
ORIGINAL RESEARCH
published: 12 May 2020

doi: 10.3389/fnins.2020.00424

Frontiers in Neuroscience | www.frontiersin.org 1 May 2020 | Volume 14 | Article 424

Edited by:

Kaushik Roy,

Purdue University, United States

Reviewed by:

James Courtney Knight,

University of Sussex, United Kingdom

Yulia Sandamirskaya,

Intel, Germany

*Correspondence:

Emre Neftci

eneftci@uci.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 27 November 2019

Accepted: 07 April 2020

Published: 12 May 2020

Citation:

Kaiser J, Mostafa H and Neftci E

(2020) Synaptic Plasticity Dynamics

for Deep Continuous Local Learning

(DECOLLE). Front. Neurosci. 14:424.

doi: 10.3389/fnins.2020.00424

Synaptic Plasticity Dynamics for
Deep Continuous Local Learning
(DECOLLE)
Jacques Kaiser 1, Hesham Mostafa 2 and Emre Neftci 3,4*

1 FZI Research Center for Information Technology, Karlsruhe, Germany, 2Department of Bioengineering, University of

California, San Diego, La Jolla, CA, United States, 3Department of Cognitive Sciences, University of California, Irvine, Irvine,

CA, United States, 4Department of Computer Science, University of California, Irvine, Irvine, CA, United States

A growing body of work underlines striking similarities between biological neural networks

and recurrent, binary neural networks. A relatively smaller body of work, however,

addresses the similarities between learning dynamics employed in deep artificial neural

networks and synaptic plasticity in spiking neural networks. The challenge preventing

this is largely caused by the discrepancy between the dynamical properties of synaptic

plasticity and the requirements for gradient backpropagation. Learning algorithms that

approximate gradient backpropagation using local error functions can overcome this

challenge. Here, we introduce Deep Continuous Local Learning (DECOLLE), a spiking

neural network equipped with local error functions for online learning with no memory

overhead for computing gradients. DECOLLE is capable of learning deep spatio temporal

representations from spikes relying solely on local information, making it compatible

with neurobiology and neuromorphic hardware. Synaptic plasticity rules are derived

systematically from user-defined cost functions and neural dynamics by leveraging

existing autodifferentiation methods of machine learning frameworks. We benchmark

our approach on the event-based neuromorphic dataset N-MNIST and DvsGesture,

on which DECOLLE performs comparably to the state-of-the-art. DECOLLE networks

provide continuously learning machines that are relevant to biology and supportive

of event-based, low-power computer vision architectures matching the accuracies of

conventional computers on tasks where temporal precision and speed are essential.

Keywords: spiking neural network, embedded learning, neuromorphic hardware, surrogate gradient algorithm,

backpropagataon

1. INTRODUCTION

Understanding how the plasticity dynamics in multilayer biological neural networks are organized
for efficient data-driven learning is a long-standing question in computational neurosciences
(Sussillo and Abbott, 2009; Clopath et al., 2010; Zenke and Ganguli, 2017). The generally
unmatched success of deep learning algorithms in a wide variety of data-driven tasks prompts
the question of whether the ingredients of their success are compatible with their biological
counterparts, namely Spiking Neural Networks (SNNs). Biological neural networks distinguish
themselves from Artificial Neural Networks (ANNs) by their continuous-time dynamics, the
locality of their operations (Baldi et al., 2017), and their spike(event)-based communication.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00424
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00424&domain=pdf&date_stamp=2020-05-12
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eneftci@uci.edu
https://doi.org/10.3389/fnins.2020.00424
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424/full
http://loop.frontiersin.org/people/521786/overview
http://loop.frontiersin.org/people/191357/overview
http://loop.frontiersin.org/people/3753/overview

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

Taking these properties into account in a neural network is
challenging, as the spiking nature of the neurons’ nonlinearity
makes it non-differentiable, the continuous-time dynamics raise
a temporal credit assignment problem and the assumption of
computations being local to the neuron disqualifies the use of
Back-Propagation-Through-Time (BPTT).

In this article, we describe DECOLLE, a SNN model with
plasticity dynamics that solves the three problems above, and that
performs at proficiencies comparable to that of multilayer neural
networks. DECOLLE uses layerwise local readouts (Mostafa
et al., 2017), which enables gradients to be computed locally
(Figure 1). To tackle the temporal dynamics of the neurons,
we use a recently established equivalence between SNNs and
recurrent ANNs (Neftci et al., 2019). This equivalence rests on
a computational graph of the SNN, which can be implemented
with standardmachine learning frameworks as a recurrent neural
network. Unlike BPTT and like Real-Time Recurrent Learning
(RTRL) (Williams and Zipser, 1989), DECOLLE is formulated in
a way that the information necessary to compute the gradient is
propagated forward, making the plasticity rule temporally local.
Existing rules of this sort require dedicated state variables for
every synapse, thus scaling at least quadratically with the number
of neurons (Williams and Zipser, 1989; Zenke and Ganguli,
2017). In contrast, DECOLLE scales linearly with the number
of neurons. This is achieved using a spatially and temporally
local cost function reminiscent of readout mechanisms used
in liquid state machines (Maass et al., 2002), but where the
readout is performed over a fixed random combination of
the neuron outputs. Our approach can be viewed as a type
of synthetic gradient, a technique used to decouple one or
more layers from the rest of the network to prevent layerwise
locking (Jaderberg et al., 2016). Although synthetic gradients
usually involve an outer loop that is equivalent to a full Back-
Propagation (BP) through the network, DECOLLE instead relies
on the random initialization of the local readout and forgoes the
outer loop.

Conveniently, DECOLLE can leverage existing
autodifferentiation tools of modern machine learning
frameworks. Its linear scalability enables the training of
hundreds of thousands of spiking neurons on a single GPU, and
continual learning on very fine time scales. We demonstrate our
approach on the classification of gestures, the IBM DvsGesture
dataset (Amir et al., 2017), recorded using an event-based
neuromorphic sensor and report comparable performance to
deep neural networks and even networks trained with BPTT.

1.1. Related Work
Previous work demonstrated learning in multiple layers of SNN
using feedback alignment (Lillicrap et al., 2016; Neftci et al.,
2017), performing at about 2% classification error on MNIST.
However, those networks operated in the firing rate regime, by
using either large populations or slow dynamics. In those works,
training was not insensitive to the temporal dynamics of the
neurons. The need for temporal dynamics are often obfuscated
by the static nature of the benchmarked problems (e.g., MNIST),
and a long readout interval that allows to ignore initial transients
caused by the dynamics. In our previous work (Neftci et al.,

2017), ignoring temporal dynamics raised a “loop duration”
problem, i.e., that the errors are available only after they have
propagated through the network. This introduces latency or
requires additional buffers for storing intermediate neural states.
In traditional deep learning, the loop duration manifests itself
as “layerwise locking,” during which a layer’s weights cannot
be updated until a global cost function is evaluated (Jaderberg
et al., 2016). This causes under utilization of the computing
resources and a slowdown in learning. Besides the loop duration
problem, multilayer networks trained with feedback alignment
cannot reach the performances of gradient BP, especially with
deeper networks (≥ 30% accuracy drop on ImageNet compared
to backpropagation; Bartunov et al., 2018).

