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Abstract

Adolescence is the transitional period between childhood and adulthood,

characterized by substantial changes in reward-driven behavior. Although reward-

driven behavior is supported by subcortical-medial prefrontal cortex (PFC) connectiv-

ity, the development of these circuits is not well understood. Particularly, while

puberty has been hypothesized to accelerate organization and activation of functional

neural circuits, the relationship between age, sex, pubertal change, and functional con-

nectivity has hardly been studied. Here, we present an analysis of resting-state func-

tional connectivity between subcortical structures and the medial PFC, in 661 scans of

273 participants between 8 and 29 years, using a three-wave longitudinal design.

Generalized additive mixed model procedures were used to assess the effects of age,

sex, and self-reported pubertal status on connectivity between subcortical structures

(nucleus accumbens, caudate, putamen, hippocampus, and amygdala) and cortical

medial structures (dorsal anterior cingulate, ventral anterior cingulate, subcallosal

cortex, frontal medial cortex). We observed an age-related strengthening of

subcortico-subcortical and cortico-cortical connectivity. Subcortical–cortical connec-

tivity, such as, between the nucleus accumbens—frontal medial cortex, and the

caudate—dorsal anterior cingulate cortex, however, weakened across age. Model-

based comparisons revealed that for specific connections pubertal development

described developmental change better than chronological age. This was particularly

the case for changes in subcortical–cortical connectivity and distinctively for boys and

girls. Together, these findings indicate changes in functional network strengthening

with pubertal development. These changes in functional connectivity may maximize

the neural efficiency of interregional communication and set the stage for further

inquiry of biological factors driving adolescent functional connectivity changes.
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1 | INTRODUCTION

Adolescence is a transitional period linking childhood and adulthood,

and is accompanied by long-lasting, largely asynchronous brain

changes in both cortical and subcortical brain regions. It is particularly

relevant to consider these transformations not only in relation to neu-

ral structural or localized activation changes, but also in relation to

functional connectivity changes in the adolescent brain (Casey, 2015;

Crone & Dahl, 2012; Stevens, 2016). Relative to studies examining

structural (Tamnes et al., 2017) and functional (Telzer et al., 2018)

brain development, very few studies have examined longitudinal func-

tional connectivity changes. The goal of this study was therefore to

analyze within and between subcortical–cortical connectivity in par-

ticipants ages 8–29 years, using a three-wave longitudinal design cov-

ering 5 years for each individual.

Central to adolescent brain development is a change in the neural

motivational circuitry (Doremus-Fitzwater & Spear, 2016; Ernst,

2014; Telzer, 2016; van Duijvenvoorde, Peters, Braams, & Crone,

2016), which may lead to an increased drive for reward and enhanced

affective responses during adolescence, and may create vulnerabilities

for developing psychopathology (Paus, Keshavan, & Giedd, 2008). The

ventral striatum, and particularly the nucleus accumbens, is considered

a key structure for reward processing. This structure is extensively

connected to both cortical and subcortical structures supporting moti-

vated behavior (Alexander, Crutcher, & DeLong, 1990; Haber &

Knutson, 2010), through looped cortical–subcortical connections. The

medial prefrontal cortex (PFC) is densely connected to the ventral stri-

atum and suggested to be a crucial regulator of reward-directed

behavior. In addition, the amygdala and hippocampus are also central

regions for respectively affective processing (e.g., Scherf, Smyth, &

Delgado, 2013), processing aversive stimuli (Ernst, 2014), and memory

(e.g., Davidow, Foerde, Galván, & Shohamy, 2016) in adolescents, and

are often coactivated with the medial PFC. Thus, the ventral striatum

together with nuclei in the amygdala, parts of the hippocampus, and

the medial PFC, form a larger circuitry that modulate responses to

salient stimuli and drive reward learning and decision-making.

This study examined the functional coupling between key reward

regions using resting-state (RS) functional magnetic resonance imag-

ing (fMRI), which provides an important framework for investigating

functional systems in the organization of the adolescent developing

brain (Ernst, Torrisi, Balderston, Grillon, & Hale, 2015; Uddin, Supekar, &

Menon, 2010), considering the minimal experimental demands. Previous

RS studies already observed developmental changes in functional con-

nectivity between subcortical regions and prefrontal circuitry. Whereas

the functional coupling between the amygdala and medial PFC has been

found to increase (Gabard-Durnam et al., 2014) or show minimal changes

(Peters, Peper, Duijvenvoorde, Braams, & Crone, 2016) across adoles-

cence, studies also found a developmental decrease in connectivity

strength for other subcortical–cortical connections, such as connectivity

between the ventral striatum and PFC (Fareri et al., 2015; Padmanabhan,

Lynn, Foran, Luna, & O'Hearn, 2013; Porter et al., 2015; van

Duijvenvoorde, Achterberg, Braams, Peters, & Crone, 2016). This

decrease in functional coupling between subcortical and prefrontal cir-

cuitries has been interpreted as a maturation of brain networks, and

linked to a developmental decrease in risky behavior and reward valua-

tion (van Duijvenvoorde, Achterberg, et al., 2016) across adolescence,

but also to individual differences in risky behavior. For instance, greater

functional coupling between the ventral striatum and PFC has been

related to an earlier onset of substance use in adolescence (Weissman

et al., 2015), and a family history of alcoholism (Cservenka, Casimo,

Fair, & Nagel, 2014). However, these studies used different age samples,

cross-sectional designs, and focused on single connections. Therefore, it

remains to be determined how functional connectivity changes within

and between several subcortical–cortical connections. Moreover, it has

often been assumed that heightened subcortical reactivity is related to

pubertal onset (Braams, van Duijvenvoorde, Peper, & Crone, 2015;

Pfeifer et al., 2011), and pubertal development is suggested to be the

maturational process driving developmental changes in reward regions,

accelerating typical developing trajectories (Blakemore, Burnett, & Dahl,

2010; Crone & Dahl, 2012; Schulz & Sisk, 2016; Vijayakumar, Op de

Macks, Shirtcliff, & Pfeifer, 2018). Only a handful of studies tested the

influence of pubertal development on subcortical–cortical functional con-

nectivity (Fareri et al., 2015; Peters, Jolles, van Duijvenvoorde, Crone, &

Peper, 2015). These studies highlighted that higher pubertal hormone

concentrations were linked to a decrease in subcortical–prefrontal con-

nectivity strength as seen across typical adolescent development. How-

ever, to date, no study has examined the relative contributions of age and

puberty on functional connectivity changes.

