the pres-

ence of a positive feedback loop of E6 production.

MERKEL CELL POLYOMAVIRUS

MCV and oncogenes

Polyomaviruses are distantly related to papillomaviruses and were

formerly categorized with papillomaviruses into the papovavirus

family, a taxonomy which is no longer used. Among the nine species

of human polyomaviruses, MCV is the only one proven to be an

etiologic agent of human cancer. MCV infection in immune-sup-

pressed individuals can result in MCC, an aggressive form of nonme-

lanoma skin cancer. MCV has been identified in ,80% of MCCs.83

Established MCC cell lines contain integrated MCV DNA encoding a

mutant T antigen that prevents replication of the integrated virus from

being autoactivated.84 This form of mutation in T antigen also affects

epitope recognition by cytotoxic T cells.85 Although the other human

polyomaviruses, BK polyomaviruse (BKV) and JC polyomaviruse (JCV) ,

KI polyomaviruse (KIV), WU polyomaviruse (WUV), H polyomaviruse 6

(HPyV6), H polyomaviruse 7 (HPyV7), H polyomaviruse 9 (HPyV9) and

trichodysplasia spinulosa-associated polyomaviruses (TSV), are oncogenic

in rodents and nonhuman primates, their association with human cancer

remains unknown.

Polyomaviruses have been studied for their oncogenic activities

since the discovery of SV40.86 SV40 is one of the most common latent

viruses in rhesus monkeys and is capable of immortalizing and trans-

forming rodent, but not human, cells. The oncogenicity of SV40 is

mediated by large tumor (T) antigen (LT) and small T antigen (sT). ST

is a spliced isoform of T antigens. The oncogenic activity of MCV, like

that of SV40, is attributed to LT and sT. MCV LT and sT (Figure 2A)

are well conserved with those of SV40. The MCV LT DnaJ domain

binds to Hsc70 to promote proper folding of proteins after trans-

lation.87 MCV LT and 57kT antigens interact with pRB through their

N-terminal LxCxE motif.84 The protein phosphatase 2A (PP2A) bind-

ing domain of MCV sT interacts with PP2A, as also seen with SV40

sT,87,88 but mutation of the PP2A binding domain does not impair the

oncogenicity of MCV sT.89 MCV LT, but not SV40 LT, interacts with

Vam6p.90 Vam6p binds to the N-terminus of MCV LT and changes its

subcellular localization from the cytoplasm to the nucleus, but its

association with the MCC tumorigenic process remains unclear.

MCV oncogenes and RNA splicing

The early pre-mRNAs of MCV undergo alternative RNA splicing to

produce four mRNA isoforms: LT, sT1, sT2 and 57kT (Figure 2B). To

date, it remains unknown what RNA cis-element(s) or trans-acting

cellular factors are involved in regulating the alternative RNA splicing.

LT mRNA encodes LT antigen. Both sT1 and sT2 mRNAs encode sT,

but differ in the length of the 39 untranslated region. The 57kT mRNA

corresponds to the 17kT mRNA in SV40 and encodes a 57-kDa protein

missing a middle section of LT (Figure 2B). In contrast to SV40 sT and

MCV LT, MCV sT exhibits oncogenic activity: it transforms rodent

fibroblasts and promotes serum-independent growth of human fibro-

blasts.89 This is because MCV sT functions differently from SV40 sT;