The complex dynamics of spiking neurons is an important
feature that can be exploited for learning spatiotemporal patterns.
In a single layer of neurons, this feature can be leveraged
using gradient descent, since it is applicable to the subthreshold
dynamics of leaky Integrate & Fire (I&F) neurons (Bohte et al.,
2000; Gütig and Sompolinsky, 2006). Because the I&F neuron
output is non-differentiable, however, the application of these
approaches to multiple layers is not straightforward. To deal
with this problem, SuperSpike uses a surrogate network with
differentiable activation functions to compute an approximate
gradient (Zenke and Ganguli, 2017). The authors show that this
learning rule is equivalent to a forward-propagation of errors
using synaptic traces, and is capable of learning in hidden layers
of feedforward multilayer networks.

Because the traces need to be computed for every trainable
parameter, Superspike scales temporally and spatially as O(N2),
where N is the number of neurons. While the complex
biochemical processes at the synapse could account for the
quadratic scaling, it prevents an efficient implementation in
available hardware. Like SuperSpike, DECOLLE uses surrogate
gradients to perform weight updates, but as discussed later, the
cost function is local in time and space, such that only one
trace per input neuron is required. This enables the algorithm
to scale linearly in space. Furthermore, in DECOLLE the
computation of the gradients can reuse the variables computed
for the forward dynamics, such that learning has no additional
memory overhead.

DECOLLE has some resemblance with reservoir networks,
which are neural networks with fixed internal connectivity and
trainable readout functions (Jaeger, 2001; Maass et al., 2002;
Eliasmith and Anderson, 2004; Sussillo and Abbott, 2009).
The local readout in DECOLLE acts like a decoder layer in
the flavor of the linear readouts in reservoir networks. In
contrary to reservoir networks, DECOLLE learns the internal
weights, but the readout weights are random and fixed. The
training of the internal weights allows the network to learn
representations that are easier to classify inputs for subsequent
layers (Mostafa et al., 2017).

Spiking neural networks can be viewed as a subclass of
binary, recurrent ANNs (Neftci et al., 2019). In the ANN sense,
they are recurrent even when all the connections are feed-
forward because the neurons maintain a state that is propagated
forward at every time step. Binary neural networks, where both
activations and/or weights are binary were studied in deep

Frontiers in Neuroscience | www.frontiersin.org 2 May 2020 | Volume 14 | Article 424

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

FIGURE 1 | Deep Continuous Local Learning (DECOLLE). (Left) Each layer consists of spiking neurons with continuous dynamics. Each layer feeds into a local

readout units through fixed, random connections (diamond-shaped, y). The local layer is trained such that the readout at each layer produce auxiliary targets Ŷ . Errors

are propagated through the random connections to train weights coming into the spiking layer, but no further (curvy, dashed line). To simplify the learning rule and

enable linear scaling of the computations, the cost function is a function of the states in the same time step. The state of the spiking neurons (membrane potential,

synaptic states, refractory state) is carried forward in time. Consequently, even in the absence of recurrent connections, the neurons are stateful in the sense of

recurrent neural networks. (Right) Snapshot of the neural states illustrating the DECOLLE learning rule in the top layer. In this example, the network is trained to

produce three time-varying pseudo-targets Ŷ1, Ŷ2, Ŷ3.

learning as a way to decrease model complexity during inference
(Courbariaux et al., 2016; Rastegari et al., 2016). BPTT for
training SNNs was investigated in Bohte et al. (2000), Lee et al.
(2016), Huh and Sejnowski (2017), Shrestha and Orchard (2018),
and Bellec et al. (2018). BPTT-based approaches provide an
unbiased estimation of the gradients but at a cost in memory,
because the entire sequence and resulting activity states are
stored to compute gradients. Although the truncation of the
sequences (as in truncated BPTT) can mitigate this problem,
it is not adequate when discretizing continuous-time networks,
such as the SNN (Neftci et al., 2019) because the sequences
can consists of hundreds of steps. This is because the time
constants and simulation timestep in SNNs are such that the
truncation window must be much larger. For SNN simulations
with biological time constants, it is common to use simulation
time steps 1t ≤ 1ms. Smaller time steps capture non-linear
dynamics more accurately and determine the temporal precision
of all produced spike times. Assuming 1t = 1ms (as used
in this work), and if relevant interactions occur at one second,
this implies that the truncation window must be at about 1,000
timesteps. This significantly increases the complexity of BPTT
in SNNs. In practice, the size of SNN trainable by BPTT is
severely limited by the available GPU memory (Shrestha and
Orchard, 2018). As we explain later in this article, DECOLLE
requires an order T less memory resources compared to BPTT,
where T is the sequence length. Hence, DECOLLE networks are
generally not memory-limited. Furthermore, DECOLLE can be

formulated as a local, three-factor synaptic plasticity rule, and
is thus amenable to implementation in dedicated, event-based
(neuromorphic) hardware (Davies et al., 2018), and compatible
with neurobiology.

Decoupled Neural Interfaces (DNI) were proposed to mitigate
layerwise locking in training deep neural networks (Jaderberg
et al., 2016). In DNIs, this decoupling is achieved using a
synthetic gradient, a neural network that estimates the gradients
for a portion of the network. In an inner loop, the network
parameters are trained using the synthetic gradients, and in
an outer loop, the synthetic gradient network parameters are
trained using a full BP step. The gradient computed using local
errors in DECOLLE described below can be viewed as a type of
synthetic gradient, which ignores the outer loop to avoid a full
BP step. Although ignoring the outer loop limits DECOLLE’s
adaptation of the features using errors from other layers, we find
that the network performs at or above state-of-the-art accuracy
on N-MNIST and DVS Gesture benchmark tasks.

A related method called E-prop was developed in parallel to
DECOLLE (Bellec et al., 2019). The resulting learning rule in E-
prop is of the same form as Superspike and DECOLLE. E-prop
uses adaptive spiking Long Short TermMemory (LSTM) neurons
to maintain a longer term memory. This generalization allows
to solve tasks with long-term dependencies (similar to LSTMs)
but requires maintaining one trace per synapse. These memory
requirements quickly exceed the capabilities of modern GPUs,
especially when applied to convolutional neural networks. Even

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 424

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

in neuromorphic hardware, maintaining a synapse-specific trace
can incur a prohibitive cost in area and power (Huayaney et al.,
2016; Davies et al., 2018). In DECOLLE, we focus on networks
which do not incur any memory overhead for training, allowing
to tractably train large networks.