In sum, a reorganization of subcortical–cortical circuitry in adoles-

cence is integral to adolescent development. However, few studies have

yet examined connectivity in regions of the adolescent reward circuitry in

a comprehensive maturational perspective. Here, we related subcortical–

cortical circuitry to age and pubertal development in a three-wave longi-

tudinal sample (8–29 years). Longitudinal accelerated designs consider

individual trajectories, thereby allowing for a more accurate estimate of

developmental change. RS functional connectivity was examined

between a set of subcortical and cortical structures of interest, which

included the ventral and dorsal striatum, putamen, hippocampus, amyg-

dala, and all atlas-based anatomical regions of the medial PFC (subcallosal

cortex, ventral medial PFC, anterior cingulate cortex [ACC]). We expected

a decoupling between subcortical and medial PFC regions with age,

which may be particularly driven by pubertal-related changes. Given the

large sample size and intensive longitudinal measurements, this study also

allowed us to examine sex differences and age by sex interactions in RS

connectivity change.

2 | METHODS

2.1 | Participants

The current study was part of BrainTime, a longitudinal study from

Leiden University, Leiden, the Netherlands. Participants were rec-

ruited through local schools and advertisements and provided written

informed consent for the study at every time point (participant assent

and parental consent in case of minors). Participants were screened
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for MRI contraindications and had no neurological or psychiatric dis-

orders at time point 1 (T1). All anatomical MRI scans were reviewed

by a radiologist and no anomalous findings at any of the time points

were reported. At each time point, participants received an endow-

ment for participation in a larger scale study. The RS data presented

here were collected as the first scan of the BrainTime experimental

protocol examining affective and cognitive development via the use

of task-based functional neuroimaging. The study and its procedures

were approved by the institutional review board of the Leiden Univer-

sity Medical Center. Cross-sectional RS analyses have previously been

reported in van Duijvenvoorde, Achterberg, et al. (2016) for nucleus

accumbens–prefrontal connectivity, and two data waves have previ-

ously been reported in Peters, Peper, et al. (2016) for amygdala–PFC

connectivity.

At T1, MRI data were collected from 299 participants

(Mage = 13.98 years; SDage = 3.68; range = 8.01–25.95 years; 146 males),

who were invited for time point 2 (T2) approximately 2 years after T1

(Mtime-difference = 1.99 years; SDtime-difference = 0.10; range = 1.66–

2.47 years). T2 MRI data were collected from 255 participants

(32 excluded due to braces, 12 unwilling to participate again). All partic-

ipants were invited for time point 3 (T3), approximately 2 years after T2

(Mtime-difference = 2.02 years; SDtime-difference = 0.09; range = 1.62–

2.35 years). At T3, 243 participants participated in the MRI session

(32 excluded due to braces, 24 unwilling to participate again).

Exclusion from further analyses occurred due to a number of rea-

sons. First, participants were excluded when either the RS scan, high-

resolution scan, or T1-weighted anatomical scan was missing or failed

due to technical errors (T1: n = 5, T2: n = 2; T3: n = 4). Second, partici-

pants were excluded from all time points if they were diagnosed with

a neurological or psychiatric disorder (e.g., depression, Attention-Defi-

cit Hyperactivity Disorder, Attention-Deficit Disorder, anxiety disor-

der) at T2 and/or T3 (n = 21). Third, participants were excluded when

excessive head motion was detected (T1: n = 38; T2: n = 23; T3:

n = 10). Motion exclusion was based on having ≥2 mm translation or

more than 2� rotation in any direction, having ≥10 volumes (with more

than 0.5 mm movement between two frames (framewise displace-

ment, FD, Power et al., 2014), and/or having ≥10 volumes that are

reference RMS outliers (i.e., Root mean square intensity difference of

volume N to the reference volume, exceeding the threshold of 75th

percentile + 1.5 × interquartile range). FD and reference RMS outliers

were established using the motion outlier tool implemented in FMRIB

Software Library (FSL) version 5.0.4 (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/, Smith et al., 2004).

The final sample consisted of 661 observations from 273 partici-

pants. Specifically, 236 participants at T1 (114 males; Mage = 14.13,

SDage = 3.6; range = 8–25 years), 211 participants at T2 (101 males;

Mage = 16.2, SDage = 3.48; range = 10–26 years), and 214 participants

at T3 (100 males; Mage = 17.93, SDage = 3.52; range = 12–28 years).

Table 1 also summarizes the number of participants in T1, T2, and T3,

and the main subject characteristics.

Intelligence quotient (IQ) was estimated at T1 using the subsets

“similarities” and “block design” and at T2 using the subsets “Vocabu-

lary” and “Picture Completion” of the Wechsler Intelligence Scale for

Adults (WAIS-III) or the Wechsler Intelligence Scale for Children, third

edition (WISC-III; Wechsler, 1974). All estimated IQ scores were in the

normal range on T1 (MIQ = 109.9, SDIQ = 10.7, range = 80–143) and T2

(MIQ = 108.4, SDIQ = 10.3, range = 80–148) and were not significantly

related to age at either time point (all ps > .4) for included subjects.

2.2 | Pubertal stage

Stage of physical pubertal maturation was assessed at each time point

with the Pubertal Development Scale (PDS) for participants under

18 years of age (Petersen et al. 1988). This self-report questionnaire

contains questions concerning secondary sexual characteristics. The

participants were instructed to indicate their developmental stage on

each of these physical characteristics on a 4-point scale: ranging from

(a) has not started to develop, (b) shows first signs of development,

(c) shows clear development to (d) has finished developing. The aver-

age score on all items was used for further analysis. Data on PDS

scores were included for 405 data points (T1: n = 185; T2: n = 119;

T3: n = 101). This questionnaire was only administered to participants

up to 18 years of age (>18 years T1: n = 28; T2: n = 59; T3: n = 93),

because it was assumed that all participants completed pubertal

development by 18 years. Other missing data occurred because of

administration or technical errors (missing T1: n = 23; T2: n = 23; T3:

TABLE 1 Subject characteristics

Time point Males Females

Age (min–max) 8–28 years 8–26 years

Total number of

scans

316 345

Number

participants

contributing one

data point

25 16

Number

participants

contributing two

data points

33 46

Number

participants

contributing

three data points

75 79

PDS mean (SD) 1 2.15 (0.78) 2.45 (0.97)

2 2.5 (0.75) 2.96 (0.76)

3 2.85 (0.75) 3.22 (0.6)

FD mean (SD) 1 0.148 (0.05) 0.148 (0.05)

2 0.157 (0.04) 0.164 (0.04)

3 0.097 (0.03) 0.097 (0.03)

FD FIX-denoised

mean (SD)

1 0.037 (0.01) 0.035 (0.01)

2 0.033 (0.01) 0.033 (0.01)

3 0.03 (0.01) 0.029 (0.01)

Abbreviations: FD = framewise displacement; PDS = Pubertal

Development Scale.
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n = 20). Longitudinal data of the PDS have been reported on this sam-

ple for two waves in Braams et al. (2015) and three waves in Peper,

Braams, Blankenstein, Bos, and Crone (2018), and Wierenga et al.