MCV sT promotes eukaryotic translation initiation factor 4E-binding

protein 1 hyperphosphorylation and cap-dependent translation in a

PP2A-independent manner,89 whereas SV40 sT induces dephosphory-

lation of 4E-binding protein 1 in a PP2A-dependent manner and inhi-

bits cap-dependent translation.91 Moreover, MCV sT suppresses the

activity of the E3 ubiqitin ligase SCFFbw7, which degrades MCV LT,

and stabilizes MCV LT through its LT-stabilization domain;92 SV40 sT

does not have an LT-stabilization domain. Although inhibition of

SCFFbw7 stabilizes MCV LT, introduction of mutations in the sT LT-

stabilization domain decreases LT protein levels and eliminates syn-

ergism in MCV DNA replication and sT-induced cell transformation.92

MCV sT is detected in 92% of MCC tissues, whereas MCV LT is only

detected in 75% of the tissues.87,89,93 However, the full function of MCV

sT in MCC cells requires other T antigens, such as LT and 57kT.85,94

EPSTEIN-BARR VIRUS

EBV and oncogenes

EBV is a human c-herpesvirus best known as the cause of infectious

mononucleosis,95 but it has been also associated with Burkitt lym-

phoma, nasopharyngeal carcinoma in southeastern Asia, natural killer

(NK) cell leukemia, extranodal NK T-cell lymphoma and Hodgkin

and non-Hodgkin lymphomas, accounting for ,1% of cancer cases in

humans worldwide.21,96 EBV is widespread in all human populations,

with .90% of adults being serologically positive.97 A recent compre-

hensive analysis of the EBV genome revealed that EBV establishes a

latent infection in nearly 100% of infected adults through numerous

sites.98 In most cases, EBV infects B lymphocytes. Following EBV

infection, B lymphocytes are transformed into lymphoblasts and

become immortal. In rare cases, EBV also causes malignancy by infect-

ing T cells and NK cells.99–101

Latent membrane protein-1 (LMP1) is considered to be a major

viral oncogene of EBV. LMP1 is expressed in EBV-associated lym-

phoma and is essential for B-cell transformation and disruption of

cellular signal transduction.102–104 Although EBV nuclear antigen 1

(EBNA1) is one of the earliest viral proteins expressed after infection

and is the only latent protein consistently expressed in EBV-associated

tumors, EBNA1 is not an oncoprotein.105,106 BamHI-A reading frame-

1 is also an early gene, but it is expressed as a latent gene in most

nasopharyngeal carcinomas.107 BamHI-A reading frame-1 may play

an important role in nasopharyngeal oncogenesis, because it trans-

forms rodent fibroblasts and primary epithelial cells and enhances

tumor formation.108–111 The expression levels of EBV genes depend
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on the latency status of EBV, which is classified as latency 0, I, II or III.

Hodgkin lymphomas are associated with latency II, in which EBNA1

and LMPs are expressed, but Burkitt lymphoma is associated with

latency I, in which only EBNA1 is expressed. Nasopharyngeal carcin-

oma and T-cell and NK lymphomas display EBV latency I/II, an inter-

mediate between latency I and II.

