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Objectives: To determine the association between radiomics signature (Rad-

signature) of pericoronary tissue (PCT) in coronary computed tomography

angiography (CCTA) and CT-derived fractional flow reserve (CT-FFR), and

explore the influential factors of functional ischemia.

Methods:We retrospectively included 350 patients who underwent CCTA from

2 centers, consisting of the training (n = 134), validation (n = 66), and testing

(with CCTA and invasive coronary angiography, n = 150) groups. After

evaluating coronary stenosis level in CCTA (anatomical CT), pericoronary fat

attenuation index (FAI), and CT-FFR, we extracted 1,691 radiomic features from

PCT. By accumulating and weighting the most contributive features to

functional ischemia (CT-FFR ≤ 0.8) the Rad-signature was established using

Boruta integrating with a random forest algorithm. Another 45 patients who

underwent CCTA and invasive FFR were included to assure the performance of

Rad-signature.

Results: A total of 1046 vessels in 350 patients were analyzed, and functional

ischemia was identified in 241/1046 (23.0%) vessels and 179/350 (51.1%)

patients. From the 47 features highly relevant to functional ischemia, the

top-8 contributive features were selected to establish Rad-signature. At the

vessel level, the area under the curve (AUC) of Rad-signature to discriminate

functional ischemia was 0.83, 0.82, and 0.82 in the training, validation, and

testing groups, higher than 0.55, 0.55, and 0.52 of FAI (p < 0.001), respectively,

and was higher than 0.72 of anatomical CT in the testing group (p = 0.017). The

AUC of the combined model (Rad-signature + anatomical CT) was 0.86, 0.85,

and 0.83, respectively, significantly higher than that of anatomical CT and FAI

(p < 0.05). In the CCTA-invasive FFR group, using invasive FFR as the standard,

the mean AUC of Rad-signature was 0.83 ± 0.02. At the patient level,

multivariate logistic regression analysis showed that Rad-signature of left

anterior descending (LAD) [odds ratio (OR) = 1.72; p = 0.012] and anatomical

CT (OR = 3.53; p < 0.001) were independent influential factors of functional
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ischemia (p < 0.05). In the subgroup of nonobstructive (stenosis <50% in

invasive coronary angiography) and obstructive (≥50%) cases of the testing

group, the independent factor of functional ischemia was FAI of LAD (OR = 1.10;

p = 0.041) and Rad-signature of LAD (OR = 2.45; p = 0.042), respectively.

Conclusion: The machine-learning-derived Rad-signature of PCT in CCTA

demonstrates significant association with functional ischemia.

KEYWORDS

machine learning, fractional flow reserve, radiomics, functional ischemia, coronary
computed tomography angiography

Introduction

Functional ischemia is a state in which the blood flow cannot

meet the metabolic needs of tissues even in the absence of

vascular obstruction (Moroni et al., 2021). Coronary

computed tomography angiography (CCTA) is widely used

for demonstrating the degree of coronary stenosis, but lacks

the information of blood flow function. Invasive fractional flow

reserve (FFR) is the gold standard for assessing coronary blood

flow, and used for clinical decision-making in the treatment of

coronary artery disease (CAD) (Pijls et al., 2007; Tonino et al.,

2009; De Bruyne et al., 2012; Windecker et al., 2014). However,

its clinical application is limited due to the invasive and high-cost

pressure guide wire. Recently, CT-derived FFR (CT-FFR) based

on hydrodynamics or deep learning has been developed to

noninvasively measure lumen blood flow, avoiding additional

radiation exposure and invasive procedure. A CT-FFR

value ≤0.8 is considered coronary functional ischemia, and

studies have proved that CT-FFR is highly consistent with

invasive FFR (Tesche et al., 2017; Alex et al., 2020). In

addition to assessing blood flow from the perspective of

lumen, exploring the association between functional ischemia

and pericoronary tissue (PCT) may provide more evidence for

the diagnosis and treatment of CAD.

The bidirectional interaction between pericoronary adipose

tissue (PCAT) and the adjacent coronary wall leads to coronary

artery inflammation and plaque formation (Margaritis et al.,

2013; Antonopoulos et al., 2014; Antonopoulos et al., 2015;

Antonopoulos et al., 2017). Then, inflammatory cell

infiltration and edema in PCAT result in increased CT

attenuation, realizing the visualization and quantitative

evaluation of vascular inflammation. A PCAT imaging

biomarker, fat attenuation index (FAI), has been introduced

as a strong and independent predictor of major adverse

cardiovascular events (Dai et al., 2022). Ma et al. (2021) found

that overall FAI was not significantly associated with abnormal

FFR, but lesion-specific PCAT was independently related to

abnormal FFR. FAI only incorporates PCAT density, but does

not reflect the complex tissue structures around the coronary

artery. Although the widely used CT attenuation range of PCAT

is from −190 to −30 Hounsfield unit (HU), the PCAT attenuation

of high-risk plaque with a “fat stranding” sign can reach 31 HU,

because of the complex plaque components (Hedgire et al., 2018).

In order to analyze PCT, machine learning-based radiomics

allows to extract and analyze numerous quantitative features

inside the medical images (Gillies et al., 2016).