(2018). Pubertal development and age were highly correlated at each

time point: T1: r (185) = .785, p < .001; T2: r (129) = .739, p < .001;

T3: r (101) = .638, p < .001.

2.3 | MRI data acquisition

Neuroimaging was conducted using a 3.0 T Philips Achieva MRI scan-

ner with a standard whole-head coil. The same scanner and settings

were used for all participants and at all three time points. The RS scans

were acquired as the first scan of a fixed-order imaging protocol, with

T2*-weighted echo-planar imaging (EPI) (140 volumes; 38 slices; sequen-

tial acquisition; time repetition (TR) = 2,200 ms, time echo (TE) = 30 ms;

flip angle = 80�; field of view (FOV) = 220 × 220 × 114.67 mm3; slice

thickness = 2.75 mm). Two additional dummy scans preceded the scan to

allow for equilibration of T1 saturation effects. Participants were

instructed to lie still with their eyes closed, without falling asleep.

For registration purposes, we additionally obtained a high-resolution

T2*-weighted gradient EPI scan (84 slices; TR = 2,200 ms; TE = 30 ms; flip

angle = 80�; FOV = 220 × 220 × 168 mm3; in-plane resolution =

1.96 × 1.96; slice thickness = 2 mm), and a T1-weighted anatomical scan

(140 slices; TR = 9.76 ms; TE = 4.59 ms; flip angle = 8�; FOV =

224 × 177.33 × 168 mm3; in-plane resolution = 0.875 × 0.875 mm; slice

thickness = 2 mm), at the end of a fixed imaging protocol which included

functional tasks.

2.4 | fMRI data preprocessing

The RS functional data were preprocessed using FEAT (fMRI Expert

Analysis Tool; v6.00), part of FSL (Smith et al., 2004). Preprocessing of

the RS data included motion correction (MCFLIRT; Jenkinson, Bannis-

ter, Brady, & Smith, 2002), slice timing correction (regular down), brain

extraction (BET), spatial smoothing with a 5 mm full-width-at-half-

maximum Gaussian kernel, and high-pass temporal filtering with a cut-

off point of 100 s. The high-resolution EPI images and T1-weighted

anatomical images were brain-extracted (BET). Next, the RS fMRI

scans of an individual were registered to the corresponding high-

resolution EPI image (6 DOF), which in turn were registered to the

T1-weighted anatomical image using the integrated version of

boundary-based registration to improve the accuracy of functional-to-

structural space registration. Finally, the images were registered to

standard MNI-152 space using FNIRT (FMRIB's Nonlinear Imaging

Registration Tool; 12 DOF, warp resolution 10 mm).

2.5 | Motion correction

Head motion is undesirable in all fMRI studies (e.g., Friston, Williams,

Howard, Frackowiak, & Turner, 1996), and especially so for RS stud-

ies, as head motion may overestimate short-distance correlations and

underestimate long-distance correlations (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012; van Dijk, Sabuncu, & Buckner, 2012).

Developmental samples are particularly susceptible for this confound,

given that head motion is highly related to subject age (Satterthwaite

et al., 2013, 2017).

To minimize motion, subjects were trained with a mock-scanning

procedure, were reminded several times during the session not to

move during scanning, and head motion was restricted using foam

padding. We applied a strict exclusion criterion (see Section 2.1) based

on absolute motion, an FD cutoff of 0.5 mm on ≥10 volumes, and/or

reference RMS outliers on ≥10 volumes. Although the mean FD was rela-

tively low on each time point (see Table 1), the mean FD correlated signif-

icantly with age on T1 (r(236) = −.142, p = .029 and T3 (r(213) = −.15,

p = .025). To minimize these potential influences of head motion, we

denoised the preprocessed RS data of the included participants with FIX

(FMRIB's ICA-based Xnoiseifier, version 1.06) using the included standard

training data set (threshold 15) (Griffanti et al., 2014; Salimi-Khorshidi

et al., 2014). FIX classifies ICA components and automatically removes

the noise components (e.g., result of motion) from the RS time series. This

resulted in a clear lowering of the mean FD (see Table 1). Note that for

these cleaned time series, all included participants adhered even to a

more stringent FD cutoff of 0.2 mm on ≥2 volumes.

2.6 | Nuisance signal regression

In addition to motion artifacts, signals from white matter (WM) and

cerebrospinal fluid (CSF) can be confounding effects that result in

overestimated RS connectivity strength. These signals primarily reflect

noise from non-neural origin (e.g., scanner instabilities, physiological

effects) and are largely independent from Blood Oxygenation Level-

Dependent (BOLD) signal fluctuations in gray matter (Windischberger

et al., 2002). Global signal was also removed from the time series to

reduce influence of artifacts caused by physiological processes

(i.e., cardiac and respiratory fluctuations), vigilance level (Liu, Nalci, &

Falahpour, 2017), and scanner drifts (Fox & Raichle, 2007).

WM and CSF masks were obtained using FAST (FMRIB's Auto-

mated Segmentation Tool), which segments the T1-weighted anatom-

ical scan into different tissue types (WM, CSF, and gray matter).

These maps were then FLIRT-based transformed into functional sub-

ject space and eroded by one voxel (3 × 3 × 3 mm) to minimize poten-

tial partial volume effects. Global signal time series were calculated in

native space as the average signal across all nonzero voxels in the

brain. WM, CSF, and global signal time series were used as temporal

covariates and removed from the RS time series of each ROI at the

individual participant level through linear regression in MATLAB. We

then calculated Pearson correlations between all ROI time series and

transformed them into Z-values using the Fisher Z-transformation in

MATLAB.

2.7 | Regions of interest

Regions of interest (ROIs) were selected from the Harvard–Oxford proba-

bilistic anatomical brain atlas (subcortical and cortical) in FSL, with a

thresholded probability of ≥0.5. Although based on anatomical

parcellation, the Harvard–Oxford atlas is an often used and well-known
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atlas in functional brain analyses. Given our focus on age-related change in

connectivity between frontal midline and subcortical structures, we

included four cortical midline structures in this atlas (subcallosal cortex,

frontal medial cortex, and cingulate gyrus anterior division) that spanned a

ventral to dorsal cortical midline. Considering the extent and functional

specificity of the ACC, this anatomical structure was divided in a more

posterior-dorsal and a more anterior-ventral part with a cutoff of y = 30

based on Bush, Luu, and Posner (2000) (see for a similar segregation

Achterberg et al., 2018). We included five bilateral subcortical ROIs:

nucleus accumbens, caudate, putamen, amygdala, and hippocampus. For

each subcortical region, bilateral masks were combined into one ROI for

further analyses. ROIs are visualized in Figure 1. For each participant, the

ROIs were transformed to subject space and the mean individual RS time

series were extracted fromeach ROI separately.