LMP1 is a 62-kDa integral membrane protein and contains 386 aa

residues, with a short cytoplasmic N-terminus of 24 aa, six transmem-

brane domains of 162 aa (from aa 25 to aa 186) and a cytoplasmic

C-terminus of 200 aa (Figure 3A).112,113 LMP1 immortalizes and

transforms human B cells, but its oncogenic activity can be interfered

by lytic LMP1 (lyLMP1), a truncated form of LMP1 with 258 aa resi-

dues expressed in the lytic phase.114 LMP1 drives proliferation of EBV-

infected B cells by signaling within the B cells without any ligand for

LMP1. The pathway downstream of LMP1 overlaps with that of the

CD40 receptor,115 which delivers signaling through TNF receptor

associated factors and Janus kinase 3 to activate NF-kB, AP-1,

STAT-1, CD83 and CD95. In clonal populations, LMP1 levels vary

among cells by more than 100-fold. When expressed at an intermedi-

ate level, LMP1 signals through NF-kB to promote cell proliferation,

but when expressed at a high level, LMP1 inhibits protein synthesis by

activating double-stranded RNA-activated protein kinase-like endo-

plasmic reticulum kinase (PERK) to induce eukaryotic initiation fac-

tor 2a phosphorylation followed by activating transcription factor 4

(ATF4) upregulation. ATF4, in turn, activates the LMP1 promoter.104

Although the transmembrane domains of LMP1 activate B-cell apop-

tosis, the carboxy-terminal domain of LMP1 blocks this effect.116 In

general, LMP1 activation leads to overexpression of antiapoptotic

molecules, such as B-cell CLL/lymphoma 2 (Bcl-2),117 myeloid cell

leukemia 1 (Mcl-1)118 and BCL-2-related protein A1 (Bcl2A1/Bfl-

1),116,119 and blocks p53-mediated apoptosis through the induction

of anti-apoptotic protein A20,120 unfolded protein response (UPR)-

induced apoptosis in B cells116 and ubiquitin C-terminal hydrolase L1

(UCH-L1) with oncogenic properties.121 Complementary to its prolif-

erative function, LMP1 inhibits proapoptotic factors such as Bax122 and

induces autocrine factors, such as chemokine (C–C motif) ligand

3 (CCL3) and chemokine (C–C motif) ligand 4 (CCL4), to promote

cell proliferation.123 LMP1 also enhances cancer cell motility by upre-

gulating TNF a-induced protein 2 (TNFAIP2) through NF-kB activa-

tion.124 Moreover, LMP1 regulates miRNAs to exert both positive and

negative roles on cell proliferation. LMP1 upregulates miR-29b to sup-

press TCL1 oncogene expression,125 but downregulates miR-203 to
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increase E2F transcription factor 3 (E2F3) and cyclin G1 expression126

and miR-15a to promote MYB and cyclin D1 expression.127

EBV LMP1 and RNA splicing

The LMP1 gene is transcribed from either the ED-L1 or ED-L1A

promoter within the BamHI-N region of the EBV genome112,128 and

produces two LMP1 isoforms from the two alternative promoters

(Figure 3B). Double splicing of ED-L1 pre-mRNA produces the

LMP1 ORF encoding 386 aa residues, whereas single splicing of

ED-L1A pre-mRNA produces the lyLMP1 ORF encoding 258 aa

residues starting from the 129th methionine of LMP1 in B95-8

EBV isolates.129,130 Thus, lyLMP1 differs from LMP1 by lacking

the N-terminal 129 aa residues of LMP1. However, the lyLMP1

transcript is non-coding in most EBV isolates131 and is upregulated

during the lytic phase of EBV replication following activation of the

lytic promoter ED-L1A.132,133 In contrast to LMP1, lyLMP1 has no

transforming activity in rodent cells, nor does it alter the pheno-

types of human B lymphocytes.134 The biological activity of lyLMP1

appears to be the negative regulation of LMP1-signaling pathways

and LMP1-mediated oncogenesis.114,135

What regulates splicing of LMP1 RNA remains largely unexplored.

EBV EB2 (also called SM) functions as a trans-acting factor136,137 in

regulating RNA splicing via its interaction with the cellular oncogenic

splicing factor SRSF3 (serine/arginine-rich splicing factor 3).138

Although EBV EB2 is not expressed in the latent stage of EBV infec-

tion, increased SRSF3 expression in lymphoma might play a role in

LMP1 splicing and is worth investigating.