Therefore, we hypothesize that the radiomic features of PCT

are associated with functional coronary ischemia. Considering

that some information may be omitted when solely determining

the adipose tissue by CT attenuation, we aim to comprehensively

analyze PCT by extracting the radiomic features of adipose and

other tissues around the coronary artery. We established a

machine-leaning-derived radiomics signature (Rad-signature)

based on PCT to discriminate functional ischemia, compared

with the conventional stenosis grading on CCTA (anatomical

CT) and FAI, and then analyzed the influential factors of

functional ischemia.

Materials and methods

Study sample

The patients were retrospectively included in two medical

centers [Hospital-1: Shanghai General Hospital-North (city

center); Hospital-2: Shanghai General Hospital-South

(Songjiang new city)]. The inclusion criteria of subjects with

CCTA were as follows: 1) patients with suspected or diagnosed

CAD, defined by the guidelines (Fox et al., 2006; Fihn et al., 2012;

Montalescot et al., 2013); 2) patients with CCTA from January to

December 2020 to establish the model and validate its

performance; 3) patients who underwent CCTA and invasive

coronary angiography (ICA) from January 2014 to December

2019 to test the model and analyze the influential factors of

functional ischemia by subgrouping the patients into obstructive

and nonobstructive CAD. Additionally, patients who underwent

CCTA and invasive FFR from January 2020 to December

2021 were included to assure the performance of Rad-

signature in discriminating standard functional ischemia.

The exclusion criteria were: 1) history of coronary stenting or

bypass surgery; 2) poor image quality and insufficient for

diagnosis; 3) coronary artery variation; 4) total occlusion of
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coronary artery limiting the calculation of CT-FFR; 5) images

that cannot be processed by the post-processing workstation,

resulting in the failure of CT-FFR calculation or PCT

segmentation; 6) time interval between CCTA and ICA (or

invasive FFR) >2 months.

The patients were divided into four groups, including the

training, validation (patients with CCTA), testing (with CCTA

and ICA), and CCTA-invasive FFR groups. Figure 1 displays

patient selection and grouping. The institutional review board

approved this retrospective study and exempted the patient

informed consent.

In the training, validation, and testing groups, a CT-FFR

value ≤0.8 was defined as coronary functional ischemia (Tesche

et al., 2017; Alex et al., 2020). In the invasive FFR group, an

invasive FFR value ≤ 0.8 was defined as standard coronary

functional ischemia. Basic characteristics and medical history

were collected from the electronic medical record system,

including age, sex, body mass index (BMI), smoking history,

family history of CAD, diabetes, hypertension, and

hyperlipidemia.

Coronary computed tomography
angiography acquisition and anatomic
evaluation

CCTA examination was performed on different CT

equipment (Somatom Definition Flash and Somatom Force,

Siemens Healthineers; Revolution CT and Discovery750 HD,

GE Healthcare; Aquilion ONE, Canon Medical Systems) in the

two centers (Supplementary Table S1). Beta-blockade was

administrated for patients with a heart rate >90 beats per

minute. Prospective gated CT scanning was performed. The

scan covering range was from 1 cm below the tracheal carina

to 2 cm below the left diaphragm. The tube voltage and current

were automatically set using smart mode. The volume of contrast

medium (Iopamidol 370 mg I/mL; Bracco) was calculated as

0.8 ml/kg, and the flow rate was 4–5 ml/sec. Then 20 ml of

normal saline was injected at the same flow rate.

According to the standard segments of coronary artery

recommended by the Society of Cardiovascular Computed

Tomography of America (Leipsic et al., 2014), two

experienced radiologists with 5- and 15-years experience in

cardiovascular imaging independently evaluated the diameter

stenosis level of the left anterior descending (LAD), left

circumflex (LCx), and right coronary artery (RCA), using a

dedicated image processing workstation (Advanced

Workstation 4.6, GE Healthcare) with curved planar

reformation, multiplanar reformation and volume rendering,

and resolved the disagreement by mutual consultation. The

vessels of <1.5 mm in diameter were excluded from

anatomical evaluation.

Invasive coronary angiography and
invasive fractional flow reserve methods

Invasive coronary angiography was performed by

experienced interventional cardiologists according to local

clinic standards, who were blinded to the results of CCTA.

After radial artery or femoral artery puncture, left and right

coronary angiography was performed. Based on the 5 projection

angles of the left coronary artery and 2 of the right coronary

artery, the degree of stenosis was quantitatively determined. A

stenosis level ≥50% was considered obstructive CAD. An

interventional cardiologist performed invasive FFR

FIGURE 1
Flowchart of patient selection and grouping. CCTA, coronary computed tomography angiography; CAD, coronary artery disease; ICA, invasive
coronary angiography.
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measurements based on coronary stenosis to determine the

hemodynamic significance and the need for revascularization.

The FFR pressure wire (Pressure Wire Abbott, St. Jude Medical,

United States) was placed distal to the stenosis position. An

FFR ≤ 0.80 was considered functional ischemia. The dose of

contrast agent for each view was approximately 5 ml. The X-ray

dose pattern was electrophysiological. The image acquisition rate

was 7.5 frames per second.

