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Abstract: A growing body of evidence suggests that low nephron numbers at birth can increase
the risk of chronic kidney disease or hypertension later in life. Environmental stressors, such as
maternal malnutrition, medication and smoking, can influence renal size at birth. Using metanephric
organ cultures to model single-variable environmental conditions, models of maternal disease were
evaluated for patterns of developmental impairment. While hyperthermia had limited effects on
renal development, fetal iron deficiency was associated with severe impairment of renal growth
and nephrogenesis with an all-proximal phenotype. Culturing kidney explants under high glucose
conditions led to cellular and transcriptomic changes resembling human diabetic nephropathy. Short-
term high glucose culture conditions were sufficient for long-term alterations in DNA methylation-
associated epigenetic memory. Finally, the role of epigenetic modifiers in renal development was
tested using a small compound library. Among the selected epigenetic inhibitors, various compounds
elicited an effect on renal growth, such as HDAC (entinostat, TH39), histone demethylase (deferasirox,
deferoxamine) and histone methyltransferase (cyproheptadine) inhibitors. Thus, metanephric organ
cultures provide a valuable system for studying metabolic conditions and a tool for screening for
epigenetic modifiers in renal development.

Keywords: renal development; nephron number; diabetic nephropathy; epigenetic regulation; iron
deficiency; DNA methylation

1. Introduction

Fetal development is affected by the in utero environment, and an adverse milieu can
predispose to diseases such as hypertension, cardiovascular disease and chronic kidney
disease later in life [1–4]. A range of intrauterine disturbances can result in a reduction
in nephron endowment and compromised renal function in the offspring. In rodents,
conditions leading to reduced nephron numbers at birth include intrauterine growth
restriction (IUGR), maternal low protein diet, medications (including corticosteroids or
nonsteroidal anti-inflammatory drugs), monogenetic mutations and low vitamin A levels,
as well as maternal diabetes and iron deficiency [5–10]. In humans, there is currently no
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noninvasive method of measuring nephron numbers. However, postmortal studies have
demonstrated a negative correlation between nephron numbers and blood pressure [4,11].
Additionally, intrauterine conditions associated with reduced nephron numbers such as
IUGR are known to be are associated with increased rates of hypertension and CKD [12].

In vivo experiments where the adverse intrauterine conditions are artificially induced
in pregnant animals have proven invaluable for the detection and description of the renal
alterations induced in the offspring. However, any experimental intervention during
gestation results in complex alterations in the maternal, placental and fetal physiology
which may themselves affect the environment of the developing metanephroi. Ex vivo
modeling techniques circumvent this by enabling the investigation of kidney development
completely separated from the influence of the mother animal, the placenta or other organs
of the fetus. Isolated cultures of metanephroi on a medium–air interface were initially
performed by Trowell in 1950 [13] and have subsequently been refined by culturing of
kidneys on filter membranes [14], providing a basis for single-variable culture conditions.

In summary, there is an increasing body of evidence suggesting that prenatal insults
associated with low nephron numbers are relevant risk factors for hypertension and CKD.
In order to develop preventative strategies to ensure adequate nephron endowment at
birth, a mechanistic understanding of the factors influencing renal development and
nephrogenesis is necessary. In the present work, metanephric organ culture was used to
model different aspects of environmental regulation to study their effects on renal growth
and possible implications for long-term renal function and used to screen for epigenetic
regulators using FDA-approved small compounds.

2. Results
2.1. Use of Metanephric Organ Cultures to Study the Effect of Environmental Conditions on
Renal Development

To model adverse environmental conditions, kidneys from embryonic day (E) 12.5
embryos were cultured at the medium–air interface (Figure 1A). To facilitate monitoring
of nephron and glomerular development, Six2.Cre and Pod.Cre dual-fluorescent reporter
mice were used, respectively (Figure 1B,C). A common condition during pregnancy is fever,
which affects more than 10% of pregnancies during the first 16 weeks of gestation [15].
Heat is a well-characterized teratogen, and hyperthermia during pregnancy has been
shown to lead to fetal abortion, growth retardation and developmental defects, such as
renal agenesis, hypoplasia and low birth weight in several species [16–21]. To assess the
impact of prolonged, fever-range hyperthermic conditions on kidney growth and nephron
formation, kidneys were isolated and maintained at either 37 or 40 ◦C (Figure 1D). After
7 days of culture, kidneys cultured at 40 ◦C were, on average, 18.36% smaller than their
counterparts cultured under physiological conditions (Figure 1E). However, no significant
difference in the number of glomeruli per kidney was found between the groups (Figure 1F).
Nevertheless, the decreased overall growth of the kidneys demonstrates a negative effect
of increased temperature on metanephric growth.