HUMAN T-CELL LEUKEMIA VIRUS 1

HTLV-1 and oncogenes

HTLV-1 is a delta retrovirus and is associated with ATL. Both HTLV-

1 and ATL are endemic within the southwestern part of Japan, the

Caribbean basin, and South Africa. Approximately 1%–5% of indivi-

duals with HTLV-1 infection develop ATL after 20–30 years of

latency.139,140 Discovery of HTLV-1 occurred independently in the

United States and Japan in the late 1970s. A retrovirus with type-C

morphology was isolated from the blood of an African-American

patient with cutaneous T-cell lymphoma and named human cuta-

neous T-cell lymphoma virus.13 In parallel, adult T-cell leukemia

was found in the southwestern part of Japan,141,142 and a retrovirus

with type-C morphology was also isolated from T cells from those

patients and named adult T-cell leukemia virus.14,15,143,144 The two

viruses were later found to be identical, and are now referred to as

HTLV-1. Three related viruses, HTLV-2, -3 and -4, have also been

reported. HTLV-2, which was isolated from a hairy T-cell leukemia,

immortalizes human T cells in vitro,145 although its association with

human disease has not yet been established. HTLV-3 and -4 were

detected from their genome sequences, but their relation to human

disease also remains unknown.146,147

Tax, a viral oncogene of HTLV-1, encodes a 40-kDa nuclear phos-

phoprotein consisting of 353 aa residues and confers the trans-

forming properties of HTLV-1. Tax immortalizes T lymphocytes

and induces leukemia in transgenic mice.148,149 It promotes viral tran-

scription from a promoter located within the long terminal repeat

(LTR).150–152 The N-terminus of Tax (Figure 4A) directly binds to
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Figure 3 The EBV LMP1 oncoprotein and its lytic variant lyLMP1. (A) Functional domains and motifs are indicated for EBV LMP1 and lyLMP1 in the B95-8 EBV isolate.

(B) EBV LMP1 ORF and lyLMP1 are produced by RNA splicing (dashed lines) from two separate transcripts derived either from the ED-L1 promoter or the ED-L1A

promoter. Nucleotide positions are numbered according to the genomic DNA sequence of the B95-8 EBV isolate (GenBank: V01555.2). TRAF, TNF receptor-

associated factor; TRADD, tumor necrosis factor receptor associated death domain protein.
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CREB to form a ternary complex of TRE–Tax–CREB (Tax-responsive

element–Tax–CREB) within the viral promoter.154,155 Binding of Tax

to CREB enhances CREB homodimerization, which strengthens its

association with promoter DNA.156 TRE activation requires Tax

homodimerization, which involves CREB homodimerization. Tax

also recruits the transcriptional co-activators CREB-binding protein

(CBP) and p300157–159 and PCAF.160,161 Tax transactivates specific

cellular transcripts by interacting with DNA-binding serum respons-

ive factor, which recruits Tax to specific cellular promoters such as

those of c-FOS, EGR-1 and EGR-2. 162–164 Tax activates the NF-kB

pathway165 to enhance the expression of IL-2,166,167, IL-2R,168 IL-15169

and IL-15R,170 leading to the formation of an autocrine loop for the

proliferation of HTLV-1-infected T cells. Tax inactivates the tumor

suppressor p53171 and its homologues p73a and b,172,173 but activates

canonical Wnt signaling in the presence of a Wnt pathway-associated

protein, disheveled-associating protein with a high frequency of leu-

cine residues (DAPLE).174 Tax binds INT6/EIF3E, a subunit of the

translation initiation factor eukaryotic initiation factor 3, and
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Figure 4 HTLV-1 viral RNA splicing and Tax oncogene expression. (A) Functional domains and motifs are indicated for the HTLV-1 Tax oncoprotein. (B) Alternative

RNA splicing products of HTLV-1 viral genes. Seven positive-strand transcripts (1-E, 1-2-3, 1-2-A, 1-A, 1-2-B, 1-C and 1-3) and one negative strand transcript (HBZ)
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the HTLV-1 genomic RNA sequence, starting from the first nucleotide in the pre-mRNA.153
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upstream frameshift protein 1 (UPF1) to inhibit nonsense-mediated

mRNA decay.175

Despite its oncogenic activity, Tax expression is low or undetectable

in tumor cells from adult T-cell leukemia.176–178 The current con-

sensus is that Tax is necessary for initiating cell transformation, but

in later stages, acquired genetic and epigenetic changes and alternative

growth-promoting pathways replace the roles of Tax to maintain adult

T-cell leukemia when Tax is no longer expressed.