Functional CT-derived fractional flow
reserve

An on-site research prototype application (cFFR v3.5.0,

Siemens Healthineers, not currently commercially available)

was implemented for CT-FFR computation, which has been

previously described and validated (Itu et al., 2016; Coenen

et al., 2018; Tesche et al., 2018). This application calculates

the CT-FFR value using a deep learning-based framework,

which integrates the complex nonlinear relationship between

the various features extracted from the coronary tree geometry

and computes the blood flow of a coronary position (Itu et al.,

2016). This model calculates CT-FFR based on reduced-order

hydrodynamics. This application program can segment the

coronary artery lumen on CT images to generate a coronary

tree, and semiautomatically represent the CT-FFR value of any

point in this tree. Before calculating CT-FFR, the observer needs

to confirm or manually edit the automatically recognized

coronary centerlines, and then the software generates a 3D

pseudocolor map to comprehensively visualize the CT-FFR

values of the coronary artery tree.

A radiologist with 10 years of cardiac imaging experience

measured CT-FFR values, blinded to the results of medical

history and other examinations. In this study, the CT-FFR

values of LAD, LCx, and RCA were recorded. For vessels with

stenosis, the measuring position was 2–3 cm distal from the

stenosis. In the case of multiple stenoses in a single vessel, the

distal end of the farthest lesion was measured. For normal vessels,

the measuring position was the farthest end (about 1.5 mm in

diameter). In order to match the positions of the invasive FFR

and CT-FFR measurements, an independent radiologist, blinded

to the functional results, marked the corresponding location on

the CT-FFR image after identifying the location of the invasive

FFR on the fluoroscopic image.

Pericoronary tissue segmentation and
radiomic feature extraction

The same radiologist segmented PCT using dedicated

software (Coronary plaque analysis v5.0.2, Frontier, Syngo.

via, Siemens Healthineers). The software automatically

segmented the image, and the radiologist manually modified

them in case of inaccuracy. PCT is defined as all voxels extending

outward from the outer wall of the vessel with a radius equal to

the vessel diameter (Goeller et al., 2019). For LAD and LCx, the

analyzed PCT was 4 cm long in the proximal segment of the

vessels. For RCA, the analyzed tissue was 4 cm long in the

proximal segment (1–5 cm from RCA ostium). The software

then calculated FAI based on the segmented volume.

After importing the PCT mask, the dedicated software

(Radiomics 13.0, Frontier, Syngo. via, Siemens Healthineers)

automatically extracted and calculated 1,691 radiomic features

of each vessel in about 10 s, including three major categories:

18 first-order, 75 texture, and 17 size and shape features.

Feature selection and rad-signature
construction

To select stable and repeatable features, a radiologist with

10 years of experience in cardiac imaging randomly selected

30 vessels from the training group, segmented PCT and

extracted radiomic features, and repeated the same procedure

1 month later. In these two measurements, the features with an

intraclass correlation coefficient >0.8 were considered stable.

Boruta algorithm integrated with random forest selected

highly associated features by iteratively deleting features. Then

the Boruta algorithm-selected features were converged by

hierarchical clustering, and the most important features were

selected as candidate features from each cluster. In this study, a

random forest algorithm constructed a Rad-signature

incorporating multiple features into one value (Dercle et al.,

2020; Wu et al., 2020). The parameters in the training group were

estimated by grid search with 10-fold cross-validation to avoid

overfitting. The feature importance was assessed by the Gini

impurity decreased overall decision trees. Each coronary vessel

has a Rad-signature with a rad-score range of 0–1, indicating the

probability of functional ischemia. The greater the Rad-signature,

the more likely functional ischemia happens. In the CCTA-

invasive FFR group, 4-fold cross-validation was used to

estimate the performance of Rad-signature in discriminating

standard functional ischemia. Figure 2 shows the process of

establishing Rad-signature and performance evaluation.

Supplementary Figure S1 demonstrates a representative case

of Rad-signature establishment.

Statistics

Continuous variables were represented by median (25% and

75% quartile), and the difference between groups was tested by

the Mann-Whitney U test. Categorical variables were expressed

by frequency (percentages) and tested by Chi-Square test. At the

vessel level, the performance of Rad-signature, anatomical CT,

and FAI in identifying functional ischemia (CT-FFR ≤ 0.8) was
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evaluated by receiver operating characteristic (ROC) curve, area

under the curve (AUC), accuracy, sensitivity, and specificity. The

optimal cut-off value was indicated by Youden’s index based on

the training group. The difference between AUCs was evaluated

by Delong’s test. The incremental value of Rad-signature to

anatomical CT was further evaluated by net reclassification

index. At the patient level, the vessel with the lowest CT-FFR

was used to define functional ischemia. The potential risk factors

of functional ischemia were explored in the entire study sample

by univariate and multivariate logistic regression analysis.

Additionally, in the testing group (with CCTA and ICA),

subgroup analysis was implemented to further assess the

correlation between Rad-signature and functional ischemia in

different risk levels (obstructive or nonobstructive CAD). The

statistics was performed by open-source packages (R v3.6.0,

http://www.Rproject.org; Python v3.7 with Scikit-survival

library v0.13.2, https://scikit-survival.readthedocs.io/en/latest/).