2.8 | Experimental design and statistical analysis

Age-related change in longitudinal data sets is often assessed with

polynomial growth models including age as linear, quadratic, or cubic

regressor, while controlling for the repeated nature of the data. How-

ever, a limitation of these models is that they assume age-related

changes follow this restricted set of growth models. Additionally,

these models may not be optimal to compare groups that show differ-

ent developmental trajectories (Vijayakumar, Op de Macks, et al.,

2018). Thus, we used a distinct class of models called generalized

additive mixed models (GAMMs) to characterize age- and sex effects,

pubertal-related effects, and behavioral effects on RS functional con-

nectivity. All models were run using the mgcv package (Wood, 2011)

in R (R Core Team, 2017; https://www.r-project.org/). GAMM is simi-

lar to a generalized linear mixed model where predictors can be rep-

laced by smooth functions of themselves, offering efficient and

flexible estimation of nonlinear effects. Smooth splines can capture

important nonlinear changes that are easily missed with polynomials,

prevent biased fits at the extreme ranges of the data, while controlling

Type 1 error rate in AIC/ Bayesian Information Criterion (BIC) values

(Wood, 2017) and p-values (Wood, 2013). Moreover, GAMM models

are well suited for our developmental sample and accelerated longitu-

dinal design, as this model accounts for within-subject dependence

and differences in developmental time points at which participants

entered the study (Alexander-Bloch et al., 2014; Harezlak, Ryan,

Giedd, & Lange, 2005; Wierenga et al., 2018).

Our research questions followed the following model-fit proce-

dures. First, to assess age- and sex-related change in functional con-

nectivity we used a model-building procedure assessing (a) the

developmental age-related pattern over the whole group; (b) a main

effect of sex; and (c) differences in developmental trajectories

between sexes. These models were compared to test which model

provided the best fit for each connection. In short, first a simple age

model of formula (1) was fit, where s () represents a penalized smooth-

ing spline. A fixed overall intercept and a random intercept per partici-

pant were included in all models. The latter accounts for the repeated

nature of the data. All models included a residual error term.

GAMM ðConnection� s Ageð Þ, random= list Subject = �1ð Þ ð1Þ

Expanded models were fit to include a fixed main effect of Sex

(Equation 2), and a Sex by Age interaction (Equation 3)

GAMM ðConnection� Sex + s Ageð Þ, random= list Subject = �1ð Þ ð2Þ

GAMM ðConnection
� Sex + s Ageð Þ+ s Age*Sexð Þ, random= list Subject = �1ð Þ ð3Þ

The dimension used to represent the smooth terms kwas limited to a

maximum of four in all models. k should be set large enough to have

enough degrees of freedom to represent the underlying “true” change,

but small enough to maintain reasonable computational efficiency. Based

on previous studies using structural MRI measures in a partly overlapping

data set (see Wierenga et al., 2018), we used a k of 4 as an optimal

threshold. Models were compared using the BIC. The model with the

lowest BIC value (1, 2, 3) was selected as the best fitting model.

A second aim was to assess puberty-related effects on RS func-

tional connectivity, and most interestingly, whether this was also a

better predictor of RS connectivity than chronological age. First, a

simple GAMM model to visualize effect of sex and age on PDS devel-

opment was tested with the following model (4).

F IGURE 1 The four cortical midline structures and five subcortical regions of interest [Color figure can be viewed at wileyonlinelibrary.com]
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GAMM ðPDS� Sex+ s Ageð Þ, random= list Subject = �1ð Þ ð4Þ

Results showed that PDS score was described by a main effect of

sex and spline effect of age. That is, pubertal development manifested

differently for boys and girls and increased with age (see Figure 2).

To assess effects of puberty on RS connectivity, models were

assessed separately for boys and girls, given that puberty had differ-

ent timings in males and females (see Wierenga et al., 2018 for an

example on structural brain development and pubertal development).

We first examined significant effects of PDS by creating a model

including a smooth PDS term (Equation 5).

GAMM ðConnection� s PDSð Þ, random= list Subject = �1ð Þ ð5Þ

Testing the robustness of these PDS findings, we compared the BIC

of this simple PDS-only model to a developmental model including chro-

nological age (Equation 6). Second, for all connections in which PDS was

a significant predictor, we also tested whether results of PDS on func-

tional connectivity remained significant after including age as a covariate

in the developmental model. Due to the high collinearity between age

and PDS, we opted for age at baseline (Equation 7).

GAMM ðConnection� s Ageð Þ, random= list Subject = �1ð Þ ð6Þ

GAMM ðConnection� s PDSð Þ+ s Agebaselineð Þ, random= list Subject = �1ð Þ
ð7Þ

The p-values of fixed effects in all best-fitting models were

corrected for multiple comparisons with a Bonferroni–Holm correc-

tion and evaluated at p < .05.

As a measure of homogeneity of the data, we determined the

intraclass correlations (ICCs) for each RS connection. ICCs were com-

puted by estimating a null model (Equation 8) with maximum likelihood

across all data points and dividing the variance in intercept by the sum

of the variance in intercept and residual variance. ICCs are listed in

Table 2 and range from very poor (<.1) to poor (<.41) (Cicchetti, 1994).

lme ðConnection� random= list Subject = �1ð Þ ð8Þ

F IGURE 2 Pubertal Development Scale (PDS) score across age in
years. Plot indicates fitted lines of PDS from a generalized additive
mixed model for males (blue) and females (red) separately on top of
the raw longitudinal data [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 ICC for each RS functional connection

Connection ICC

Amygdala–frontal medial cortex .083

Caudate–nucleus accumbens .092

Amygdala–caudate .113

Hippocampus–putamen .129

Putamen–nucleus accumbens .132

Hippocampus–nucleus accumbens .137

Putamen–frontal medial cortex .139

Caudate–frontal medial cortex .144

Caudate–ventral ACC .147

Subcallosal cortex–dorsal ACC .156

Putamen–dubcallosal cortex .167

Putamen–ventral ACC .168

Hippocampus–dorsal ACC .169

Hippocampus–caudate .169

Hippocampus–amygdala .179

Amygdala–putamen .182

Amygdala–subcallosal cortex .188

Frontal medial cortex–dorsal ACC .2

Amygdala–ventral ACC .206

Hippocampus–ventral ACC .211

Nucleus accumbens–frontal medial cortex .213

Hippocampus–subcallosal cortex .223

Caudate–subcallosal cortex .226

Amygdala–nucleus accumbens .226

Caudate–dorsal ACC .239

Putamen–caudate .239

Amygdala–dorsal ACC .25

Nucleus accumbens–ventral ACC .255

Hippocampus–frontal medial cortex .267

Putamen–dorsal ACC .284

Frontal medial cortex–subcallosal cortex .298

Nucleus accumbens–dorsal ACC .298

Nucleus accumbens–subcallosal cortex .313

Ventral ACC–dorsal ACC .327

Frontal medial cortex–ventral ACC .327

Subcallosal cortex–ventral ACC .336

Abbreviations: ACC = anterior cingulate cortex; ICC = intraclass

correlations; RS = resting-state.
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3 | RESULTS