HTLV-1 RNA splicing and production of tax mRNA

Reverse transcription of HTLV-1 genomic RNA into DNA and sub-

sequent DNA integration into the host cell genome is a necessary step

for retroviral replication. All HTLV-1 genes, except the newly

described HTLV-1 basic leucine zipper factor (HBZ) gene, are tran-

scribed from a single promoter within the 59 LTR as a single polycis-

tronic pre-mRNA transcript that is polyadenylated by using a

polyadenylation signal in the 39 LTR.67 HBZ is encoded by an anti-

sense transcript derived from a minor promoter in the 3’ LTR of the

HTLV-1 genome.179 Both the major polycistronic transcript and the

minor monocistronic antisense transcript contain introns and are

subject to regulation by RNA splicing.180 The major polycistronic

pre-mRNA transcript covers almost the entire viral genome. Gag-

Pro-Pol, a precursor polyprotein, is translated from the unspliced

form of the polycistronic RNA. However, the RNA also has two

introns and three exons with two alternative 59 ss at nt 119 and nt

4831, and five alternative 39 ss at nts 4641, 6383, 6478, 6875 and 6950.

The HBZ monocistronic pre-mRNA has only one intron, and the

antisense HBZ transcript undergoes RNA splicing from nt 8315 to

6915.179 This leads to extensive alternative RNA splicing and produce

nine types of spliced and unspliced mRNAs (Figure 4B). The Tax ORF

is produced by double RNA splicing of the polycistronic RNA, with

the first intron splice from nt 119 to 4641 and the second intron splice

from nt 4831 to 6950 in the spliced 1–2–3 form of the RNA

(Figure 4B). What controls or regulates the alternative RNA splicing

in HTLV-1 infection and gene expression remains to be investigated.

RNA cis-elements and trans-acting factors responsible for HTLV-1

alternative RNA splicing remain unknown.