Supplementary Table S2 lists the details of software packages and

functions. A p < 0.05 was considered statistically significant.

Results

Patient and vessel characteristics

In the training, validation, and testing groups, a total of

350 patients (66 years; 61–71 years) were eligible for this study

from 442 candidates, including 134, 66, and 150 in the training,

validation, and testing groups, respectively. In the three groups,

1046 vessels were analyzed including 350 LAD, 346 LCx, and

350 RCA, and functional ischemia (CT-FFR ≤ 0.8) was identified

in 241/1046 (23.0%) vessels and 179/350 (51.1%) patients. In the

three groups, anatomical CT detected coronary stenosis ≥50% in

377/1046 (36.0%) vessels and 236/350 (67.4%) patients. At the

vessel level, the median FAI was −83.5 HU (−89.7 to −77.6 HU).

In the testing group, ICA diagnosed obstructive CAD

(stenosis ≥50%) in 148/447 (33.1%) vessels and in 95/150

(63.0%) patients. Tables 1, 2 summarize the clinical and CT

characteristics of the three groups, respectively.

The CCTA-invasive FFR group included 55 vessels in

another 45 patients (65 years; 59–71 years), including 7 RCA,

37 LAD, and 11 LCx. Functional ischemia (FFR ≤ 0.8) was

detected in 13/55 (23.6%) vessels and 11/45 (24.4%) patients.

Radiomics feature selection

The stability analysis revealed 429 radiomic features with an

intraclass correlation coefficient >0.8 out of 1691 features

extracted from the training group. Boruta algorithm identified

47 candidate features which were highly associated with

functional ischemia (Figure 3 and Supplementary Table S3).

Hierarchical clustering demonstrated 8 distinct clusters of

highly correlated radiomic features to functional ischemia

(Figure 4). According to the feature importance, the most

contributive feature from each of the 8 clusters was selected to

establish the Rad-signature (Figure 5). The eight most

contributive features included 4 texture features, 3 gray-level

FIGURE 2
Establishment and evaluation of anatomical CT, FAI, and Rad-signature. CCTA, coronary computed tomography angiography. PCT,
pericoronary tissue. CT-FFR, CT-derived fraction flow reserve; FAI, fat attenuation index.
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features, and 1 geometric feature. The correlation diagram and

paired plots show minimal association among these top-8

contributive features (Supplementary Figure S2). The swarm

plots show the distribution of radiomic features in the

ischemia (CT-FFR ≤ 0.8) and nonischemic (CT-FFR > 0.8)

groups (Supplementary Figure S3). The optimal cut-off value

of Rad-signature to define functional ischemia was

0.202 according to the Youden index in the training group.

Identifying functional ischemia of rad-
signature, fat attenuation index, and
anatomical CT

The performance of Rad-signature, FAI, and anatomical CT

in identifying functional ischemia was evaluated at the vessel

level. In the training group, the AUC of Rad-signature was

0.83 [95% confidence interval (CI): 0.78–0.87], significantly

higher than 0.55 (0.49–0.62) of FAI (DeLong’s p < 0.001), but

not higher than 0.79 (0.74–0.83) of anatomical CT (p = 0.175).

The AUC of the combined model of Rad-signature and

anatomical CT increased to 0.86 (0.82–0.90), higher than 0.83

(0.78–0.87) of only Rad-signature (p = 0.054). After adding Rad-

signature to the traditional anatomical CT model, the net

reclassification index was 0.25 (0.13–0.38, p < 0.001), which

indicated the incremental value of Rad-signature in

discriminating functional ischemia.

In the validation group, the AUC of Rad-signature was 0.82

(0.74–0.89), significantly higher than 0.55 (0.46–0.64) of FAI (p <
0.001), but not higher than 0.78 (0.71–0.85) of anatomical CT (p =

0.443). TheAUCof the combinedRad-signature and anatomical CT

model was 0.85 (0.79–0.91), significantly higher than that of FAI

(p < 0.001) and anatomical CT (p = 0.012).

In the testing group, the AUC of Rad-signature was 0.82

(0.77–0.86), significantly higher than 0.52 (0.45–0.59) of FAI (p <

0.001) and 0.72 (0.65–0.79) of anatomical CT (p = 0.017). The

AUC of the combined Rad-signature and anatomical CT model

was 0.83 (0.77–0.91), significantly higher than that of FAI or

anatomical CT (p < 0.001). Table 3 and Figure 6 show the

comparison of AUCs among the three groups. In addition, in the

subgroup of obstructive CAD (stenosis ≥ 50%) identified by ICA

(284 vessels in 95 patients), the AUC of Rad-signature was 0.76

(0.68–0.84), significantly higher than 0.53 (0.42–0.63) of FAI (p <
0.001) (Supplementary Table S4). The AUC of the combined

Rad-signature and anatomical CT model was 0.80 (0.73–0.88),

significantly higher than that of other models (p < 0.05). In the

analysis of subgroups divided by vessels, the RCA, LAD, and LCx

groups, the AUC of the combined model was significantly higher

than that of FAI and anatomical CT in the three subgroups (all

p < 0.05) and showed an incremental value on the basis of Rad-

signature (Supplementary Table S5).