3.1 | Average RS functional connectivity

Figure 3 displays the average RS-connectivity strength (Pearson's r)

for each connection of interest per time point. Most regions were

positively functionally connected, with the strongest positive connec-

tions between the amygdala–hippocampus and subcallosal cortex–

frontal medial cortex. Negative connectivity was observed between

dorsal and ventral cortical regions, such as the dorsal ACC–subcallosal

cortex, and dorsal ACC–frontal medial cortex.

3.2 | Age-related change in RS functional
connectivity

We assessed age-related changes in RS connectivity using GAMM (see

Table 3). After correction for multiple comparisons (Bonferroni–Holm),

significant positive effects of age were observed for subcortical–

subcortical connectivity between the amygdala, putamen, and hippocam-

pus, between the putamen, nucleus accumbens, and hippocampus, and

between the hippocampus and nucleus accumbens (Figure 4a), all show-

ing a strengthening of functional connectivity with age. Cortico-cortical

connections also showed a significant strengthening of connectivity with

age between the frontal medial cortex–ventral ACC, frontal medial

cortex–dorsal ACC, and between the subcallosal cortex–ventral ACC

(Figure 4b). Age-related strengthening of connectivity was observed in

subcortical–cortical connectivity, between the hippocampus–subcallosal

cortex, caudate–subcallosal cortex, and nucleus accumbens–ventral ACC

(Figure 4c). Finally, age-related decreases were observed only for

subcortical–cortical connectivity (Figure 4d), particularly between the

caudate–dorsal ACC, hippocampus–dorsal ACC, nucleus accumbens–

frontal medial cortex, nucleus accumbens–subcallosal cortex, and

putamen–frontal medial cortex. Visualization of significant age splines

showed a relatively linear developmental pattern for all connections, with

a few subcortical–cortical connections leveling off in adolescence or

young adulthood (see Figure 4).

For two connections, the best-fitting model included a main effect of

sex. That is, functional connectivity between hippocampus–amygdala

increased with age and was greater for males than females (see Figure 4

plotted in red/blue, and Table 3). Functional connectivity between the

hippocampus–ventral ACC was not dependent on age, but was greater

for females than males. None of the models showed a best fit for model

(3) including age by sex interaction terms.

3.3 | Pubertal development changes in RS functional
connectivity

To assess pubertal developmental changes in RS functional connectiv-

ity, a set of GAMMs were run, only including participants between

ages 8 and 18-years old, during which PDS changes are most pro-

nounced. Given the difference in pubertal timing between sex, all

models were run separately for boys and girls (see for a similar

approach Wierenga et al., 2018).

For boys, subcortical–cortical connectivity between the nucleus

accumbens–frontal medial cortex and putamen–frontal medial cortex

related negatively to PDS scores, with increasing PDS significantly

decreasing RS connectivity (similarly to what was observed for age) (see

Figure 5; Table 4). Additionally, connectivity between the hippocampus-

amygdala (similar to age effects) and subcallosal cortex–dorsal ACC (not

observed for age) was significantly positively related to PDS score, with

increasing PDS being associated with increased RS connectivity. The

nucleus accumbens-frontal medial cortex and subcallosal cortex–dorsal

ACC connectivity showed a better fit for a PDS-only than an age-only

model when comparing BICs. When including age at baseline and PDS in

the same model, only the hippocampus–amygdala connectivity showed a

significant effect of PDS on RS connectivity over and above age at base-

line (p = .002).

For girls, subcortical–cortical connectivity between the hippocampus–

dorsal ACC (also observed for age), caudate–dorsal ACC (also

observed for age), and putamen–frontal medial cortex (also

observed for age) was significantly negatively related to PDS

scores, with increasing PDS related to decreased RS connectivity

F IGURE 3 Average full-correlation matrices (uncorrected Pearson's r) between all regions of interest for time point 1, time point 2, and time
point 3 [Color figure can be viewed at wileyonlinelibrary.com]
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(see Figure 5; Table 5). All three connections showed a better fit for

a PDS-only than an age-only model when comparing BICs. Finally,

when including PDS and age at baseline in the same model for these

three connections, only the hippocampus–dorsal ACC (p = .006)

and caudate–dorsal ACC (p = .02) showed a significant effect of

PDS over and above age at baseline.

4 | DISCUSSION

This study examined longitudinal changes within and between

subcortical–cortical connectivity across adolescent development

extending into young adulthood (8–29 years). Given that prior studies

testing subcortical reactivity suggested that puberty may be a driving

TABLE 3 Generalized additive mixed models examining effects of age and sex. For each connection, model fits are shown for (1) Age-only
models (2) Age + sex modes, and (3) Age x sex models. Corrected P-values are shown for age (and sex) effects