This work builds on a combination of how gradients
are dynamically computed in SuperSpike and local errors.
We show in the methods section that this combination
considerably reduces the computational requirements compared
to a computing a global loss.

2. METHODS

2.1. Neuron and Synapse Model
The neuron and synapse models used in this work follow
leaky, current-based I&F dynamics with a relative refractory
mechanism. The dynamics of the membrane potential Ui of a
neuron i is governed by the following differential equations:

Ui(t) =Vi(t)− ρRi(t)+ bi,

τmem
d

dt
Vi(t) =− Vi(t)+ Ii(t),

τref
d

dt
Ri(t) =− Ri(t)+ Si(t),

(1)

with Si(t) the binary value (0 or 1) representing whether neuron
i spiked at time t. The separation of the membrane potential into
two variables U and V is done here for implementations reasons
only. Biologically, the two states can be interpreted as a special
case of a two-compartment model, consisting of one dendritic
(V) and one somatic (U) compartment (Gerstner et al., 2014,
Chapter 6.4). The absence of dynamics for U can be interpreted
as the special case when somatic capacitance is much smaller than
the distal capacitance. A spike is emitted when the membrane
potential reaches a threshold Si(t) = 2(Ui(t)), where 2(x) = 0
if x < 0, otherwise 1 is the unit step function. The constant bi
represents the intrinsic excitability of the neuron. The refractory
mechanism is captured with the dynamics of Ri: the neuron
inhibits itself after firing, by a constant weight ρ. In contrast
to standard I&F refractory mechanisms, a strong enough input
can still induce the neuron to fire immediately after a spike. The
factors τref and τmem are time constants of the membrane and
refractory dynamics, respectively. Ii denotes the total synaptic
current of neuron i, expressed as:

τsyn
d

dt
Ii(t) =− Ii(t)+

∑

j∈pre

WijSj(t), (2)

where Wij is the synaptic weights between pre-synaptic neuron
j and post-synaptic neuron i. Because Vi and Ii are linear
with respect to the weights Wij, The dynamics of Vi can be

rewritten as:

Vi(t) =
∑

j∈pre

WijPij(t),

τmem
d

dt
Pij(t) =− Pij(t)+ Qij(t),

τsyn
d

dt
Qij(t) =− Qij(t)+ Sj(t).

(3)

The states P and Q describe the traces of the membrane and
the current-based synapse, respectively. For each incoming spike,
the trace Q undergoes a jump of height 1 and otherwise decays
exponentially with a time constant τsyn. Weighting the trace
Qij with the synaptic weight Wij results in the Post–Synaptic
Potentials (PSPs) of neuron i caused by input neuron j.

All efferent synapses with identical time constants have
identical dynamics. By linearity of P and Q, the state of the
synapse can be described by a single synaptic variable per pre-
synaptic neuron (Brette et al., 2007). In the equation above, this is
evident by the fact that Pij andQij are only driven by Sj, and so the
index i can be dropped. This results in as many P and Q variables
as there are pre-synaptic neurons, independently of the number
of synapses. This strategy is commonly used in synapse circuits
in neuromorphic hardware to reduce circuit area (Bartolozzi and
Indiveri, 2006), and in software simulations of spiking neurons
to improve memory consumption and computation time (Brette
et al., 2007).

Discrete Spike Response Model of the Neuron and

Synapse Dynamics
Because a computer will be used to simulate the dynamics,
the dynamics are simulated in discrete time. We denote the
simulation time step with 1t. We also make the layerwise
organization of the network apparent with the superscript l
denoting the layer to which the neuron belongs. The dynamical
equations in Equations (1) and (3) are expressed in discrete
time as:

U l
i [t] =

∑

j

Wl
ijP

l
j[t]− ρRli[t]+ bli,

Sli[t] = 2(U l
i [t]),

Plj[t + 1t] = αPlj[t]+ (1− α)Ql
j[t],

Ql
j[t + 1t] = βQl

j[t]+ (1− β)Sl−1
j [t],

Rli[t + 1t] = γRli[t]+ (1− γ)Sli[t],

(4)

where the constants α = exp(− 1t
τmem

), γ = exp(− 1t
τref

), and

β = exp(− 1t
τsyn

) reflect the decay dynamics of the membrane

potentialU, the refractory state R and the synaptic stateQ during
a 1t timestep. Note that Equation (4) is equivalent to a discrete-
time version of the Spike Response Model (SRM0) with linear
filters (Gerstner and Kistler, 2002).

2.2. Deep Learning With Local Losses
Loss functions are almost always defined using the network
output at the top layer. Assuming a global cost function L(SN)
defined on the spikes SN of the top layer and targets Ŷ , the
gradients with respect to the weights in layer l are:

∂L(SN)

∂W l
ij

=
∂L(SN)

∂Sli

∂Sli

∂U l
i

∂U l
i

∂W l
ij

. (5)

Frontiers in Neuroscience | www.frontiersin.org 4 May 2020 | Volume 14 | Article 424

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

The factor ∂L(SN)

∂Sli
captures the backpropagated errors, i.e., how

changing the output of neuron i in layer l modifies the global
loss. This problem is known as the credit assignment problem.
It generally involves non-local terms, including the activity of
other neurons, their errors, and their temporal history. Thus,
using local information only, a neuron in a deep layer cannot
infer how a change in its activity will affect the top-layer cost.
An increasing body of work is showing that approximations to
the backpropagated errors in SNNs can allow local learning, for
example in feedback alignment (Lillicrap et al., 2014). However,
maintaining the history of the dynamics efficiently remains a
challenging and open problem. While it is possible to use BPTT
methods to compute these errors, this comes at a significant cost
in memory and computation (Williams and Zipser, 1989), and is
not consistent with the constraint of local information.

We address this conundrum using deep local learning
(Mostafa et al., 2017). We focus on a form of deep local
learning that attaches random readouts to deep layers and defines
auxiliary cost functions over the readout. These auxiliary cost
functions provide a task-relevant source of error for neurons
in deep layers. The random readout is obtained by multiplying
the neural activations with a random and fixed matrix. Training
deep layers using auxiliary local errors that minimize the cost
locally still allows the network as a whole to reach a small top-
layer cost. As explained in Mostafa et al. (2017), minimizing a
local readout’s classification loss puts pressure on deep layers to
learn useful task-relevant features, which allow the random local
classifiers to solve the task. Moreover, each layer builds on the
features of the previous layer to learn features that are further
disentangled with respect to the categories for its local random
classifier compared to the previous layer. Thus, even though no
error information propagates downwards through the layer stack,
the layers indirectly learn useful hierarchical features that end
up minimizing the cost at the top layer. Although the reasons
for the effectiveness of local errors in deep network is intriguing
and merits further work, it is orthogonal to the scope of this
article. In this article, we focus on the fact that, provided local loss
functions, surrogate learning in deep spiking neural networks
becomes particularly efficient.