In the CCTA-invasive FFR group, at the vessel level, using

invasive FFR as the gold standard, the accuracy of CT-FFR was

85.4%, and the AUC of CT-FFR was 0.928 (0.85–1.00). The AUC

of Rad-signature in the 4-fold cross-validation was 0.81, 0.86,

0.84, and 0.83, and the mean AUC was 0.83 ± 0.02.

Supplementary Figure S4 shows the AUCs of Rad-signature in

the cross-validation.

Influential factors of functional ischemia

For all 350 patients in this study, at the patient level,

univariate logistic regression showed that sex, left ventricular

mass derived from CCTA images (LVM-CT), Rad-signature of

LAD (Rad-LAD), Rad-signature of LCx (Rad-LCx), the mean

Rad-signature of RCA, LAD, and LCx (Rad-mean), and

anatomical CT were significantly associated with functional

ischemia (p < 0.05). Multivariate logistic regression showed

that Rad-LAD [OR = 1.7 (95% CI: 1.1–2.6), p = 0.018] and

TABLE 1 Clinical characteristics.

Characteristics All Training group Validation group Testing group p-Value

n = 350 n = 134 n = 66 n = 150

Male 208 (59.4%) 79 (59.0%) 41 (62.1%) 88 (58.7%) 0.884

Age, years 66.0 [61.0; 71.0] 66.5 [62.0; 71.0] 65.0 [59.5; 71.0] 65.0 [60.0; 71.0] 0.599

Hypertension 197 (56.3%) 76 (56.7%) 37 (56.1%) 84 (56.0%) 0.992

Diabetes 124 (35.4%) 64 (47.8%) 23 (34.8%) 37 (24.7%) <0.001

Hyperlipemia 124 (35.4%) 51 (38.1%) 28 (42.4%) 45 (30.0%) 0.153

Smoking 94 (26.9%) 23 (17.2%) 23 (34.8%) 48 (32.0%) 0.005

Family history of CAD 29 (8.29%) 10 (7.46%) 11 (16.7%) 8 (5.33%) 0.019

Body mass index, kg/m2 24.3 [22.0; 26.4] 24.2 [21.5; 26.3] 24.3 [22.0; 26.8] 24.2 [22.4; 26.4] 0.678

Data are represented by median [25% and 75% quartile] or frequency (percentage).

p-Value represents the difference among the train, validation, and testing groups.

Bold values signify statistical significance.

CAD, coronary artery disease.
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anatomical CT [OR = 3.5 (2.1–6.0), p < 0.01] were independent

influential factors of functional ischemia.

The patients in the testing group (n = 150) were divided into

two subgroups according to the ICA results, i.e., 95 (63.3%)

patients with obstructive CAD (stenosis ≥ 50%) and 55 (36.7%)

non-obstructive (<50%). In the obstructive subgroup, univariate

logistic regression showed that age, LVM-CT, Rad-LAD, Rad-

LCx, and Rad-mean were significantly associated with functional

ischemia (all p < 0.05). Multivariate logistic regression showed

that Rad-LAD [OR = 2.45 (95% CI: 1.08–6.27), p = 0.042]

independently associated with functional ischemia. In the

nonobstructive subgroup, univariate logistic regression showed

that FAI-LAD (p = 0.026) and Rad-LCx (p = 0.067) were strongly

associated with functional ischemia. Multivariate logistic

regression showed that FAI-LAD [OR = 1.1 (1.0–1.2), p =

0.041] independently associated with functional ischemia.

Tables 4, 5 show the logistic regression results.

Additionally, in the subgroup of patients with single-vessel

disease, Rad-LAD, Rad-mean, and FAI-RCA were independently

associated with functional ischemia. In the subgroup of patients

with multiple vessel disease, Rad-LAD, Rad-LCx, and Rad-mean

were independently associated with functional ischemia

(Supplementary Table S6).

Discussion

Based on the comprehensive imaging features of PCT, we

successfully established a radiomics signature (Rad-signature) to

discriminate coronary functional ischemia. The AUC of the Rad-

TABLE 2 CT characteristics.

Variables Training group Validation group Testing group p-value

n = 134 n = 66 n = 150

LVM-CT 127 [108; 151] 138 [113; 163] 134 [115; 152] 0.221

CT-FFR_RCA 89.0 [84.0; 93.0] 91.0 [86.0; 94.0] 92.0 [86.0; 94.0] 0.011

≤0.8 26 (19.4%) 8 (12.1%) 13 (8.7%)

>0.8 108 (80.6%) 58 (87.9%) 137 (91.3%)

CT-FFR_LAD 80.5 [67.0; 86.0] 80.5 [66.2; 87.8] 85.0 [76.0; 90.0] 0.001

≤0.8 67 (50%) 33 (50%) 52 (34.7%)

>0.8 67 (50%) 33 (50%) 98 (65.3%)

CT-FFR_LCx 91.0 [85.0; 94.8] 92.0 [87.0; 95.0] 92.0 [86.0; 95.0] 0.816

≤0.8 18 (13.4%) 7 (10.8%) 17 (11.6%)