BIC values Model results

Measure Model fits Age spline Age spline + sex

Age Age + sex Age × sex Best model p-Value p-Value sex p-Value age

Ventral ACC–dorsal ACC −241.16 −236.98 −224.01 .9092

Subcallosal ACC–dorsal ACC −390.54 −384.84 −371.99 .4244

Subcallosal ACC–ventral ACC −324.90 −318.42 −306.14 Age only .0019*

Frontal medial–dorsal ACC −429.80 −423.31 −411.65 Age only .0002*

Frontal medial–ventral ACC −282.78 −281.30 −273.82 Age only .0002*

Frontal medial–subcallosal ACC −45.86 −40.07 −27.14 .2168

Accumbens–dorsal ACC −489.09 −482.92 −470.38 .5770

Accumbens–ventral ACC −448.41 −444.37 −432.70 Age only .0002*

Accumbens–subcallosal ACC −198.25 −192.23 −179.46 Age only .0112*

Accumbens–frontal medial −398.37 −396.72 −383.97 Age only .0002*

Caudate–dorsal ACC −390.03 −384.19 −373.74 Age only .0118*

Caudate–ventral ACC −439.57 −435.67 −422.79 .7301

Caudate–subcallosal ACC −553.08 −547.02 −534.10 Age only .0046*

Caudate–frontal medial −591.08 −589.00 −576.06 .4244

Caudate–accumbens −525.75 −519.33 −507.80 .0989

Putamen–dorsal ACC −426.98 −422.88 −409.89 .7122

Putamen–ventral ACC −545.97 −539.51 −529.75 .6996

Putamen–subcallosal ACC −516.83 −510.50 −498.20 .2561

Putamen–frontal medial −587.49 −586.12 −573.15 Age only .0103*

Putamen–accumbens −597.48 −591.01 −578.17 Age only .0103*

Putamen–caudate −418.32 −413.57 −406.01 .7423

Amygdala–dorsal ACC −329.89 −323.56 −310.75 .2827

Amygdala–ventral ACC −283.46 −278.10 −265.41 .4734

Amygdala–subcallosal ACC −24.79 −18.82 −7.90 .6911

Amygdala–frontal medial −407.55 −402.03 −392.56 .0917

Amygdala–Accumbens −392.82 −386.61 −374.90 .1170

Amygdala–caudate −462.45 −458.18 −445.29 .2561

Amygdala–putamen −432.42 −426.03 −413.36 Age only .0005*

Hippocampus–dorsal ACC −391.67 −385.67 −372.90 Age only .0409*

Hippocampus–ventral ACC −241.72 −251.99 −239.74 Age + sex .0013* .8777

Hippocampus–subcallosal ACC −126.37 −120.27 −107.28 .0001

Hippocampus–frontal medial −317.67 −315.85 −303.33 .6117

Hippocampus–accumbens −414.21 −407.71 −395.11 Age only .0018*

Hippocampus–caudate −534.12 −527.71 −516.70 .5351

Hippocampus–putamen −454.18 −452.57 −439.67 Age only .0097*

Hippocampus–amygdala −145.66 −153.46 −142.16 Age + sex .0022* .0028*

Abbreviations: ACC = anterior cingulate cortex; BIC = Bayesian Information Criterion.

Note. For all models, corrected p-values are reported (Bonferroni–Holm). *Corrected p-value <.05.
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factor for nonlinear age patterns (Crone & Dahl, 2012; Ladouceur,

2012; Pfeifer et al., 2011), an important question was whether devel-

opment would be better described by pubertal development than age.

For this purpose, we made use of a three-wave accelerated longitudi-

nal data set with boys and girls across different stages of pubertal

development, who completed RS scans at each time point.

We observed several key findings. First, a quarter of the subcortical–

cortical connections we investigated weakened with age. The decrease

in subcortical–cortical connectivity was unique, given that functional

connectivity between subcortical and between cortical regions only

strengthened with age. Second, for several key connections the decrease

in subcortical–cortical connectivity was better described by pubertal

F IGURE 4 Spaghetti plots indicating a significant fitted line of age on top of the raw longitudinal data for (a) cortico-cortical connections
(b) and subcortical–cortical connections (c,d). Location of region of interest (ROI) is indicated schematically as dots, visualized with the BrainNet
viewer (Xia, Wang, & He, 2013, http://www.nitrc.org/projects/bnv/). Green lines between ROIs indicate age-related increases, and red lines
indicate age-related decreases. If there was a sex difference in functional connectivity development, males are plotted in blue and females in red
in spaghetti plots (only the case for hippocampus–amygdala connectivity) [Color figure can be viewed at wileyonlinelibrary.com]
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development than age, suggesting that puberty may be one of the mech-

anisms that initiate change in subcortical–cortical development. The dis-

cussion is organized alongside these main findings.

4.1 | Age-related changes in functional connectivity

To examine functional connectivity patterns in adolescence, we speci-

fied regions as part of subcortical and medial cortical reward regions

typically implicated in functional reward processing and motivated

behavior (Doremus-Fitzwater & Spear, 2016; Haber & Knutson, 2010;

Telzer, 2016; van Duijvenvoorde, Achterberg, et al., 2016). Our results

showed, first, that connectivity patterns were highly stable across

time points at the group level, with excellent within-sample replication

of positive and negative connectivity patterns across three time

points. Second, the within-individual stability was relatively low, with

ICCs ranging between 0.08 and 0.33, although most being at least

above .1 (e.g., Ordaz, Foran, Velanova, & Luna, 2013). Compared to

fMRI ICCs, these values are comparable for neural activity in subcortical

brain regions (Braams et al., 2015; Herting, Gautam, Chen, Mezher, &

Vetter, 2017; Schreuders et al., 2018) and highlight that patterns were

more consistent at the group than the individual level. One interpretation

of low test–retest reliability (such as the ICC) is that there is a poor con-

sistency of functional connectivity. However, for studies with relatively

longer delays between time points and younger populations, a low ICC

may also reflect development over time (Herting et al., 2017). To

distinguish which of these effects contributes most to these ICC results,

future studies should further examine the test–retest reliability of RS

scans in developmental populations, preferably also including shorter

durations between scans.

A main goal in this study was whether RS functional connectivity

changed over the course of adolescent development. Results showed

that the patterns of change were dependent on the specific connec-

tion that was studied. More specifically, we observed an age-related

decline in functional connectivity between the nucleus accumbens,

the putamen, and more ventral regions of the medial PFC,

(i.e., subcallosal medial cortex and frontal medial cortex). These find-

ings fit well with prior cross-sectional reports (Fareri et al., 2015; van

Duijvenvoorde, Achterberg, et al., 2016), and have been interpreted

as a more independent functioning of these networks involved in

affective-motivational processes. Decreases in functional connectivity

with age were also observed for structures such as the caudate with

the dorsal ACC, which concurs with a more dorsal-to-ventral divide of

striatal connectivity (Di Martino et al., 2008; Porter et al., 2015).

These patterns were paralleled by increases in connectivity between

subcortical regions and between cortical regions. These findings fit

prior research that has shown strengthening of functional connectivity

in cortico-cortical connections (Supekar, Musen, & Menon, 2009), as

well as subcortico-subcortical connectivity (van Duijvenvoorde,

Achterberg, et al., 2016), and extend previous findings by providing

longitudinal evidence for stronger integration within subcortical and

F IGURE 5 Spaghetti plots indicating a significant fitted line of pubertal development on top of the raw longitudinal data for males (left panel)
and females (right panel). Location of region of interest (ROI) is indicated schematically as dots, visualized with the BrainNet viewer (Xia et al.,
2013, http://www.nitrc.org/projects/bnv/). Green lines between ROIs indicate Pubertal Development Scale (PDS)-related increases, and red lines
indicate PDS-related decreases [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 4 Generalized additive mixed models examining effects of
PDS and age for males. For each connection, model fits are shown for
(1) PDS-only models (2) Age-only models. Corrected P-values are
shown for effects of PDS