2.3. Deep Continuous Local
Learning (DECOLLE)
As discussed above, in DECOLLE, we attach a random readout to
each of the N layers of spiking neurons:

Y l
i =

∑

j

Gl
ijS

l
j,

where Gl
ij are fixed, randommatrices (one for each layer l) and 2

is an activation function. The global loss function is then defined
as the sum of the layerwise loss functions defined on the random

readouts, i.e. L =
∑N

l=1 L
l(Y l). To enforce locality, DECOLLE

sets to zero all non-local gradients, i.e., ∂Ll

∂Wm
ij

= 0 if m 6= l. With

this assumption, the weight updates at each layer become:

1W l
ij = −η

∂Ll

∂W l
ij

= −η
∂Ll

∂Sli

∂Sli

∂W l
ij

, (6)

where η is the learning rate. Assuming the loss function depends
only on variables in same time step, the first gradient term on

the right hand side, ∂Ll

∂Sli
, can be trivially computed using the chain

rule of derivatives. Applying the chain of derivatives to the second
gradient term yields:

∂Sli

∂W l
ij

=
∂2(U l

i)

∂U l
i

∂U l
i

∂W l
ij

.

Due to the sparse, binary activation of spiking neurons, this
expression vanishes everywhere except at 0, where it is infinite
(Neftci et al., 2019). To solve this problem, parameter updates
in DECOLLE are based on a differentiable but slightly different
version of the task-performing network. This approach was
previously described as surrogate gradient-based learning (Zenke
and Ganguli, 2017; Neftci et al., 2019):

∂Sli

∂W l
ij

= σ ′(U l
i)

∂U l
i

∂W l
ij

,

where σ ′(U l
i) is the surrogate gradient of the non-differentiable

step function 2(U l
i). The rightmost term is computed as:

∂U l
i

∂W l
ij

= Plj − ρ
∂Rli

∂W l
ij

.

The terms involving Rli are difficult to calculate because they
depend on the spiking history of the neuron. As in Superspike,
we ignore these dependencies and use regularization to favor low
firing rates, a regime in which the Rli has a negligible effect on the
membrane dynamics. Putting all three terms together, we obtain
the DECOLLE rule governing the synaptic weight update:

1W l
ij = −η

∂Ll

∂Sli
σ ′(U l

i)P
l
j. (7)

In the special case of the Mean Square Error (MSE) loss for layer
l, described as

Ll =
1

2

∑

i

(

Y l
i − Ŷ l

i

)2
,

the DECOLLE rule becomes

1W l
ij = −η errorli σ

′(U l
i)P

l
j,

errorli =
∑

k

Gl
ki(Y

l
k − Ŷ l

k),
(8)

where Ŷ l is the pseudo-target vector for layer l.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 424

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

2.3.1. Memory Complexity of DECOLLE
The variables P and U required for learning are local and
readily available from the forward dynamics. Because the errors
are computed locally to each layer, DECOLLE does not need
to store any additional intermediate variables, i.e., there is no
space requirement for the parameter update computation. The
same neural traces P and Q maintained during the forward
pass are sufficient (see section 2.4). The computational cost of
the weight update is the same as the Widrow-Hoff rule (one
addition and two products per connection, see Equation 8). This
makes DECOLLE significantly cheaper to implement compared
to BPTT for training SNN, e.g., SLAYER (Shrestha and Orchard,
2018) which scales spatially as O(NT), where T is the number of
timesteps (see Appendix section 5.2 for details on scaling).

2.3.2. Sign-Concordant Feedback Alignment in the

Local Layers
The gradients of the local losses Lli involve backpropagation

through the local random projection Y l. This is a non-local
operation as it requires the symmetric transpose of the matrix
G. This raises a weight transport problem, whereby the synaptic
weight must be “transported” from one neuron to another.
In a von Neumann computer, this is not a problem since
memory is shared across processes. However, if memory is
local, then a dedicated process must transmit this information.
Feedback alignment in non-spiking networks was demonstrated
to overcome this problem at a cost in accuracy (Mostafa et al.,
2017). In our experiments, we use sign-concordant feedback
weights to compute the gradients of the local losses: the backward
weights have the same sign as the forward ones, but subject
to fixed multiplicative Gaussian noise. The noise here reflects
the fact that weights do not need to be exactly symmetric.
This assumption is the most plausible scenario in mixed-signal
neuromorphic devices, where connections can be programmed
with the same sign bidirectionally, but the effective weights
are subject to fabrication mismatch (Neftci et al., 2011). Since
the weights in the local readouts are fixed, there is no weight
transport problem during learning. Thus, the computation of
the errors can be carried out using another random matrix
Hl (Lillicrap et al., 2016) whose elements are equal to Hl

ij =

Gl,T
ij ωl

ij with a Gaussian distributed ωl
ij ∼ N(1, 12). To enforce

sign-concordance, all values ωl
ij below zero were set to zero.

2.3.3. Biological Plausibility of DECOLLE and

Suitability for Neuromorphic Hardware
Equation (8) consists of three factors, one modulatory (errori),
one post-synaptic [σ ′(U l

i)], and one pre-synaptic (Plj). These

types of rules are often termed three-factor rules, which have
been shown to be consistent with biology (Pfister et al., 2006),
while being compatible with a wide number of unsupervised,
supervised, and reinforcement learning paradigms (Urbanczik
and Senn, 2014). The terms P and Q represent neural and
synaptic states that are readily available at the neuron. In our
previous work and general experience, the shape of the surrogate

function σ does not play a major role in DECOLLE1. The
surrogate function σ can be a piecewise linear function (Neftci
et al., 2017), such that σ ′ becomes a boxcar function. This
corresponds to a learning update that is gated by the post-
synaptic membrane potential, and is reminiscent of membrane
voltage-based rules, where spike-driven plasticity is induced only
when membrane voltage is inside an eligibility window (Brader
et al., 2007; Chicca et al., 2013).