>0.8 116 (86.6%) 58 (89.2%) 130 (88.4%)

CT-FFR_patient 76.0 [63.5; 84.0] 77.5 [65.0; 85.0] 82.5 [71.0; 88.0] 0.001

≤0.8 78 (58.2%) 37 (56.1%) 64 (42.7%)

>0.8 56 (41.8%) 29 (43.9%) 86 (57.3%)

FAI_LAD −87.18 [−92.52; −82.17] −84.08 [−92.75; −78.84] −84.97 [−91.15; −78.18] 0.082

FAI_RCA −86.29 [−91.90; −79.47] −84.04 [−91.46; −79.78] −84.16 [−90.22; −78.21] 0.229

FAI_LCx −79.86 [−85.44; −75.03] −79.45 [−83.70; −74.01] −79.83 [−87.09; −74.06] 0.745

Anatomical CT_RCA 0.138

<50% 86 (64.2%) 48 (72.7%) 112 (74.7%)

≥50% 48 (35.8%) 18 (27.3%) 38 (25.3%)

Anatomical CT_LAD 0.125

<50% 50 (37.3%) 29 (43.9%) 74 (49.3%)

≥50% 84 (62.7%) 37 (56.1%) 76 (50.7%)

Anatomical CT_LCx 0.991

<50% 105 (78.4%) 52 (78.8%) 117 (78.0%)

≥50% 29 (21.6%) 14 (21.2%) 33 (22.0%)

Anatomical CT_patient 0.404

<50% 38 (28.4%) 24 (36.4%) 52 (34.7%)

≥50% 96 (71.6%) 42 (63.6%) 98 (65.3%)

LVM-CT, left ventricular mass on CT; CT-FFR, CT-derived fraction flow reserve; FAI, fat attenuation index.

Data are represented by median [25% and 75% quartile] or frequency (percentage).

Bold values signify statistical significance.
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signature reached 0.82 in the validation and testing groups, which

was significantly higher than that of FAI and numerically higher

than anatomical CT but not statistically significant. The

combined model of Rad-signature and anatomical CT

increased the AUC compared with only anatomical CT, so

adding Rad-signature has incremental value in discriminating

functional ischemia. We also ensured that Rad-signature

provides a good discrimination ability of standard functional

ischemia (invasive FFR ≤ 0.8).

Coronary stenosis degree on CCTA is a widely-used

indicator in diagnosing CAD with high accuracy and

negative predictive value (Meijboom et al., 2008; Garg

et al., 2016). However, conventional CCTA only provides

morphological information but does not provides

FIGURE 3
Importance ranking of 47 relevant radiomic features identified by Boruta algorithm in the training group. GLDM, gray level dependence matrix;
GLRLM, gray level run length matrix; GLCM, gray level co-occurrence matrix; GLSZM, gray level size zone matrix.

FIGURE 4
Correlation heatmap and dendrogram derived from
hierarchical clustering in the training group. Boruta algorithm
identified 8 different clusters derived from 47 important features.
The darker color indicates higher correlation coefficient.
GLDM, gray level dependence matrix; GLCM, gray level co-
occurrence matrix; GLSZM, gray level size zone matrix; GLRLM,
gray level run length matrix.

FIGURE 5
Importance ranking of the top-8 contributive features
established by random forest algorithm of discriminating
functional ischemia in the training group. The darker color
indicates higher correlation. GLDM, gray level dependence
matrix; GLCM, gray level co-occurrence matrix.
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hemodynamic significance and lesion-specific ischemia, the

functional ischemia (Park et al., 2012). In recent years,

researchers have realized the inconsistency between

morphologic stenosis and functional ischemia. Tonino et al.

reported that 65% of the patients with moderate coronary

stenosis and 20% with severe stenosis were not functionally

significant (Tonino et al., 2010). Park et al. conducted a

prospective study and found that the frequency of visual-

functional mismatch was 40% between coronary angiography

and FFR (Park et al., 2012). Furthermore, Pijls et al. found that

the patients with CAD benefited more from FFR-guided

revascularization strategies than morphological assessment

by standard angiography, and 2-years mortality and

incidence of myocardial infarction were significantly

reduced (Pijls et al., 2010). CT-FFR noninvasively measures

lumen blood flow, but it often depends on dedicated software,

and sometimes the remote processing results are not timely,

which limits the wide application of CT-FFR. The

establishment of Rad-signature can be performed with an

on-site workstation or personal computer, thus Rad-

signature may be a practical and economical indicator.

Since clinical decision-making should depend on the

coronary functional significance, our study provides new

evidence for the diagnosis and treatment of CAD by

mining the functional correlation from anatomical CT.

Radiomics can extract a large number of imaging features

from CCTA from a computational point of view. Meanwhile,

machine learning can effectively select valuable information from

numerous features and establish predictive models (Zhang et al.,

2021). In our study, the Rad-signature was a powerful predictor

and independent influential factor of functional ischemia. It

derived from the eight most contributive radiomic features

extracted from PCT on CCTA images, including 4 texture,

3 gray-level, and 1 geometric feature. Half of these

contributive features were texture features, which were wavelet

and log transformation based on the Gray-Level Co-occurrence

Matrix which describes the spatial relationships of pixel pairs or

voxel pairs with predefined gray intensity, and Gray Level

Dependence Matrix which describes the grayscale relationship

between the central pixel or the voxel and its neighborhood. The

texture features may reflect the heterogeneity of PCT. The gray

level features may reflect the intensity of PCT. Therefore, the

main components of Rad-signature are not only the intensity

information similar to FAI, but also the image heterogeneity

information beyond the traditional image analysis standards.