KAPOSI’S SARCOMA-ASSOCIATED HERPESVIRUS

KSHV and viral genes with oncogenic activities

KSHV or human herpesvirus 8 was discovered in 1994 as a member of

the human gamma herpesvirus family, joining EBV.20,181 Infection of

immune-compromised individuals with KSHV has been associated with

the development of endothelial cell-derived Kaposi’s sarcoma and at

least two B cell lymphoproliferative diseases: primary effusion lym-

phoma and multicentric Castleman’s disease.21 However, studying

KSHV pathogenesis and oncogenesis has been hindered by lack of a

meaningful animal model and susceptible cell culture, although primary

endothelial cells provide limited KSHV replication 182,183. Two immor-

talized cell lines, KS Y-1 and SLK, were once used for KS and KSHV

studies,184,185 but the KS Y-1 cell line is cross-contaminated with the T24

urinary bladder cancer cell line (ATCC HTB-4) and SLK is a contam-

inant of a known renal carcinoma cell line, Caki-1.186 Thus, neither are

of endothelial origin. Primary rat embryonic metanephric mesenchymal

precursor cells are susceptible to KSHV infection and transformation,

but only shed a limited number of infectious virions.187 Primary effusion

lymphoma-derived B-cell lines are commonly infected with KSHV at

the latent stage and can be induced to produce low levels of KSHV

virions,188,189 but primary B lymphocytes from peripheral blood or

tonsillar tissue are refractory to infection by KSHV,190,191 and their

limited infection may require cocultivation with KSHV-positive cells.185

The human MC116 cell line, which has characteristics of transitional B

cells,192 can be infected with limitation by the KSHV.219 virus, which

also infects Vero cells and produces high yields of virus.193 Humanized

bone marrow, liver and thymus (BLT) mice infected by inoculation with

KSHV.219 virus via the oral and vaginal routes could be a useful model

for studying the pathogenesis and transmission of KSHV.194

KSHV encodes several important proteins that have some oncogenic

activity for inducing cell proliferation, immortalization, transformation

and signaling; cytokine production; immune evasion; antiapoptosis

activity; and angiogenesis. These include the viral latent proteins

latent-associated nuclear antigen (LANA), vFLIP (a FADD (Fas-asso-

ciated protein with death domain)-like interferon converting enzyme or

caspase 8 (FLICE) inhibitory protein), and vCyclin and the viral lytic

proteins G-protein coupled receptor (vGPCR) interferon regulatory

factor 1 (vIRF-1) and K1. Although the true oncogenic nature of each

protein remains to be defined, accumulating evidence indicates that

each of them contributes some aspect to KSHV oncogenesis. Thus, a

full spectrum of KSHV-induced malignancy might require multiple

oncogenic products to work together in the presence of host and envir-

onmental cofactors. For example, both LANA and vIRF-1 target the

cellular tumor suppressor p53.195,196 LANA also inhibits pRB and

PP2A.197 vCyclin, an activator of CDK4/6,198 downregulates p27kip1, a

CDK inhibitor,199 and counters the senescence/G1 arrest response that

results from NF-kB hyperactivation.200 Both vFLIP and K1 activate the

NF-kB signal pathway to prevent B cell apoptosis.201,202 vGPCR and K1

affect the AKT and NF-kB signal pathways203–205 and contribute to

angioproliferative and inflammatory Kaposi’s sarcoma lesions.206,207

More importantly, the latent locus of the KSHV genome by itself shows

B cell oncogenicity in transgenic mice.208

Transcription and RNA splicing in the KSHV latent locus

The KSHV latent locus encodes multiple viral latent genes, including

LANA (ORF73), vCyclin (ORF72), vFLIP (ORF71 or K13), all viral

miRNAs and kaposin (K12). Expression of these latent genes from this

locus is driven by three promoters (Figure 5): two constitutive latent

promoters (LTc and LTd) and an inducible latent promoter (LTi) that

is inactive but can be induced by the lytic switch protein RTA encoded

by ORF 50.209 Although LTd is constitutively active, mirroring LTc, its

transcriptional activity can be further boosted by expression of RTA,

reminiscent of LTi.209 As diagrammed in Figure 5, both the LTc and

LTi transcripts are tricistronic and are polyadenylated by using a com-

mon poly A (pA) signal at nt 122094 in the virus genome. The LTc

transcript has an intron with two alternative 39 ss and is thus subject to

regulation by alternative RNA splicing, whereas the LTi transcript does

not have an intron and is not spliced. Consequently, LANA is

expressed from the unspliced RNA species A or E or the spliced

RNA species B by using a proximal 39 ss that preserves the intact

ORF73 ORF. In KSHV-infected cells, the majority of LANA is trans-

lated from abundant A RNA. Viral vCyclin and vFLIP are expressed

mainly from spliced C RNA derived by selection of a distal 39 ss for

RNA splicing, with vFLIP being expressed from this transcript by

using an internal ribosome entry site residing in the vCylcin ORF.210

Occasionally, an LTc transcript is double spliced to the K12 ORF

region by using another pA signal further downstream at nt 117432

(RNA species D).211 This last splicing strategy presumably enables the

LTc transcript to encode K12. The LTd transcript can be spliced to the

K12 ORF for polyadenylation to encode K12, or it can remain

unspliced, in which case it is polyadenylated by using the same pA

signal as the LTi RNA E to encode vCyclin and vFLIP. The intron from
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the LTd RNA species F could be a source of KSHV miRNAs.209,212

However, very little is known about the splicing regulation of these

latent transcripts.

HEPATITIS B VIRUS AND HEPATITIS C VIRUS

HBV and hepatocellular carcinoma

More than 50% of liver cancers worldwide are attributed to HBV infec-

tion. HBV is a DNA virus whose ,3.2 kb, partially double-stranded,

circular DNA genome is covered by a nucleocapsid core and an outer

lipid envelope. The HBV envelope consists of the small (S), middle (M)