With an estimated 19% of pregnant women suffering from iron-deficiency anemia [22],
iron deficiency is one of the most widespread conditions with the potential to disturb renal
development [23]. In vivo data have shown that renal growth, glomerular numbers and
renal iron uptake are reduced during pregnancies affected by maternal iron deficiency [24].
In order to assess the impact of reduced transferrin-bound iron supply on kidney growth
and nephrogenesis, explants were cultured in medium containing 50 µg/mL of iron-
saturated holo-transferrin or 50 µg/mL of iron-depleted apo-transferrin, respectively.
Iron-restricted kidneys remained much smaller than their iron-sufficient counterparts and
showed increased apoptosis in the ureteric buds and reduced ureteric bud branching and
proliferation (Figure 1G, Supplementary Figure S1A–F). While the nephron population
was morphologically unaffected, a decrease in the developing distal part of the nephron,
as well as distal tubules, could be seen (Figure 1H,I, Supplementary Figure S1G–J). The
iron-deficient kidneys were, on average, 47.9% of the size of their holo-transferrin cultured
counterparts (Figure 1J) and showed a reduction in the overall number of glomeruli per
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kidney of 69.9% after 7 days in culture (Figure 1K). Thus, iron depletion by apo-transferrin
showed severe effects on kidney growth with an all-proximal nephrogenesis phenotype.
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Figure 1. Use of metanephric organ cultures to study the effect of environmental conditions on renal development. (A) The
urogenital ridge from E12.5 mouse embryos (left panel) was microsurgically extracted (second panel), and the kidneys were
isolated (third panel) and placed on Transwell inserts (right panel). Scale bars: 1 mm (left panel), 500 µm (third panel).
(B) Transgenic mice with dual Tomato/EGFP expression were used for conditional labeling of Six2-positive cells and their
offspring using Six2.Cre or (C) podocin-positive cells using Pod.Cre mice. (D) Explants from the same embryo cultured
for 7 days at 37 or 40 ◦C. Scale bars: 500 µm. (E) Surface areas of explants grown for 7 days at 37 or 40 ◦C. n = 40 pairs,
paired t-test, mean ± SD. (F) Number of glomeruli in the explant groups after 7 days. n = 21 pairs, paired t-test, mean ± SD.
(G) Explants from the same embryo cultured for 7 days in medium containing holo-Tf or apo-Tf. Scale bars: 500 µm.
(H) Widefield images of holo-Tf and apo-Tf cultured explant pair stained against SIX2 and E-cadherin after 48 h of culture
show normal progenitor cell pool and defects in early nephron morphology. Scale bar: 100 µm. (I) Widefield images of
holo-Tf and apo-Tf cultured explant pair stained against WT1 and JAG1. Scale bars: 100 µm. (J) Surface areas of holo-Tf and
apo-Tf cultured explants after 7 days. n = 30 pairs, paired t-test, mean ± SD. (K) Number of glomeruli in the explant groups
after 7 days. n = 17 pairs, paired t-test, mean ± SD.
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2.2. Ex Vivo High Glucose Exposure Leads to Diabetic Nephropathy-Associated Changes in the
Developing Kidney