Similarly, Oikonomou et al. discussed that the radiomic features

of PCAT derived from CCTA were highly associated with

pathologically confirmed fibrosis and microvascular

remodeling, and can differentiate patients with acute

myocardial infarction and stable CAD, because they capture

the spatial shifts in composition and lipid content of PCAT

(Oikonomou et al., 2019). Vascular inflammation leads not only

to plaque formation and lumen stenosis, but also to endothelial

dysfunction and impaired vasodilation (Margaritis et al., 2013;

TABLE 3 Performance metrics of all models at the vessel level.

Model AUC 95% CI Accuracy 95%CI Sensitivity Specificity p-Value

Training group

Rad-signature 0.83 0.78–0.87 0.72 0.67–0.76 0.80 0.69 0.020

Anatomical CT 0.79 0.74–0.83 0.71 0.67–0.76 0.73 0.71 <0.001

FAI 0.55 0.49–0.62 0.46 0.41–0.51 0.36 0.50 <0.001

Combined model (Rad-signature and anatomical CT) 0.86 0.82–0.90 0.81 0.77–0.85 0.79 0.81 N/A

Validation group

Rad-signature 0.82 0.74–0.89 0.71 0.64–0.77 0.81 0.67 0.098

Anatomical CT 0.78 0.71–0.85 0.72 0.65–0.78 0.64 0.74 0.012

FAI 0.55 0.46–0.64 0.45 0.38–0.52 0.51 0.43 <0.001

Combined model (Rad-signature and anatomical CT) 0.85 0.79–0.91 0.82 0.76–0.87 0.68 0.86 N/A

Testing group

Rad-signature 0.82 0.77–0.86 0.69 0.64–0.73 0.82 0.66 0.531

Anatomical CT 0.72 0.65–0.79 0.71 0.66–0.75 0.61 0.73 <0.001

FAI 0.52 0.45–0.59 0.51 0.46–0.56 0.54 0.50 <0.001

Combined model (Rad-signature and anatomical CT) 0.83 0.77–0.91 0.78 0.74–0.82 0.66 0.80 N/A

p-Values represents the difference between the AUC of the model and combined model (Rad-signature and anatomic CT).

Bold values signify statistical significance.

AUC, area under the ROC curve; CI, confidence interval; Anatomical CT, coronary stenosis grade on CCTA; FAI, fat attenuation index.
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Antonopoulos et al., 2017), which may decrease distal flow

reserve and cause functional ischemia.

We also conducted a subgroup analysis and evaluated the

influential factors of functional ischemia. In the subgroup of

obstructive CAD, Rad-LAD was an independent influential

factor of functional ischemia. It suggests that the radiomic

phenotype may be associated with pericoronary inflammation

and easier to be captured in patients with obstructive CAD. In the

nonobstructive subgroup, FAI-LAD rather than Rad-signature

was an independent factor of functional ischemia. With the

development of coronary atherosclerosis, the histological

structure of PCT changes accordingly. Therefore, Rad-

signature may be suitable for patients with moderate and

severe coronary stenosis and FAI may be applicable for those

with minimal and mild stenosis. Similarly, Antonopoulos et al.

(2017) reported that FAI can be used to detect vascular

inflammation at an early stage and change dynamically with

the status of inflammation.

here are limitations. First, our study used a time-

independent testing group instead of an external testing

group. Multiple CT equipment enhanced the robustness of

the model, but if external testing is adopted, the difference in

imaging features caused by different CT devices between the

two centers may interfere with the exploration of the

relationship between PCT and functional ischemia.

Second, we evaluated the ability of Rad-signature in

discriminating functional ischemia defined as CT-FFR ≤
0.8. Although CT-FFR ≤ 0.8 is widely considered coronary

functional significance, noninvasive CT-FFR does not

directly measure blood flow. Different reference standards

may lead to a different selection of radiomic features, which

means that further study is necessary to refine and calibrate

the Rad-signature model. Furthermore, preliminary

exploration in the CCTA-invasive FFR group suggested

that Rad-signature may have a good ability in

discriminating standard functional ischemia. However,

more cases were needed to further validate the results.

FIGURE 6
ROC curves of Rad-signature, FAI, anatomical CT and combinedmodel (Rad-signature and anatomical CT) in (A) the training, (B) validation, and
(C) testing groups. ROC, receiver operating characteristic; AUC, area under the ROC curve; Rad, Rad-signature; FAI, fat attenuation index.
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TABLE 4 Logistic regression analysis of discriminating coronary functional ischemia in the whole study population at the patient level.