In the derivation of the DECOLLE rule, we used an
instantaneous readout function Y l in the sense that it did
not depend on states of the previous time step. In biology,
this readout would be carried out by spiking neurons. This
introduces a temporal dependency. As in SuperSpike, this
temporal dependency significantly increases the complexity of
the learning, and is costly to implement in neuromorphic
hardware. One solution is to compute the errors using spiking
neurons with dynamics faster than those of the hidden neurons.
In mixed signal hardware, this can be achieved through fast
membrane and synaptic time constants. In digital hardware this
could be achieved using a dedicated logic block.

2.3.4. Regularization and Implementation Details
From a technological point of view, SNNs are interesting when
the spike rate is low as dedicated neuromorphic hardware can
directly exploit this sparsity to reduce computations by the same
factor (Merolla et al., 2014; Davies et al., 2018). To ensure
reasonable firing rates and prevent sustained firing, we use two
regularizers. One keeps U below to the firing threshold on
average, and one activity regularizer enforces a minimum firing
rate in each layer. The final loss function is:

Lg =
∑

l

Ll + λ1〈[U
l
i + 0.01]+〉i + λ2[0.1− 〈U l

i〉i]
+ (9)

where 〈·〉i denotes averaging over index i, [·]+ is a linear
rectification, and λ1, λ2 are hyperparameters. The minimum
firing rate regularization is included to prevent the layers
becoming completely silent during the training. Our experiments
used a piecewise linear surrogate activation function, such that
its derivative becomes the boxcar function σ ′(x) = 1 if x ∈

[−0.5, 0.5] and 0 otherwise.
In all our experiments, weight updates are made for each time

step of the simulation. We use the AdaMax optimizer (Kingma
and Ba, 2014) with parameters β1 = 0, β2 = 95 and learning rate
10−9, and a smooth L1 loss. Biases were used for all layers and
trained in all DECOLLE layers. The weights Gl used for the local
readouts were initialized uniformly. PyTorch code and a tutorial
are publicly available on Github2. DECOLLE is simulated using
mini-batches to leverage the GPU’s parallelism.

1Conversely, the particular surrogate function is reported to play an important

role in BPTT (Bellec et al., 2018). This is likely due the product of the gradient

approximations carried across multiple layers. This in turn can cause vanishing or

exploding gradients.
2https://github.com/nmi-lab/decolle-public

Frontiers in Neuroscience | www.frontiersin.org 6 May 2020 | Volume 14 | Article 424

https://github.com/nmi-lab/decolle-public
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

2.4. Computational Graph and
Implementation Using Automatic
Differentiation
Perhaps one of the strongest advantages of DECOLLE is its
out-of-the-box compatibility with Automatic Differentiation
(AD) tools for implementing gradient BP. AD is a technology
recently incorporated in machine learning frameworks to
automatically compute gradients in a computational graph3.
AD operates on the principle that all numerical computations
are compositions of a finite set of elementary operations for
which derivatives are known. By combining the derivatives of the
operations through the chain rule of derivatives, the derivative
of the overall composition can be computed in a single pass
(Baydin et al., 2017).

In practice, machine learning frameworks augment
each elementary computation with its corresponding
derivative function. As the desired operation is constructed,
the dependencies with other variables are recorded as a
computational graph. To perform gradient BP, after a forward
pass, a backward pass computes all the derivatives of the
operations in the graph. The root node of the reverse graph is
typically a scalar loss function, and the leaf nodes are generally
inputs and parameters of the network. After the backward
pass, the gradients of all leaf nodes are applied to the trained
parameters or inputs according to the optimization routine (e.g.,
Adam or similar).

SNNs being a special case of recurrent neural networks,
it is possible to apply AD to the full graph (Shrestha and
Orchard, 2018). On the other hand, DECOLLE only requires
backpropagating through a subgraph corresponding to one layer
and within the same time step (Figure 2). This is because the
information necessary for computing the gradients (P, Q, R, and
U) is carried forward in time, and because local loss functions
provide gradients for each layer.

AD in DECOLLE thus computes the gradients, locally,
for each layer within each timestep. Because some operations
in the subgraph can be non-differentiable (such as the
spiking nonlinearity), we call this the “surrogate gradient
backprop” (Figure 2). This integration allows leveraging the
layers, operations, optimizers and cost functions provided by
the software. All experiments under the Experiments section use
AD to compute derivatives. To prevent AD from unnecessarily
backpropagating in time, we rely on special “stop-gradient”
operations. In the Appendix, we provide pseudocode and
discussion of how this can be achieved.

3. EXPERIMENTS

3.1. Regression With Poisson Spike Trains
To illustrate the inner workings of DECOLLE, we first
demonstrate DECOLLE in a regression task. A three-layer fully
connected network consisting of 512 neurons each is stimulated
with a fixed 500 ms Poisson spike train. Each layer in the network
is trained with a different pseudo-target: Ŷ1, a ramp function;

3Gradient BP is a special case of reverse mode AD, see Baydin et al. (2017) for

complete review.

FIGURE 2 | The unfolded computational graph of a feedforward SNN. Time

flows to the right. Only temporal dependencies between timestep n− 1 and n

are shown here. Green edges indicate variables trained in the presented

version of DECOLLE. Red edges indicate the flow of the gradients. Note that

this graph is similar to that of a simple recurrent neural network. The forward

RTRL approach combined with local errors means that errors do not

propagate through neurons and across layers, as all the information required

for learning is available at the layer and the current time step n. For

implementation purposes however, autodifferentiation can be used to compute

gradients within the neuron and time step (see Appendix section 2.4 for

details). To avoid clutter, the node for R has been omitted.

Ŷ2, a high-frequency sinusoidal function and Ŷ3, a low-frequency
sinusoidal function. Figure 1 illustrates the states of the neurons.
For illustration purposes, the recording of the neural states was
made in the absence of parameter updates (i.e., the learning
rate is 0). The refractory mechanism decreases the membrane
potential after the neuron spikes (U[t]). As discussed in the
methods we use regularization on the membrane potential to
keep the neurons from sustaining high firing rates and an activity
regularizer to maintain a minimum firing rate. Updates to the
weight are made at each time step and can be non-zero when
the derivative of the activation function σ ′(U) and P are non-
zero. The magnitude and direction of the update are determined
by the error. Note that, in effect, the error is randomized as a
consequence of the random local readout. The network learned
to use the input spike times to reliably produce the targets.

3.2. N-MNIST
The N-MNIST dataset was recorded with a Dynamic Vision
Sensor (DVS) (Lichtsteiner et al., 2008) mounted on a pan-
tilt unit performing microsaccadic motions in front of a screen
displaying samples from the MNIST dataset (Orchard et al.,

Frontiers in Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 424

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

2015). Unlike standard imagers, the DVS records streams of
events that signal the temporal intensity changes at each of its
128× 128 pixels. For each of the 10 digits, we used 2,000 samples
for training and 100 samples for testing. The samples are cropped
spatially from 34 × 34 to 32 × 32 and temporally to 300 ms for
both the train and test set. The network is simulated with a 1ms
resolution—in other words, we sum up events in 1 ms time bins.
No further pre-processing is applied to the events.