Maternal diabetes is another common condition during pregnancy, with a global
prevalence of hyperglycemia in pregnancy of ~17% and over 20 million live births each
year [25]. Diabetes induced in mouse and rat models has been shown to lead to offspring
with a lower nephron number [10,26,27]. Metanephric organ culture has been used before
to study the effect of high glucose on renal development [27–29]. Previously, we reported
reduction in size, nephron number and DNA methylation under high glucose conditions
of 55 mM [30]. In contrast to published data [28], no effect on explant size or glomerular
number could be seen in our samples when cultured in different 30 mM glucose media
compared to 5 mM control conditions after 7 days (Supplementary Figure S2A,B). Fur-
thermore, no decrease in DNA methylation at LINE-1 and major satellite sites could be
detected (Supplementary Figure S2C,D). The effect of 55 mM high glucose on renal develop-
ment after a 7-day period culture was further analyzed, showing a decrease in the growth
rate starting at day 3 in culture (Figure 2A,B). Immunofluorescence stainings showed no
morphological defects of the SIX2-positive progenitor cell pool (Figure 2C) but showed
reduced staining of podocyte marker podocalyxin (PODXL, Figure 2D). The glomeruli were
found to contain a thickened glomerular basement matrix visible in histological stainings
(Figure 2E). Similar findings were made in electron microscopy, showing an increase in
glomerular basement membrane thickness (Figure 2F), one of the earliest markers of pre-
diabetes and diabetic nephropathy (DN) [31,32], in five out of six kidneys and none of
seven littermate control kidneys. To further unravel changes in the transcriptome, pair-
wise differential gene expression (DGE) analysis of kidney cultures from three litters was
performed, with one kidney from each embryo cultured with high glucose and the other
with control medium and the kidneys pooled for analysis (n = 3). DGE confirmed the
upregulation of extracellular matrix components as the primary upregulated biological pro-
cess (Supplementary Table S1). Downregulated genes were mainly involved in (immune)
cell activation and exocytosis/secretion (Supplementary Table S1). Mammalian pheno-
type ontology indicated abnormal kidney cortex and renal corpuscle morphology due to
downregulated genes such as Pdgfb, Podxl, Ren, Ptpro, Mafb and Vegfa (Supplementary
Table S1). Renal expression of several genes, such as Angptl4, Spon2 (Mindin), Pappa and
Txnip, which have been shown to be upregulated in diabetic nephropathy [33–36], was
found to be increased under hyperglycemic conditions. To compare the high glucose kidney
culture gene expression profile to human DN, the DGE data were matched to human data
from microdissected glomeruli and tubules from diabetic nephropathy patient biopsies
from the European Renal cDNA Bank (ERCB). From the 216 differentially regulated genes
matched after batch analysis, 94 genes were correspondingly differentially regulated in the
glomerular and/or tubular fractions (Figure 2G). The overlap of our model and human
DN genes showed 40 out of 95 genes upregulated in the glomeruli and 34 genes in tubules
(25 genes in common) (Figure 2H). The genes were mostly involved in extracellular matrix
organization (COL4A5, COL4A6, COL8A2, LAMB3, LAMC3) and cell adhesion (ITGBL1,
CLDN15). Additionally, diabetes-associated genes such as TXNIP, SPON2 and PAPPA
were upregulated. Out of 120 downregulated genes from the kidney cultures, 22 were also
downregulated in the glomeruli and 39 were also downregulated in the tubules (16 in com-
mon (Figure 2I). These genes were involved in response to endogenous stimulus (BMP2,
KLF15, JUNB, CTSB), nephron epithelium development (PTPRO, PODXL, VEGFA) and
positive regulation of endothelial cell chemotaxis (LGMN, P2RX4, VEGFA). Additionally,
diabetes-associated genes such as RASGRP3, SIRPA, GATM and ESM1 were downregu-
lated [37–39]. Differentially regulated genes not overlapping with ERCB data also reflected
diabetes-associated changes, such as extracellular matrix (ANGPTL4, TNN, DPT, COL9A2)
or gestational diabetes (LAT2, HP, CXCL10, CD86, CD68, REN, SLC2A3, VCAM1). Thus,
renal development under high glucose conditions displayed remarkable similarities to
human adult diabetic nephropathy.
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Figure 2. Ex vivo high glucose exposure leads to diabetic nephropathy-associated changes in the developing kidney.
(A) Embryonic kidneys from Pod.Cre;Tomato/EGFP animals cultured for 7 days in low glucose (LG, 5.5 mM α-D-glucose,
55 mM mannitol) or high glucose (HG, 55 mM α-D-glucose) conditions. Scale bar: 500 µm. (B) Kidney surface area of HG
and LG conditions. *, p = 0.0474; **, p = 0.0052; ****, p < 0.0001. Paired t-test, mean ± SD. (C) Confocal immunofluorescent
stainings of day 7 kidney cultures against Six2 and (D) podocalyxin with pan-cytokeratin and Hoechst. Scale bar: 100 µm.
(E) Stainings of 6 µm sections from day 7 kidney cultures. Scale bar: 20 µm. (F) Transmission electron microscopy of
sections from day 7 kidney cultures. Glomerular basement membranes are thickened in kidneys exposed to high glucose
conditions. Left column: magnification showing podocyte foot processes. Scale bars: 500 nm (left panels), 100 nm (right
panels). (G) Fold change of RNA-seq data from HG compared to LG kidneys and ERCB diabetic nephropathy (DN)
patient microarray data from microdissected glomeruli and tubules showing differentially expressed genes. (H) Genes
upregulated in the kidney cultures (KC) overlapping with ERCB DN patient data and selected genes highlighted. (I) Genes
downregulated in the kidney cultures (KC) overlapping with ERCB DN patient data and selected genes highlighted.