Variables Univariate analysis Multivariate analysis

OR (95% CI) p-Value OR (95% CI) p-Value

Sex 0.49 (0.32–0.76) 0.001 0.78 (0.38–1.62) 0.506

Age 0.98 (0.96–1.01) 0.181

Hypertension 0.96 (0.63–1.47) 0.861

Diabetes 1.25 (0.8–1.94) 0.326

Hyperlipemia 1.42 (0.92–2.22) 0.115

Smoking 1.25 (0.78–2.01) 0.359

Family history of CAD 0.83 (0.38–1.77) 0.628

BMI 0.97 (0.91–1.03) 0.282

LVM-CT 1.01 (1.00–1.01) 0.023 1.01 (1.00–1.01) 0.106

Rad-LAD 1.99 (1.57–2.56) <0.001 1.72 (1.13–2.64) 0.018

Rad-RCA 3.17 (0.28–37.65) 0.352

Rad-LCx 1.49 (1.19–1.88) <0.001 1.22 (0.85–1.74) 0.274

Rad-mean 2.02 (1.59–2.61) <0.001 1.25 (0.76–2.09)

FAI-LAD 1.01 (0.98–1.03) 0.652

FAI-RCA 1.02 (1.00–1.04) 0.097 1.00 (0.94–1.03) 0.980

FAI-LCx 1.00 (0.98–1.02) 0.878

Anatomic CT 3.74 (2.32–6.13) <0.001 3.52 (2.10–6.04) <0.001

OR, odds ratio; CI, confidence interval; CAD, coronary artery disease; BMI, body mass index; LVM-CT, left ventricular mass on CT; Rad-LAD, rad-score of left anterior descending; Rad-

RCA, rad-score of right coronary artery; Rad-LCx, rad-score of left circumflex; Rad-mean, the mean rad-score of LAD, RCA and LCx; FAI-LAD, fat attenuation index of LAD; FAI-RCA,

FAI of RCA; FAI-LCx, FAI of LCx; Anatomic CT, coronary stenosis grade on CCTA.

Bold values signify statistical significance.

TABLE 5 Logistic regression analysis of discriminating coronary functional ischemia in subgroups divided by invasive coronary angiography in the
testing group at the patient level.

Variables Non-obstructive (stenosis < 50%) (n = 55) Obstructive (stenosis ≥ 50%) (n = 95)

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value

Sex 0.37 (0.10–1.24) 0.117 0.31 (0.12–0.74) 0.01 1.35 (0.27–7.26) 0.717

Age 0.98 (0.91–1.06) 0.652 0.95 (0.9–0.99) 0.021 0.94 (0.88–1.00) 0.054

Hypertension 0.84 (0.25–2.84) 0.782 0.83 (0.37–1.86) 0.648

Diabetes 0.66 (0.13–2.58) 0.571 0.81 (0.31–2.09) 0.668

Hyperlipemia 1.31 (0.39–4.38) 0.656 2.37 (0.9–6.6) 0.086 2.09 (0.64–7.22) 0.227

Smoking 1.5 (0.39–5.38) 0.538 1.88 (0.8–4.48) 0.148

Family history of CAD 1.36 (0.06–15.27) 0.809 0.26 (0.01–1.85) 0.238

BMI 0.92 (0.75–1.1) 0.37 1.03 (0.91–1.16) 0.671

LVMCT. 1.01 (0.99–1.03) 0.241 1.01 (1–1.03) 0.031 1.01 (0.99–1.03) 0.267

Rad_LAD 1.60 (0.86–3.17) 0.15 2.07 (1.32–3.46) 0.003 2.45 (1.08–6.27) 0.042

Rad_RCA 0.78 (0.39–1.43) 0.447 0.88 (0.56–1.33) 0.566

Rad_LCx 1.74 (0.97–3.26) 0.067 1.65 (0.89–3.21) 0.117 1.72 (1.10–2.87) 0.025 1.71 (0.80–4.30) 0.2

Rad_mean 1.54 (0.85–2.94) 0.166 1.92 (1.23–3.17) 0.006 0.84 (0.25–2.24) 0.739

FAI_LAD 1.11 (1.02–1.22) 0.026 1.10 (1.01–1.22) 0.041 1 (0.96–1.04) 0.894

FAI_RCA 1.04 (0.98–1.12) 0.236 1.02 (0.98–1.07) 0.359

FAI_LCx 1.02 (0.93–1.11) 0.711 1.01 (0.97–1.04) 0.745

OR, odds ratio; CI, confidence interval; CAD, coronary artery disease; BMI, body mass index; LVM-CT, left ventricular mass on CT; Rad-LAD, rad-score of left anterior descending; Rad-

RCA, rad-score of right coronary artery; Rad-LCx, rad-score of left circumflex; Rad-mean, the mean rad-score of LAD, RCA, and LCx; FAI, fat attenuation index.

Bold values signify statistical significance.
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Conclusion

The machine-learning-derived radiomics model of Rad-

signature of PCT showed a good ability in discriminating

coronary functional ischemia. It may potentially become a

noninvasive, fast, and economical indicator to screen functional

ischemia before expensive invasive examinations. The combined

model demonstrated the incremental value of Rad-signature to

anatomical CT, rather than the superiority of Rad-signature

alone in discriminating functional ischemia, which may help

identify high-risk patients.
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