and large (L) envelope proteins, which are multiple-transmembrane

proteins that share the same C-terminal domain (corresponding to the

S protein) but which differ at their N-terminal domains. The HBV

genome encodes four viral genes: C (HBcAg), X (HBx), P (DNA poly-

merase) and S (HBsAg). The S gene encodes a long ORF with three

in-frame ‘start’ (ATG) codons that divide the gene into three sections,

pre-S1, pre-S2 and S. HBV enters susceptible liver cells when the

receptor-binding region of pre-S1 specifically interacts with the func-

tional cellular receptor NTCP (sodium taurocholate cotransporting

polypeptide), a multiple transmembrane transporter predominantly

expressed in the liver; this results in liver infection and virus replica-

tion.213 Persistence of chronic HBV infection for decades is linked to

liver cirrhosis and the development of hepatocellular carcinoma

(HCC). Although HBV infection is prevalent worldwide, chronic

HBV infection is most common in East Asia through perinatal trans-

mission and in Africa via childhood infection.214–216 Continuous cyc-

ling of immune clearance and regeneration of hepatocytes during

chronic HBV infection is considered a risk factor for HCC develop-

ment. HBx is a transactivating protein that interacts with protein argi-

nine methyltransferase 1 to regulate the expression of cellular genes,217
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stimulating cell growth-promoting genes and inactivating growth

regulating molecules. HBx regulates cell cycle progression and cell

proliferation by activating NF-kB;218 upregulating vascular endothelial

growth factor receptor 3 in hepatocarcinogenesis;219 stimulating cell

migration, growth in soft agar, and spheroid formation; and promot-

ing ‘stemness’ in the pathogenesis of HCC.220 HBx and aflatoxin B1

synergistically cause hepatitis, steatosis, and liver hyperplasia in trans-

genic zebrafish.221

HBV RNA splicing and HCC

Transcription of HBV RNAs is controlled by four different promoters:

preCore/pre-genomic (preC/pg, for the 3.5-kb core RNA that codes for

viral core protein and DNA polymerase), pre-S1 (for the 2.4-kb pre-S1

RNA that encodes pre-S1), major pre-S2/S (for the 2.1-kb pre-S2/S

RNAs that encode the pre-S2 and S proteins) and X (for the 0.7-kb

RNA encoding HBx antigen) (Figure 6).223,224 However, all HBV RNA

transcripts are polyadenylated by using a single pA signal downstream

of the HBx termination codon. With such a genome structure, HBV

encodes specific sequence elements to promote extensive splicing of

HBV pre-genomic/preC (pg/preC), pre-S1 and pre-S2/S RNAs, a com-

mon event during chronic infection, leading to the production of seven

additional common splicing variants of pg/preC RNAs and two addi-

tional splicing variants of pre-S2/S RNAs (Figure 6).225,226 A 2.2-kb

singly spliced (spliced from nt 2447–489, Figure 6 RNA B) or doubly

spliced (spliced from nt 2447 to nt 2902 and then from nt 2985 to nt

489, Figure 6 RNA C) HBV pg/preC RNA is most common in cultured

cells. It appears that this single or double splicing event is regulated by

two RNA cis-elements, the post-transcriptional regulatory element at

nts 1217–1582225,227 and the intronic splicing silencer (ISS) at nts 2591–

3163,228 and by PTB-associated splicing factor in interaction with the

post-transcriptional regulatory element.229 The singly spliced RNA

encodes an hepatitis B splice-generated protein (HBSP), which contains

a small portion of the N-terminal viral polymerase fused with a new

ORF produced by RNA splicing.230 HBSP is associated with pathogen-

esis after HBV infection and increases the risk of development of HCC

by promoting viral replication and protein production231 and liver

fibrosis.232 HBSP expression activates the HBV S1 promoter, S2 pro-

moter, enhancer I and core upstream regulatory sequences.233 HBSP

interacts with cathepsin B to enhance hepatoma cell migration and

invasion234 and induces T-cell responses in human leukocyte antigen-

transgenic mice and HBV-infected patients.235 The doubly spliced RNA

encodes a ,15-kDa hepatitis B doubly spliced protein which may play

a role in viral transcription and DNA replication.233,236 Polymerase-

surface fusion protein (P-S FP), which is encoded by another spliced

transcript derived by splicing from nt 2474 to 2902 of pg/preC RNA

(Figure 6, RNA D), might regulate HBV replication.237,238 The func-

tions of the spliced pre-S2/S RNAs remain unknown, and the HBx

transcript does not undergo RNA splicing.