2.3. Ex Vivo High Glucose Exposure Influences to Long-Term Memory Formation via
DNA Methylation

To further understand the molecular changes mediated by a hyperglycemic environ-
ment, kidney cultures were grown at high glucose conditions for 3.5 days and then changed
to low glucose conditions for the same amount of time (Figure 3A). Remarkably, incuba-
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tion under physiological conditions after the shorter incubation period in high glucose
medium did not reverse growth reduction after 7 days in culture with the cultures growing
at the same rate as under continuous high glucose treatment (Figure 3B). Furthermore,
DNA methylation showed hypomethylation of LINE-1 element and major satellite loci
(Figure 2C,D), as well as sustained DNA hypermethylation of the Ppargc1a promoter,
under both high glucose and reversed conditions (Figure 3E), indicating the formation
of metabolic memory via DNA methylation due to the earlier adverse environmental
conditions as a means of fetal programming.
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Figure 3. Ex vivo high glucose exposure influences long-term memory formation via DNA methylation. (A) Imaging of
E12.5 embryonic kidneys from day 0 to day 7 in low glucose medium (5.5 mM), high glucose medium (55 mM) or high
glucose medium for 3.5 days and reversal to low glucose medium for the remaining days. Scale bar: 500 µm. (B) Kidney
surface area over 7 days. Mean ± SD. n = 36 kidneys. LG, low glucose treatment; HG, high glucose treatment; HG
to LG, 3.5 days high and 3.5 days low glucose treatment. ***, LG–HG (unpaired t-test): p = 0.0004; ****, LG–HG to LG
(paired t-test): p < 0.0001. (C) Analysis of the DNA methylation at LINE-1 and (D) major satellite loci shows continuous
DNA hypomethylation in high glucose treated conditions. **, p-value = 0.0022. *, p-value = 0.0357. (E) Analysis of the
DNA methylation at Ppargc1a locus shows continuous DNA hypermethylation in high glucose conditions. Mean ± SD.
*, p-value = 0.0130.

2.4. Ex Vivo Small Compound Screen Identifies Epigenetic Regulators of Renal Development

The results of this work as well as previous works suggest that epigenetic mechanisms
play a role in kidney development [30,40–45]. Therefore, we wanted to systematically
evaluate the effect of epigenetic modulators of the different enzyme classes on renal de-
velopment. For this, we selected a library of 22 FDA-approved small compounds with
demonstrated inhibitory activity [46–56] (Figure 4A). Using Six2.Cre-reporter mice to eval-
uate nephron development, the renal structures were cultured for 3 days with the inhibitors
in the medium. Size increase over time was compared to the littermate control organs,
and the morphology was checked for abnormalities in development (Figure 4B). Several
inhibitors could be shown to interfere with normal ex vivo renal development. HDAC
inhibitor entinostat, a benzamide histone deacetylase inhibitor with high affinity for HDAC
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1, 2 and 3 [57], showed consistent growth reduction and lack of differentiation and prolif-
eration after 3 days (Figure 4C). TH39, developed as a selective HDAC8 inhibitor (IC50
HDAC8 88 nM, 26-fold selective against HDAC1, 28-fold selective against HDAC6 [56]),
showed a similarly severe inhibition of growth compared to littermate control organs.
Furthermore, iron chelators and inhibitors of JmJC deferasirox and deferoxamine showed
growth reduction analogous to iron-deficient medium. Additionally, SET7/9 inhibitor
cyproheptadine [58,59] showed growth reduction and lack of differentiation and prolif-
eration compared to control kidneys (Figure 4D) but also seemed to interfere with Wnt
signaling (Supplementary Figure S3). Other HDAC, HAT, HDM and HMT inhibitors and
DNMT inhibitor 5-azacytidine did not show growth reduction or developmental anomalies
within the measured time frame (Figure 4A).
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Figure 4. Ex vivo small compound screen identifies modulators of renal development. (A) List of small compounds, their
epigenetic targets and concentration used shows renal growth reduction with entinostat, TH39, deferasirox, deferoxamine
and cyproheptadine in ≥3 independent experiments after 3 days in culture. Control cultures were treated with DMSO.
****, p-value < 0.0001. (B) Examples of two sets of embryonic kidney cultures with pictures taken from day 0 until day 3
showing growth reduction and morphological differences in kidneys treated with TH39, deferasirox and deferoxamine
compared to littermate control kidneys. Scale bar: 500 µm. (C) Entinostat showed growth reduction at 5 and 10 µM
concentration, no nephron differentiation and lack of proliferation after 3 days. (D) Cyproheptadine showed growth
reduction at 100 and 50 µM concentrations, lack of differentiation, ureter dilation and lack of proliferation after 3 days in
culture. Scale bar: 500 µm. PanCK, pan-cytokeratin. CC3, cleaved caspase-3. PCNA, proliferating cell nuclear antigen.
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3. Discussion