Events are separated in two channels with respect to their
polarity. A N-MNIST sample is therefore represented as a tensor
of shape 300 × 2 × 32 × 32, stacked into mini-batch of 500
samples. The DECOLLE network is fed with 1 ms slices of the
input at a time. We relied on the same three-layer convolutional
architecture used in the DvsGesture task described below. After
a “burn-in” period of 50 ms during which no update is made,

FIGURE 3 | Classification results on the N-MNIST dataset for the three

DECOLLE layers. Classification Error for the N-MNIST task during learning for

all local errors associated with the convolutional layers. Shadings indicate

standard deviation across the 10 runs.

gradient updates are performed at every simulation step. Hence,
there are 250 weight updates per mini-batch. While the relevance
of the time domain in N-MNIST is debatable (Iyer et al., 2018),
this experiment shows that the neural dynamics of our network
leads to successful classifications in under 300 ms.

The results on the N-MNIST dataset are shown in Figure 3.
The experiment was performed 10 times with different random
seeds. DECOLLE’s final error is 0.96 ± 0.12% for the third layer
with 600,000 training iterations. We note that, due to the large
memory requirements, it is not practical to train the DECOLLE
convolutional network using BPTT. Hence we cannot provide
BPTT baselines.

3.3. DvsGesture
We test DECOLLE at the more challenging task of learning
gestures recorded using a DVS. Amir et al. recorded the
DvsGesture dataset using a DVS, which comprises 1,342
instances of a set of 11 hand and arm gestures, collected from
29 subjects under three different lighting conditions (Amir et al.,
2017). The unique features of each gesture are embedded in
the stream of events. The event streams were downsized from
128 × 128 to 32 × 32 (events from four neighboring pixels were
summed together as a common stream) and binned in frames
of 1ms, the effective time step of the GPU-based simulation
(Figure 4). During training, a sample consisted of 500 ms-long
slices of the sample. To maximize the use of the dataset, the
starting point of the slice was picked randomly, but such that a
full 500 ms sequence could be constructed. The sequences were
presented to the network in mini-batches of 72 samples. Testing
sequences were 1,800 ms-long, each starting from the beginning
of each recording (288 testing sequences). Note that since the
shortest recording in the test set is 1,800 ms, this duration
was selected to simplify and speed up the evaluation. The
classification is obtained by counting spikes at the output starting
from a burn-in period of 50 ms and selecting as output class the
neuron that spiked the most. Test results from the DECOLLE
network are reported with the dropout layer kept active, as
this provided better results. Contrary to Amir et al. (2017), we
did not use stochastic decay and the neural network structure

FIGURE 4 | (Left) DECOLLE setup for DvsGesture recognition. Learning was performed on the dataset provided with Amir et al. (2017) and consists of 11 gestures.

The network consisted of three convolutional layers with max-pooling. A local classifier is attached to every layer and followed by dropout for regularization. DECOLLE

is fed with 1 ms integer frames. (Right) Classification Error for the DvsGesture task during learning for all local errors associated with the convolutional layers .

Shadings indicate standard deviation across runs (5 runs for C3D, 10 runs for DECOLLE).

Frontiers in Neuroscience | www.frontiersin.org 8 May 2020 | Volume 14 | Article 424

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

TABLE 1 | Classification error at the DvsGesture task.

Model Error Training Iterations References

DECOLLE 4.46± 0.16% Online 0.16M This Work

SLAYER 6.36± 0.49 % BPTT 0.27M Shrestha and Orchard, 2018

C3D 5.46± 1.06% BPTT 0.32M Tran et al., 2015

IBM EEDN 8.23% (5.51%) BPTT 64M Amir et al., 2017

The IBM EEDN error in parentheses refers to the case with sliding window filter. Bold

values emphasize that this work achieves the lowest error.

is a three-layer convolutional neural network, loosely adapted
from Springenberg et al. (2014). We did not observe significant
improvement by adding more than three convolutional layers.
In shallow convolutional neural networks, it is common to use
larger kernel sizes (LeCun et al., 1998; Kubilius et al., 2019)
(Table 2). Since the input sizes were 32× 32, we used 7× 7 kernel
sizes in DECOLLE to ensure that the receptive field of neurons
in the last layer covered the input. The optimal hyperparameters
were found by a combination of manual and grid search. The
learning rate was divided by 5 every 500 steps.

We compared with C3D and energy-efficient deep networks
(EEDN). EEDN is a convolutional deep neural network
architecture that can be trained offline (e.g., on a GPU) and
deployed on the IBM TrueNorth chip (Esser et al., 2016).
EEDN was applied to DVS gestures and provides an important
benchmark on this task (Amir et al., 2017). Because EEDN was
not designed to utilize the temporal dynamics of the spiking
neurons in IBM TrueNorth chip, time is represented using the
channel dimension of 2D convolutional networks. This approach
limits the length of the sequence that EEDN can process.
To overcome this, Amir et al. (2017) used a sliding window
filter. C3D is a 3D convolutional network commonly used for
spatiotemporal classification in videos (Tran et al., 2015), where
the dimensions are time, height, and width. Using 3D kernels,
C3C can learn spatiotemporal patterns. The network was similar
to Tran et al. (2015) except that is was adapted for 32× 32 frames
and using half of the features per layer (seeAppendix for network
layers). We note that the C3D network is deeper and wider than
the DECOLLE network. We found that 16 × 32 × 32 frames,
where each of the 16 representing 32ms slices of the DVS data
performed best.

Overall, DECOLLE’s performance is comparable or better
than other published SNN implementations that use BP for
training (Table 1, Figure 4) and close to much larger C3D
networks. DECOLLE reached the reported accuracies after two
orders of magnitude fewer iterations and smaller network
compared to the IBM EEDN case (Table 1) (Amir et al., 2017).

Interestingly, the first layer of DECOLLE has a low
classification accuracy. A similar effect is observed in non-spiking
neural networks Mostafa et al. (2017). The local classifier errors
improve for the second and third hidden layers compared to the
first hidden layer. This is an indication that the network is able
to make use of depth to obtain better accuracy. An examination
of the filters learning in the first convolutional layer shows filters
of varying frequencies and orientations (Figure 5). Interstingly,

TABLE 2 | DECOLLE Neural network used for the DvsGesture dataset.