Measure

BIC values

Model fits PDS spline
PDS Age p-Value PDS

Ventral ACC–dorsal ACC −80.31 −81.43 .6712

Subcallosal ACC–dorsal ACC −127.92 −125.21 .0433*

Subcallosal ACC–ventral ACC −96.67 −98.09 .0937

Frontal medial–dorsal ACC −133.59 −137.10 .3167

Frontal medial–ventral ACC −63.57 −65.79 .1192

Frontal medial–
subcallosal ACC

−8.28 −6.16 .1379

Accumbens–dorsal ACC −161.47 −160.61 .5224

Accumbens–ventral ACC −112.96 −114.14 .1192

Accumbens–subcallosal ACC −17.13 −17.14 .6712

Accumbens–frontal medial −96.22 −92.55 .0217*

Caudate–dorsal ACC −129.58 −125.70 .1192

Caudate–ventral ACC −96.53 −96.26 .7379

Caudate–subcallosal ACC −157.21 −158.51 .6712

Caudate–frontal medial −178.24 −180.44 .5857

Caudate–accumbens −131.50 −128.59 .0930

Putamen–dorsal ACC −123.09 −123.66 .9538

Putamen–ventral ACC −163.21 −163.17 .9384

Putamen–subcallosal ACC −121.57 −121.63 .3167

Putamen–frontal medial −158.52 −161.58 .0433*

Putamen–accumbens −143.26 −140.63 .0706

Putamen–caudate −83.29 −86.45 .7086

Amygdala–dorsal ACC −59.59 −60.10 .9538

Amygdala–ventral ACC −70.56 −70.75 .9538

Amygdala–subcallosal ACC 16.22 16.43 .8092

Amygdala–frontal medial −82.04 −81.08 .3371

Amygdala–accumbens −83.92 −88.01 .5224

Amygdala–caudate −143.84 −145.87 .2234

Amygdala–putamen −93.03 −95.65 .0689

Hippocampus–dorsal ACC −111.32 −111.81 .9562

Hippocampus–ventral ACC −78.78 −78.63 .7379

Hippocampus–
subcallosal ACC

−26.43 −27.47 .3234

Hippocampus–frontal medial −96.07 −96.59 .8092

Hippocampus–accumbens −107.35 −111.65 .8092

Hippocampus–caudate −137.40 −137.44 .8637

Hippocampus–putamen −124.95 −124.33 .6053

Hippocampus–amygdala −30.06 −35.28 .0217*

Abbreviations: ACC = anterior cingulate cortex; BIC = Bayesian

Information Criterion; PDS = Pubertal Development Scale.

Note. Multiple comparison corrected p-values are reported

(Bonferroni–Holm). *Corrected p-value <.05.

TABLE 5 Generalized additive mixed models examining effects of
PDS and age for females. For each connection, model fits are shown
for (1) PDS-only models (2) Age-only models. Corrected P-values are
shown for effects of PDS

Measure

BIC values

Model fits PDS spline
PDS Age p-Value PDS

Ventral ACC–dorsal ACC −87.27 −87.92 .5354

Subcallosal ACC–dorsal ACC −120.66 −120.62 .8908

Subcallosal ACC–ventral ACC −84.29 −93.63 .4784

Frontal medial–dorsal ACC −106.47 −106.50 .4399

Frontal medial–ventral ACC −107.93 −108.84 .3231

Frontal medial–
subcallosal ACC

6.32 7.92 .3231

Accumbens–dorsal ACC −160.17 −158.97 .4614

Accumbens–ventral ACC −116.33 −121.94 .3231

Accumbens–subcallosal ACC −50.83 −49.53 .4442

Accumbens–frontal medial −146.85 −148.61 .3231

Caudate–dorsal ACC −135.04 −131.40 .0092*

Caudate–ventral ACC −145.11 −145.44 .9192

Caudate–subcallosal ACC −170.53 −170.95 .8908

Caudate–frontal medial −166.66 −166.38 .3231

Caudate–accumbens −149.76 −150.91 .8908

Putamen–dorsal ACC −138.38 −138.16 .8617

Putamen–ventral ACC −190.79 −190.22 .7201

Putamen–subcallosal ACC −165.07 −165.90 .8908

Putamen–frontal medial −188.42 −187.88 .0469*

Putamen–accumbens −201.99 −201.95 .8908

Putamen–caudate −117.36 −117.32 .8908

Amygdala–dorsal ACC −111.87 −111.07 .2559

Amygdala–ventral ACC −98.59 −96.12 .3231

Amygdala–subcallosal ACC −9.05 −9.11 .9838

Amygdala–frontal medial −172.22 −171.99 .5354

Amygdala–accumbens −117.48 −117.58 .8908

Amygdala–caudate −134.94 −134.83 .7360

Amygdala–putamen −122.05 −123.67 .4784

Hippocampus–dorsal ACC −147.86 −144.27 .0092*

Hippocampus–ventral ACC −87.71 −88.02 .8908

Hippocampus–
subcallosal ACC

−25.88 −33.14 .2559

Hippocampus–frontal medial −81.77 −81.69 .7201

Hippocampus–accumbens −148.25 −158.80 .1217

Hippocampus–caudate −211.57 −213.21 .3516

Hippocampus–putamen −184.59 −185.58 .8908

Hippocampus–amygdala −73.36 −71.89 .4614

Abbreviations: ACC = anterior cingulate cortex; BIC = Bayesian

Information Criterion; PDS = Pubertal Development Scale.

Note. Multiple comparison corrected p-values are reported

(Bonferroni–Holm). *Corrected p-value <.05.
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within cortical regions across development. Although GAMM is a

descriptive test of age effects, inspection of the best-fitting age curves

(Figure 4) from our models indicates that for specific connections devel-

opmental changes in connectivity follow a nonlinear pattern, with

changes leveling off in early adulthood. This “leveling off”was particularly

pronounced for decreases in connectivity between the putamen–frontal

medial cortex, caudate–dorsal ACC, and hippocampus–dorsal ACC. This

may suggest most prominent changes in adolescence within this

decoupling of these functional networks.

Together, these findings may be interpreted as change in local ver-

sus distributed networks in which specific functional networks both

strengthen and weaken across adolescence. Previous work also showed

that structural networks become more segregated across development

(Baum, Ciric, Roalf, Betzel, et al., 2017), and that BOLD dimensionality

decreases with age (Kundu et al., 2018). One suggested interpretation is

that these changes may maximize the neural efficiency of interregional

communication (Stevens, 2016). Future studies may complement our RS

functional connectivity findings by using more explorative analyses such

as graph-theory models together with age- and pubertal development,

allowing examination of metrics of brain organization and neural effi-

ciency on a whole-brain basis.