Renal development primarily takes place in utero and is subject to interference from
metabolic and environmental influences. Nephron number is determined at birth, and
a growing body of evidence suggests low nephron numbers to be a risk factor for the
development of hypertension and chronic kidney disease later in life [2–4,60]. However,
many factors influencing nephron number and modes of action are still unknown. Here,
embryonic kidneys from dual-fluorescent reporter mice cultured on Transwell inserts were
used to model maternal metabolic conditions and screen epigenetic inhibitors.

While many studies now involve kidney organoids using human iPS cells [61], kidney
cultures are a valuable tool for detailed analysis of phenotypes mediated by metabolic
conditions or inhibitory agents. While progenitor cell cultures and kidney organoids are
alternatives with significant potential for investigations of teratogenicity, they are subject to
limitations, such as high variability in differentiation and growth and lack of a conventional
organ structure. This makes metanephric organ culture a valuable alternative to investigate
conditions that would not be feasible in vivo.

Thus, hyperthermia and iron deficiency provide two examples of investigating en-
vironmental conditions with different outcomes on renal growth and nephron numbers.
While data on the effect of hyperthermia on renal growth are scarce, the effect of ex vivo
iron restriction is in line with previous reports of maternal iron deficiency in rats [23,24],
although the model is limited in replicating the exact in utero state in terms of concen-
tration and iron kinetics. Our results have also shown that mitotic activity is reduced
in the iron-restricted condition. Iron plays an essential role in many cellular processes,
such as the cell cycle [62]. Our morphological analysis showed an all-proximal nephron
differentiation phenotype, possibly as the result of inhibited canonical Wnt signaling.
Widespread downregulation of genes associated with Wnt signaling has previously been
reported in a microarray analysis of rat offspring exposed to maternal iron deficiency [63].
Mechanistically, intracellular iron depletion by chelating agents has been shown to induce
proteasomal degradation of β-catenin, the principal downstream effector protein of the
canonical Wnt pathway in cancer and neural progenitor cells [64,65].

As another metabolic condition, modeling high glucose exposure resulted in effects
similar to those of in vivo streptozotocin-induced maternal diabetes [10,26,27,66–71]. While
our model could not reproduce the effects of 30 mM glucose conditions, likely due to the
previously reported influence of mouse background [28,72], 55 mM glucose conditions
resulted in growth reduction and decreased nephron numbers. Pronounced changes were
visible histologically and ultrastructurally in the glomeruli, with the expansion of the
glomerular basement matrix resembling human diabetic nephropathy. The similarities
between murine fetal and human adult renal response to high glucose with distinct ECM
expansion and downregulation of key podocyte genes was striking and revealed many
known diabetes-associated genes, indicating usage of similar mechanisms in the podocytes
and tubules. However, whether the same underlying pathways lead to dedifferentiation in
diabetic nephropathy and decrease in differentiation during fetal differentiation is so far
unknown. Interestingly, nonglucose alterations of the diabetic environment, such as hyper-
ketonemia, have also been shown to mediate teratogenesis but were not replicated in the
kidney culture model [73,74]. Long-term effects of hyperglycemia were also reproducible in
our model, showing continuous growth retardation after normalization of glycemia similar
to previous reports [10]. Additionally, DNA methylation analysis revealed a prolonged
DNA hypomethylation at repetitive regions and hypermethylation at the Ppargc1a locus
after reversal to low glucose medium, indicating the formation of metabolic memory after
a period of metabolic stress [30]. Many more of the differentially regulated genes have
also previously been shown to be epigenetically regulated in diabetes. For instance, upreg-
ulated gene MEST is maternally imprinted and hypomethylated in gestational diabetes
mellitus [75]. S100A4 is a differentially methylated marker of insulin resistance in obese
children [76]. Of the downregulated genes, ESM1 and RASGRP3 are examples of genes
differentially methylated in gestational diabetes [77,78], showing the growing emergence
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of links between diabetes and epigenetic regulation. Thus, our system highlights epigenetic
modification or fetal programming as an important regulatory mechanism.