HCV and oncogenesis

HCV is a positive-strand RNA virus with a ,9.6-kb genome. The HCV

genome encodes a single ORF for a polyprotein of about 3000 aa

residues, which is cleaved into 10 different viral proteins. In order

from the N-terminus to C-terminus, these are a viral core protein,

the two envelope proteins E1 and E2, and seven non-structural pro-

teins p7 (NS1)–NS2–NS3 (protease/RNA helicase)–NS4A–NS4B–

NS5A–NS5B (RNA polymerase). The HCV lifecycle is restricted to

the cytoplasm and is not regulated by nuclear RNA splicing.

Accumulation of HCV RNA in the infected cells requires an inter-

action of host miR-122 with the 59-non-coding region of HCV

RNA.239,240 HCV grows in Huh-7-derived cell lines.241–243 Similar to

HBV, chronic HCV infection over decades is strongly associated with

liver cirrhosis and HCC, and chronic inflammation and regeneration

of hepatocytes through the immune response are prognostic risk fac-

tors. At least four of the HCV gene products, the viral core, NS3, NS4B

and NS5A, exhibit transformation potential in tissue culture, and

several oncogenic pathways can be altered by the expression of these

HCV proteins, thus presumably contributing to HCC develop-

ment.244–246 Today, approximately ,94% of chronic HCV genotype

1 infection in adults can be cured in 8 weeks by a once-daily fixed-dose

combination of the NS5A inhibitor ledipasvir 90 mg and the nucleo-

tide analog polymerase (NS5B) inhibitor sofosbuvir 400 mg.247–249

REMARKS

The discoveries in the past two decades of KSHV and MCV, the intro-

duction of HPV vaccines for the prevention of cervical cancer and the

successful growth of HCV in Huh-7-derived cell lines and treatment of

HCV chronic infection with sofosbuvir/ledipasvir are historical land-

marks in tumor virology and human cancer research. These remark-

able successes reiterate that the global fight against human cancers will

continue to receive great support from our tremendous efforts in

searching for new tumor-causing viruses and in understanding the

basic biology of tumor viruses. Oncogenes, signal transduction and

RNA splicing were all discovered by tumor virologists in the late 1970s

and early 1980s and have had tremendous impact on today’s cancer

research portfolio around the world. As discussed in this review, all

tumor viruses express oncogenes (HPV, EBV, MCV and HTLV-1) or

genes with oncogenic activities (KSHV, HBV and HCV) that immor-

talize and transform host cells. However, expression of these defined

oncogenes, although regulated at the transcriptional level, is also pro-

foundly under the control of alternative RNA splicing at the post-

transcriptional level, and to date we know only a little about the

mechanisms that regulate RNA splicing in the context of viral infec-

tion and viral oncogenesis of host cells. Exploring RNA cis-elements

and cellular trans-acting splicing factors in the regulation of alternative

RNA splicing of tumor viruses has shed some light on the mechanisms

over the past 18 years and will most likely continue to be a prospective

focus in viral oncogene research. Gaining further understanding of

how the cell- or tissue-specific expression of splicing factors is

involved in splicing of viral oncogene RNA will be a formidable chal-

lenge, but will provide some fundamental insight into how alternative

RNA splicing and viral gene expression take place in a cell- or tissue-

specific manner. Looking back on 100 years of tumor virology history,

we have learned a great deal about human carcinogenesis from many

landmark discoveries in tumor virology. In looking forward into the

twenty-first century, understanding and manipulation of RNA splic-

ing in the development and control of human cancers will definitely

trigger another wave of discoveries in RNA biology. Human tumor

viruses will inevitably be windows into this complex nature.
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