Layer type # Data type Dimensions

DVS 2 AEDAT 3.1 128× 128

Downsample (Sum) 2 Integer 32× 32

7× 7 Conv 64 Float 30× 30

2× 2 MaxPool 64 Float 15× 15

Spiking Non-linearity Binary

Dropout (p = 0.5) Float

Dense 11 Float 11

7× 7 Conv 128 Float 13× 13

Spiking Non-linearity Binary

Dropout (p = 0.5) Binary

Dense 11 Float 11

7× 7 Conv 128 Float 11× 11

2× 2 MaxPool 128 Float 5× 5

Spiking Non-linearity Binary

Dropout (p = 0.5) Binary

Dense 11 Float 11

Note that dense layers are used for the local classifiers only and were not fed to the

subsequent convolutional layers. AEDAT 3.1 is a data format used for event-based data.

The spiking nonlinearity was always applied after the pooling layers. Dropout layers were

left active during testing.

FIGURE 5 | 7× 7 Filters learned in the positive polarity channel (Left) and

negative polarity channel (Right) of the first convolutional layer. The similarity

of the kernels across the two polarities reflects the DVS data, where leading

edges and trailing edges co-occur with opposite polarities.

the filters on the positive and negative channels of the DVS
are similar, but exhibit small variations that are consistent with
motion. This correlation is consistent with the DVS data, where
leading edges of one polarity co-occur with trailing edges of
opposite polarity.

4. CONCLUSION

Understanding and deriving neural and synaptic plasticity rules
that can enable hidden weights to learn is an ongoing quest in
neuroscience and neuromorphic engineering. From a machine
learning perspective, locality, and differentiability are key issues
of the spiking neuronmodel operations.While the latter problem
is now being tackled with surrogate gradient approaches, how to
achieve this in deep networks in a scalable and local fashion is still
an open question.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2020 | Volume 14 | Article 424

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

We presented a novel synaptic plasticity rule, DECOLLE,
derived from a surrogate gradient approach with linear scaling
in the number of neurons. The rule draws on recent work in
surrogate gradient descent in spiking neurons and local learning
with layerwise classifiers. The linear scalability is obtained
through a (instantaneous) rate-based cost function on the local
classifier. The simplicity of the DECOLLE rule equation makes
it amenable for direct exploitation of existing machine learning
software libraries. Thanks to the surrogate gradient approach, the
updates computed through automatic differentiation are equal
to the DECOLLE update. This enables the leveraging of a wide
variety of machine learning frameworks for implementing online
learning of SNNs.

Updates in DECOLLE are performed at every time step,
in accordance with the continuity of the leaky I&F dynamics.
This can lead to a large number of updates and inefficient
implementations in hardware. To tackle this problem,
updates can be made in an error-triggered fashion, as
discussed in Payvand et al. (2020). A direct consequence
of the local classifiers is the lack of cross-layer adaptation
of the layers. To tackle this problem, one could use meta-
learning to adapt the random matrix in the classifier.
In effect, the meta-learning loop would act as the outer
loop in the synthetic gradients approach Jaderberg et al.
(2016). The notion that a “layer” of neurons specialized in
solving certain problems and sensory modalities is natural
in computational neurosciences and can open multiple
investigation avenues for understanding learning and plasticity
in the brain.

DECOLLE is a departure from standard SNNs trained with
Hebbian spike-timing-dependent plasticity, as it uses a normative
learning rule that is partially derived from first principles.
Models of this type can make use of standard processors where
it makes the most sense (i.e., readout, cost functions etc.)
and neuromorphic dedicated hardware for the rest. Because it

leverages the best of both worlds, DECOLLE is poised to make
SNNs take off in event-based computer vision.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation, to any
qualified researcher.

AUTHOR CONTRIBUTIONS

JK, HM, and EN wrote the paper and conceived the experiments.
JK and EN ran the experiments and analyzed the data.

FUNDING

This manuscript has been released as a pre-print at https://
arxiv.org/abs/1811.10766 (Kaiser et al., 2018). EN was supported
by the Intel Corporation, the National Science Foundation
under grant 1652159, and by the Korean Institute of Science
and Technology. JK was supported by a fellowship within
the FITweltweit programme of the Germadvantages: German
Academic Exchange Service (DAAD). HM was supported by
the Swiss National Fund. The authors declare that this study
received funding from Intel Corporation. The funder was not
involved in the study design, collection, analysis, interpretation
of data, the writing of this article or the decision to submit it
for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00424/full#supplementary-material

REFERENCES

Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., Di Nolfo, C.,

et al. (2017). “A low power, fully event-based gesture recognition

system,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Honolulu, HI), 7243–7252. doi: 10.1109/CVPR.2

017.781

Baldi, P., Sadowski, P., and Lu, Z. (2017). Learning in the machine: the

symmetries of the deep learning channel. Neural Netw. 95, 110–133.

doi: 10.1016/j.neunet.2017.08.008

Bartolozzi, C., and Indiveri, G. (2006). “Silicon synaptic

homeostasis,” in Brain Inspired Cognitive Systems, BICS 2006

(Lesvos), 1–4.

Bartunov, S., Santoro, A., Richards, B., Marris, L., Hinton, G. E., and Lillicrap,

T. (2018). “Assessing the scalability of biologically-motivated deep learning

algorithms and architectures,” in Advances in Neural Information Processing

Systems (Montréal, QC), 9368–9378.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2017).

Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res.

18, 5595–5637.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long

short-term memory and learning-to-learn in networks of spiking neurons.

arXiv [Preprint]. arXiv:1803.09574.

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., and Maass, W. (2019).

Biologically inspired alternatives to backpropagation through time for learning

in recurrent neural nets. arXiv [Preprint]. arXiv:1901.09049.

Bohte, S. M., Kok, J. N., and La Poutré, J. A. (2000). “Spikeprop: backpropagation

for networks of spiking neurons,” in ESANN (Bruges), 419–424.

Brader, J., Senn, W., and Fusi, S. (2007). Learning real world stimuli in a neural

network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.

doi: 10.1162/neco.2007.19.11.2881

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., et al.

(2007). Simulation of networks of spiking neurons: a review of tools and

strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Chicca, E., Stefanini, F., and Indiveri, G. (2013). Neuromorphic electronic circuits

for building autonomous cognitive systems. Proc. IEEE 102, 1367–1388.

doi: 10.1109/JPROC.2014.2313954

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects

coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13,

344–352. doi: 10.1038/nn.2479

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

Binarized neural networks: Training deep neural networks with weights and

activations constrained to+ 1 or-1. arXiv [Preprint]. arXiv:1602.02830.