Several epigenetic regulatory enzymes are known to be involved in both renal mor-
phogenesis and transcriptional regulation in adult organ function and disease [30,40,79–81].
Using kidney cultures as a screening tool, we searched for additional epigenetic modifiers
playing a role in renal development and nephron morphogenesis. Entinostat (MS-275)
reduced kidney size concordant with previously reported genetic deletion of HDAC1 and
HDAC2 in either nephron progenitor cells or ureteric bud cells [44,82,83]. While inhibition
of HDAC8 by TH39 also induced a severe growth reduction of the explant and lack of
differentiation, the highly specific HDAC8 inhibitor PCI-34051 showed no effect, thus point-
ing to off-target effects of TH39, such as other HDACs. With a phenotype similar to that of
kidneys cultured under iron-deficient conditions, deferasirox and deferoxamine, published
inhibitors of the iron-dependent JumonjiC-domain-containing histone demethylases [50],
may exhibit off-target effects due to iron chelation. While cyproheptadine, a histamine
antagonist and published inhibitor of Set7/9 histone methyltransferase, displayed a unique
phenotype by leading to diffusion of the progenitor cell population, additional results
pointed to off-target effects involving the Wnt signaling pathway [48]. Altogether, this
library of FDA-approved inhibitors shows the potential for fast and effective screening for
epigenetic modulators. Due to the limited time frame used, inhibitors requiring prolonged
exposure to exert an effect might have been missed in this setup. Thus, azacytidine did not
show an effect despite the published phenotype of Dnmt1 knockout [30].

While the kidney culture system offers robust renal development, several aspects
limit investigation or interpretation of the results in this reductionist model. First, studies
have shown differences in mouse and human development and gene expression, limiting
the use of the mouse model. Next, time limitations in this system may not allow for all
complex processes to unfold. This may account for some of the environmental conditions
and epigenetic inhibitors failing to impact renal development in this study. Moreover,
some of the inhibitors show nonspecific effects that can contribute to inhibition of other
pathways, such as in the case of cyproheptadine, which appears to exhibit its effect via
activation of GSK3-beta, or the case of iron chelation by deferasirox/deferoxamine. Beyond
this proof-of-concept study, the epigenetic inhibitor screen could be extended to more
(specific) inhibitors; prolonged time periods; additional study criteria, such as nephron
number and ureteric bud branching; and transcriptomic and epigenetic studies.

To summarize, kidney cultures enable the characterization of a number of maternal
disease models, such as hyperthermia, iron deficiency and maternal diabetes, and the
screening of pharmacological compounds, providing a well-suited platform for investi-
gating the crosstalk between environmental influences of the developing kidney and its
epigenetic programming.

4. Materials and Methods
4.1. Animal Handling

Mice were kept in a specific-pathogen-free environment at the Center for Experimental
Models and Transgenic Service (CEMT) in Freiburg, Germany. All mice were raised in a
12/12 h cycle of light and darkness, with access to water and standard chow ad libitum.
All experiments were registered with the regional government of Baden-Wuerttemberg
under the authorization codes X15/03R and X17/05F.

4.2. Timed Harvest of Embryos/Microdissection/Culture of Metanephroi

Timed-pregnant hNPHS2Cre B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)
Luo/J [5] and Tg(Six2-EGFP/cre)1Amc/J mice [84] were sacrificed at E12.5, and the em-
bryos were harvested. The metanephroi were isolated and cultured on Transwell inserts
with culture medium at the medium–air interface. Pairing of metanephroi from the same
embryo between control and experimental conditions was maintained throughout the
experiments unless mentioned otherwise.
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4.3. Genotyping

Genotyping of the mice was performed by polymerase chain reaction (PCR) amplifi-
cation of DNA isolated from tail biopsies and subsequent visualization of the amplified
fragments by gel electrophoresis. The following primers were used: Tomato/EGFP forward
5′ CTC TGC TGC CTC CTG GCT TCT 3′ reverse wildtype 5′ CGA GGC GGA TCA CAA
GCA ATA 3′ and reverse mutant 5′ TCA ATG GGC CGG GGT CGT T3′, Cre forward 5′

GCA TTA CCG GTC GAT GCA ACG AGT GAT GAG 3′ and reverse 5′ GAG TGA ACG
AAC CTG GTC GAA ATC AGT GCG 3′.

4.4. Hyperglycemic Conditions

Hyperglycemia medium contained DMEM medium with 10% fetal bovine serum,
100 µg/mL of penicillin, 100 µg of streptomycin and D-glucose for a final concentration of
55 mM D-glucose. For the control medium, an equimolar amount of mannitol was added,
for a final concentration of 5 mM of D-glucose and 50 mM mannitol.