4.2 | Age- versus puberty-related changes in
functional connectivity

Previous studies focusing on functional reactivity have often

suggested that pubertal development may advance or enhance

growth trajectories of brain development, although most studies up to

now focused on brain structural development (e.g., Herting & Sowell,

2017; Vijayakumar, Mills, Alexander-Bloch, Tamnes, & Whittle, 2018)

or cross-sectional functional connectivity development (Fareri et al.,

2015). Here, we observed that a number of subcortical–cortical con-

nections sensitive to developmental change were better described by

(self-reported) pubertal development than age. That is, in boys we

observed that the decrease in connectivity between the nucleus

accumbens with the frontal medial cortex was better described by

pubertal development than age. Girls showed a similar effect of

pubertal development on putamen and medial PFC connectivity, and,

additionally, on connectivity between the caudate and dorsal ACC.

Finally, a few specific connections were explained by pubertal devel-

opment over and above baseline age. For boys, this was only the

strengthening between hippocampus–amygdala connectivity and for

girls the decoupling between hippocampal–dorsal ACC and caudate–

dorsal ACC connectivity.

Until now, a large body of work on pubertal effects on neural

development is based on animal studies. Recent animal evidence sug-

gests that puberty may be a critical driver in reward-circuitry develop-

ment. For instance, animal work has observed a reduction in medial

PFC volume and synapses in postpubertal rats, and neuronal losses

during pubertal onset (Walker et al., 2017; Willing & Juraska, 2015). In

humans, decreases in gray matter density in frontal regions (Peper

et al., 2009), as well as hippocampus, amygdala, and caudate volumes

(Goddings et al., 2014; Wierenga et al., 2018) have been related to

pubertal development, but—to our knowledge—these findings are one

of the first to test and compare effects of pubertal development on

RS functional connectivity (but see also Ernst et al., 2019). Including

pubertal development improved model fits for changes in specific

subcortical–cortical connections, suggesting that the developing effi-

ciency of the brain is a puberty-driven maturational processes that

may accelerate changes in modularity and plasticity in the developing

brain. These differences between sexes may suggest that pubertal

development in boys and girls has differential influence on the devel-

opment of subcortical–cortical connectivity. A recent study into RS

connectivity in the cortical default network observed particularly

sex × pubertal developmental interactions in which connectivity

decreased across pubertal development in girls, whereas it increased

in boys (Ernst et al., 2019). This was tentatively interpreted as relevant

to the emergence of affective dysregulation in adolescence that affect

girls more. Although we did not explicitly test for sex × pubertal

developmental interactions, our findings seem to indicate that puber-

tal development decreases connectivity in both girls and boys, yet

affects different subcortical–cortical connections. When controlling

for baseline age, however, pubertal development in boys particularly

strengthened amygdala–hippocampal connectivity, and for girls partic-

ularly decreased connectivity with the dorsal ACC. Future studies will

need to extend and replicate these findings in male and female puber-

tal cohorts that have been followed on an individual level from prepu-

bertal to postpubertal development.

Note that when testing sex differences, we observed only few dif-

ferences in functional connectivity between boys and girls. That is,

amygdala–hippocampus connectivity, a connection most prominently

influenced by sex, was stronger for boys than for girls, and

hippocampal–ventral ACC connectivity was stronger for girls than for

boys. Previous research on sex differences has mostly been done in

adults (e.g., Alarcón, Cservenka, Rudolph, Fair, & Nagel, 2015; Kogler

et al., 2016), and has shown higher hippocampal and/or amygdala

connectivity in females than males, possibly related to their better

memory performance (Gur & Gur, 2016). The sex differences we

observed here may be an interesting starting point, but should be

interpreted with caution until replicated, given the lack of consistent

findings in prior developmental samples.

4.3 | Limitations

RS connectivity is inherently susceptible to effects of motion, which

can have a marked influence on developmental findings. In the current

study, we have taken steps to account for such possible confounds

(see Satterthwaite et al., 2017). Specifically, we first excluded people

above our set motion threshold. Further, we included realignment

parameters, tissue-specific signals, global signal regression, and a den-

oising procedure based on an independent components analyses (FSL

FIX). One possible concern is that this latter denoising procedure has

mainly been applied in adult populations. However, the use of these

denoising techniques may be especially helpful in cleaning relatively

noisy data from such specific populations, and can improve signal and

analysis quality. Applying control analyses on motion confounds in our
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cleaned time series indicated that FD was minimalized across all time

points, supporting its use in the current data set. Another concern is

the inclusion of global-signal regression. Regressing out global signal

may reduce noise from physiological measures such as heart rate and

respiration (Chen et al., 2012; Power et al., 2015) and differences in

vigilance and arousal (Liu et al., 2017), yet it has been found to induce

negative correlations and spurious results (Satterthwaite et al., 2013).

Explicit comparisons in another developmental RS study, showed very

high comparability (r = .94; Gabard-Durnam et al., 2014) when com-

paring results with or without global signal regression. Thus, to benefit

from the reduction in artifacts, as well as to build on prior develop-

mental studies (Fareri et al., 2015; Gabard-Durnam et al., 2014; Peters

et al., 2015; Peters, Peper, et al., 2016; Peters, van Duijvenvoorde,

Koolschijn, & Crone, 2016; van Duijvenvoorde, Achterberg, et al.,

2016), we opted to also include a global signal regression.

A second limitation of our analyses may be that we used a set of

anatomical ROIs based on the Harvard–Oxford atlas. Using anatomical

ROIs versus a functional brain atlas (such as the areal atlas of Power

et al., 2011) may be less sensitive in detecting age- (or puberty)

related change. Parcellation studies in adults have identified that

structural atlases suffer from lower homogeneity than functional

parcellations (Craddock, James, Holtzheimer, Hu, & Mayberg, 2012;

Gordon et al., 2014). This is particularly so for atlases that use large

structural regions such as the AAL (Gordon et al., 2014), while more

fine-grained structural atlases such as Brodmann areas seem to per-

form better. The advantage of structural atlases is that they are highly

standardized, and used typically in both developmental functional

imaging studies (e.g., Achterberg et al., 2018) and RS studies

(e.g., Fareri et al., 2015; Stevens, 2016). Here, we used an anatomical

atlas that may allow for more specific cortical regions by choosing a

standardized structural probabilistic atlas, namely the Harvard–Oxford

atlas. Nonetheless, future studies should consider comparing these

functional and structural approaches in a developmental perspective.

5 | CONCLUSION

The current study used RS functional connectivity in a large longitudi-

nal sample to understand developmental changes in connectivity

between and within subcortical and medial prefrontal regions. These

findings have implications for future research: they confirm patterns

of subcortical–cortical connectivity changes, and advance insights by

suggesting an important role for pubertal development in the develop-

ment of subcortical–cortical functional connectivity. This may be an

important starting point for further understanding of hormonal effects

operating on functional connectivity development, and the link with

real-life reward-driven behaviors.
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