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Joshi, P., Lines, A., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Frontiers in Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 424

https://arxiv.org/abs/1811.10766
https://arxiv.org/abs/1811.10766
https://www.frontiersin.org/articles/10.3389/fnins.2020.00424/full#supplementary-material
https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1016/j.neunet.2017.08.008
https://doi.org/10.1162/neco.2007.19.11.2881
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.1038/nn.2479
https://doi.org/10.1109/MM.2018.112130359
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Kaiser et al. Deep Continuous Local Learning (DECOLLE)

Eliasmith, C., and Anderson, C. (2004). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. MIT Press.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113,

11441–11446. doi: 10.1073/pnas.1604850113

Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models. Single

Neurons, Populations, Plasticity. Cambridge University Press.

doi: 10.1017/CBO9780511815706

Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics:

From Single Neurons to Networks and Models of Cognition. Cambridge

University Press. doi: 10.1017/CBO9781107447615

Gütig, R. and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Huayaney, F. L. M., Nease, S., and Chicca, E. (2016). Learning in silicon beyond

STDP: a neuromorphic implementation of multi-factor synaptic plasticity

with calcium-based dynamics. IEEE Trans. Circuits Syst. I 63, 2189–2199.

doi: 10.1109/TCSI.2016.2616169

Huh, D., and Sejnowski, T. J. (2017). Gradient descent for spiking neural networks.

arXiv [Preprint]. arXiv:1706.04698.

Iyer, L. R., Chua, Y., and Li, H. (2018). Is neuromorphic mnist neuromorphic?

Analyzing the discriminative power of neuromorphic datasets in the time

domain. arXiv [Preprint]. arXiv:1807.01013.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., and

Kavukcuoglu, K. (2016). Decoupled neural interfaces using synthetic gradients.

arXiv [Preprint]. arXiv:1608.05343.

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent

neural networks-with an erratum note. Technical Report, German National

Research Center for Information Technology GMD, Bonn.

Kaiser, J., Mostafa, H., andNeftci, E. (2018). Synaptic plasticity for deep continuous

local learning. arXiv [Preprint]. arXiv:1812.10766.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv Preprint. arXiv:1412.6980.

Kubilius, J., Schrimpf, M., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., et al.

(2019). Brain-like object recognition with high-performing shallow recurrent

ANNs. arXiv [Preprint]. arXiv:1909.06161.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). An 128x128 120dB 15µs-

latency temporal contrast vision sensor. IEEE J. Solid State Circuits 43, 566–576.

doi: 10.1109/JSSC.2007.914337

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2014). Random

feedback weights support learning in deep neural networks. arXiv [Preprint].

arXiv:1411.0247.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random

synaptic feedback weights support error backpropagation for deep learning.

Nat. Commun. 7:13276. doi: 10.1038/ncomms13276

Maass,W., Natschläger, T., andMarkram, H. (2002). Real-time computing without

stable states: a new framework for neural computation based on perturbations.

Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mostafa, H., Ramesh, V., and Cauwenberghs, G. (2017). Deep supervised

learning using local errors. arXiv [Preprint]. arXiv:1711.06756.

doi: 10.3389/fnins.2018.00608

Neftci, E., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven random

back-propagation: Enabling neuromorphic deep learning machines. Front.

Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

Neftci, E., Chicca, E., Indiveri, G., and Douglas, R. (2011). A systematic method for

configuring VLSI networks of spiking neurons.Neural Comput. 23, 2457–2497.

doi: 10.1162/NECO_a_00182

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning

in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 36,

51–63. doi: 10.1109/MSP.2019.2931595

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015).

Converting static image datasets to spiking neuromorphic datasets

using saccades. Front. Neurosci. 9:437. doi: 10.3389/fnins.2015.

00437

Payvand, M., Fouda, M., Eltawil, A., Kurdahi, F., and Neftci, E. (2020).

“Error-triggered three-factor learning dynamics for crossbar arrays,” in

2020 IEEE International Conference on Artificial Intelligence Circuits

and Systems (AICAS) (Genova). doi: 10.1109/AICAS48895.2020.907

3998

Pfister, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006). Optimal spike-

timing-dependent plasticity for precise action potential firing in supervised

learning. Neural Comput. 18, 1318–1348. doi: 10.1162/neco.2006.18.6.

1318

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “Xnor-

net: Imagenet classification using binary convolutional neural networks,” in

European Conference on Computer Vision (Amsterdam: Springer), 525–542.

doi: 10.1007/978-3-319-46493-0_32

Shrestha, S. B., and Orchard, G. (2018). “Slayer: Spike layer error reassignment in

time,” in Advances in Neural Information Processing Systems (Montréal, QC),

1412–1421.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014).

Striving for simplicity: the all convolutional net. arXiv [Preprint]. arXiv:141

2.6806.

Sussillo, D., and Abbott, L. F. (2009). Generating coherent patterns

of activity from chaotic neural networks. Neuron 63, 544–557.

doi: 10.1016/j.neuron.2009.07.018

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). “Learning

spatiotemporal features with 3D convolutional networks,” in Proceedings of

the IEEE International Conference on Computer Vision (Santiago), 4489–4497.

doi: 10.1109/ICCV.2015.510

Urbanczik, R., and Senn, W. (2014). Learning by the dendritic prediction

of somatic spiking. Neuron 81, 521–528. doi: 10.1016/j.neuron.2013.

11.030

Williams, R. J., and Zipser, D. (1989). A learning algorithm for continually

running fully recurrent neural networks. Neural Comput. 1, 270–280.

doi: 10.1162/neco.1989.1.2.270

Zenke, F., and Ganguli, S. (2017). Superspike: Supervised learning in

multi-layer spiking neural networks. arXiv [Preprint]. arXiv:1705.11146.

doi: 10.1162/neco_a_01086

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Kaiser, Mostafa and Neftci. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 11 May 2020 | Volume 14 | Article 424

https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1038/nn1643
https://doi.org/10.1109/TCSI.2016.2616169
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00608
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1162/NECO_a_00182
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/AICAS48895.2020.9073998
https://doi.org/10.1162/neco.2006.18.6.1318
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1016/j.neuron.2013.11.030
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco_a_01086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)
	1. Introduction
	1.1. Related Work

	2. Methods
	2.1. Neuron and Synapse Model
	Discrete Spike Response Model of the Neuron and Synapse Dynamics

	2.2. Deep Learning With Local Losses
	2.3. Deep Continuous Local Learning (DECOLLE)
	2.3.1. Memory Complexity of DECOLLE
	2.3.2. Sign-Concordant Feedback Alignment in the Local Layers
	2.3.3. Biological Plausibility of DECOLLE and Suitability for Neuromorphic Hardware
	2.3.4. Regularization and Implementation Details

	2.4. Computational Graph and Implementation Using Automatic Differentiation

	3. Experiments
	3.1. Regression With Poisson Spike Trains
	3.2. N-MNIST
	3.3. DvsGesture

	4. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