4.5. Hyperthermic Conditions

For both hyperthermia and control cultures, a serum-free base medium of 1:1 DMEM
and Ham’s F-12 Medium was supplemented with 100 µg/mL of penicillin, 100 µg/mL
of streptomycin, 50 µg/mL of bovine holo-transferrin and 10 mM HEPES for increased
buffering capacity. Control cultures were incubated at 37 ◦C, while hyperthermia cultures
were incubated in an identical incubator at a temperature of 40 ◦C.

4.6. Iron-Restriction

Iron-restricted medium consisted of serum-free base medium of 1:1 DMEM and
Ham’s F-12 medium which was supplemented with 100 µg/mL of penicillin, 100 µg/mL
of streptomycin and 50 µg/mL of apo-transferrin. For the iron-sufficient control cultures,
50 µg/mL of holo-transferrin was used instead.

4.7. Whole Mount Immunofluorescence Staining of Explants

Cultured explants were either fixed with cold methanol for 20 min or room-temperature
4% paraformaldehyde (PFA) solution for 15 min and subsequently washed three times
with room temperature PBST buffer (PBS + 0.1% Tween 20) for 5 min. Blocking solution
containing 5% BSA in PBST buffer was added for 3 h at room temperature. After blocking,
the cultures were incubated in dilutions of the primary antibodies in blocking solution at
4 ◦C on an orbital shaker overnight. Cultures were then washed three times with block-
ing solution for 2 h each and incubated in a 1:300 dilution of secondary antibodies and
1:500 dilution of Hoechst nuclear dye in blocking solution overnight. The cultures were
again washed three times for 2 h and mounted with Prolong Gold Antifade mountant
using a spacer. The following primary antibodies were used: rabbit anti-active caspase
3 (1:250, AF835; R&D systems Inc., Minneapolis, MN, USA), rabbit anti-JAG-1 (1:100, 260S;
Cell Signaling Technology, Denver, MA, USA), sheep anti-Tamm-Horsefall protein (1:250,
AB2606308; Thermo Fisher Scientific, Waltham, MA, USA), mouse anti-pan-cytokeratin
(1:250, AB11213; Abcam, Cambridge, UK), rabbit anti-SIX2 (1:100, 11562-1-AP; Proteintech
Group Inc., Manchester, UK), mouse anti-WT1 (1:100, 05-753; Merck KGaA, Darmstadt, Ger-
many), rat anti-CD326 (1:100; 118202, Biolegend, San Diego, CA), rabbit anti-NKCC2 (1:100,
SPC-401D; StressMarq Biosciences, Victoria, BC, Canada), mouse anti-phospho-histone H3
(1:100, 9706S, Cell Signaling Technology, Denver, MA, USA) and mouse anti-E-cadherin
(1:200, 4A2C7; Thermo Fisher Scientific, Waltham, MA, USA). The following secondary
antibodies were used in 1:300 dilution: Alexa Fluor 488 anti-mouse (R37114) and anti-
rabbit (R37118); Alexa Fluor 555 anti-mouse (A-31570), anti-rabbit (A-31572), anti-sheep
(A-21436) and anti-rat (A-21434) (all Thermo Fisher). The pairing of explants from the
same embryo was not maintained in the stainings against phospho-histone H3 due to the
explants detaching from the membrane during PFA fixation.
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4.8. Imaging

Live imaging of cultured metanephroi from NPHS2-Cre;Tomato/EGFP mice was
performed with Zeiss AxioObserver after mounting the membrane inserts on a glass-
bottom dish containing 200 µL of cold PBS. Live images were taken as z-stacks with a
plane distance of 10 µm. For the glomerular counting, the z-stacked GFP channels were
orthogonally projected using Zen Blue and analyzed with ImageJ. Stained cultures were
imaged using Zeiss AxioObserver inverted microscope or U2 LSM 510 META laser scanning
microscope. Mitotic cells were counted using ImageJ.

4.9. Histology

Fixation was performed in 4% PFA solution overnight. The explants were dehydrated
with ethanol, incubated with xylene and embedded in paraffin. The paraffin blocks were
sectioned at 3 µm and mounted onto glass specimen slides. Hematoxylin/eosin staining
(H&E) was performed.

4.10. EM

Kidney cultures were fixed in 4% PFA/1% glutardialdehyde in 1x PBS overnight and
then embedded in liquid 40 ◦C agarose. After postfixation with 1% osmium tetroxide
in 6.68% sucrose buffer, the samples were washed and stained en bloc with 1% uranyl
acetate in 70% alcohol for 1 h, dehydrated in ethanol and propylene oxide and embedded
in Durcupan (Plano, Wetzlar, Germany). Ultrathin sections were stained with lead citrate
and examined in a Zeiss-Leo 910 transmission electron microscope.

4.11. Bisulfite-PCR

DNA from kidney cultures was isolated with DNeasy Blood & Tissue kit (QIAGEN)
and bisulfite-converted using EpiTect Bisulfite Kit (QIAGEN) according to the manufac-
turer’s instructions. Converted DNA (20 ng) was used as template in a PCR reaction
using AmpliTaq Gold Polymerase (Invitrogen). PCR products were purified using gel
electrophoresis and ligated into a pCR4-TOPO vector using the TOPO TA Cloning Kit for
sequencing (Invitrogen) and transformed into DH10B E. Coli cells. Randomly selected
clones were sent for sequencing (GATC, Konstanz). Inspection, alignment, visualization
and statistics were performed with QUMA: quantification tool for methylation analysis [85].
The following primers were used: major satellite forward: 5′ GGA ATA TGG TAA GAA
AAT TGA AAA TTA TGG 3′, reverse: 5′ CCA TAT TCC AAA TCC TTC AAT ATA CAT
TTC 3′, ref. [30] Line-1 forward 5′ TAG GAA ATT AGT TTG AAT AGG TGA GAG GT 3′,
Line-1 reverse: TCA AAC ACT ATA TTA CTT TAA CAA TTC CCA 3′, ref. [30] Ppargc1a
forward 5′ TGT TAG GGA ATA AGA TTT GTG TTT TTA A 3′, Ppargc1a reverse 5′ CAA
ATA CTC CTA TAA ACA ATC CAA ACA A 3′.

4.12. RNA Sequencing

The RNA of kidneys grown for 7 days under high or low glucose conditions was
isolated using the Qiagen RNeasy Plus Mini Kit. RNA sequencing was performed by GATC
Biotech. Quality control was done with FastQC (Barbraham Bioinformatics). Raw reads
were trimmed using TrimGalore! (Barbraham Bioinformatics) and mapped with Tophat
(v2) [86] to mm10 using Galaxy Freiburg. Read counts were extracted with htseq-count [87];
differential gene expression was analyzed with DESeq2 [88].

4.13. Microarray Analysis of Human Kidney Biopsies

Human kidney biopsy specimens and Affymetrix microarray expression data were
procured within the framework of the European Renal cDNA Bank–Kröner–Fresenius
Biopsy Bank. Biopsies were obtained from patients after informed consent and with the
approval of the local ethics committees [89]. Following a renal biopsy, the tissue was trans-
ferred to RNase inhibitor and microdissected into glomeruli and tubulointerstitium. Total
RNA was isolated from microdissected glomeruli and tubules, reverse transcribed and
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linearly amplified according to a protocol previously reported [90]. In this study, we used
published microarray expression data from individual patients with diabetic nephropathy,
as well as living donors (GSE 99340, LDs: GSE32591, GSE35489, GSE37463). CEL file
normalization was performed with the Robust Multichip Average method using RMA-
Express (Version 1.0.5) and the human Entrez-Gene custom CDF annotation from Brain
Array Version 18, accessed on 23 January 2014 (http://brainarray.mbni.med.umich.edu/
Brainarray/Database/CustomCDF/CDF_download.asp). The log-transformed dataset
was corrected for batch effect using ComBat from the GenePattern pipeline (version 3.8.0)
(http://www.broadinstitute.org/cancer/software/genepattern/). To identify differentially
expressed genes, the SAM (Significance Analysis of Microarrays) method was applied
using TiGR (MeV, Version 4.8.1) [91].

4.14. qPCR

mRNA was reverse transcribed to cDNA using the iScript cDNA synthase kit (Bio-
Rad) according to the manufacturer’s instructions. qPCR was performed with BioRad
CFX Connect Real-Time PCR Detection System in triplicates using SsoAdvanced Universal
SYBR Green Supermix. The normalized ∆∆CT values were calculated in the CFX Manager
program. The following primers were used: Jag1 forward 5′ TGG TTG GCT GGG AAA TT
3′, Jag1 reverse 5′ TGG ACA CCA GGG CAC ATT C 3′, mHprt forward 5′ GCT TTC CTT
GGT CAA GCA GTA CAG 3′, mHprt reverse 5′ GAA GTG CTC ATT ATA GTC AAG GGC
ATA TCC 3′ [92].

4.15. Statistics

For analysis of paired kidneys, paired t-tests were applied using GraphPad Prism 7.
For the quantification of unpaired kidneys, pHH3-positive cells and qPCR experiments,
unpaired t-test was applied.
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